1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/* bell-p-w.c
*
* Copyright (C) 2008 Claudio Girardi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* This file is derived from FORTRAN 77 code by Brad Bell, Don Percival
* and Andrew Walden. Original note says
* "
Comments / queries * to dbp@apl.washington.edu or a.walden@ic.ac.uk.
This software may be freely used for non-commercial purposes and
can be freely distributed.
Equation numbers and comments refer to the article:
Bell, B., Percival, D.B. and Walden, A.T. "Calculating Thomson's Spectral
Multitapers by Inverse Iteration ", J. Comput. and Graph. Stat., 1993.
"
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "util.h"
#define MIN(a,b) ((a) < (b) ? (a) : (b))
int sytoep(int n, double *r, double *g, double *f)
{
/* Finds filter corresponding to a symmetric Toeplitz matrix with first row
r[] and crosscorrelation vector g[]
i.e., "r" f = g
To be used with DPSS and SPOL. See
Bell, B., Percival, D.B. and Walden, A.T. "Calculating Thomson's
Spectral Multitapers by Inverse Iteration", J. Comput. and Graph.
Stat., 1993.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++
N integer input: dimension of Toeplitz matrix and
cross-correlation vector
R(N) real input: autocovariances from lag 0 to N-1
G(N) real input: cross-correlation vector
F(N) real output: required filter
W(N) real input: work array
IFAULT integer output: 0 indicates successful
1 if N < 1
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
This program is a substantially corrected and modified version of
"EUREKA" in Robinson, E.A. (1967) "Multichannel Time Series Analysis
with Digital Computer Programs", Holden-Day.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
int i, l, l1, l2, l3, j, k;
double *w, v, d, q, hold;
w = dvector(1, n);
/* check for special "matrix" sizes */
if (n < 1)
return 1;
v = r[0];
f[1] = g[1] / v;
if (n == 1)
return 0;
d = r[1];
w[1] = 1.0;
q = f[1] * r[1];
for (l = 2; l <= n; l++) {
w[l] = -d / v;
if (l > 2) {
l1 = (l - 2) / 2;
l2 = l1 + 1;
if (l != 3) {
for (j = 2; j <= l2; j++) {
hold = w[j];
k = l - j + 1;
w[j] = w[j] + w[l] * w[k];
w[k] = w[k] + w[l] * hold;
}
}
if (((2 * l1) != (l - 2)) || (l == 3))
w[l2 + 1] = w[l2 + 1] + w[l] * w[l2 + 1];
}
v = v + w[l] * d;
f[l] = (g[l] - q) / v;
l3 = l - 1;
for (j = 1; j <= l3; j++) {
k = l - j + 1;
f[j] = f[j] + f[l] * w[k];
}
if (l == n)
return 0;
d = 0.0;
q = 0.0;
for (i = 1; i <= l; i++) {
k = l - i + 2;
d = d + w[i] * r[k - 1];
q = q + f[i] * r[k - 1];
}
}
free_dvector(w, 1, n);;
return 0;
}
int spol(int n, double *v, int k)
{
/* Scales the discrete prolate spheroidal sequence and sets the
polarity to agree with Slepian's convention.
To be used with DPSS and SYTOEP. See
Bell, B., Percival, D.B. and Walden, A.T. "Calculating Thomson's
Spectral Multitapers by Inverse Iteration", J. Comput. and Graph.
Stat., 1993. (Section 1.2.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
N Integer input length of dpss sequence
V Real(N) input eigenvector (dpss) with unit energy
output unit energy dpss conforming to
Slepian's polarity convention
K Integer input the order of the dpss 0=<K=<N-1
IFAULT Integer output 0 indicates successful
1 indicates N < 1
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
int l, ifault;
double rn, dsum, dwsum;
if (n < 1)
return 1;
ifault = 0;
rn = n;
dsum = 0.0;
dwsum = 0.0;
for (l = 1; l <= n; l++) {
dsum = dsum + v[l];
dwsum = dwsum + v[l] * (rn - 1.0 - 2.0 * (l - 1));
}
if ((((k % 2) == 0) && (dsum < 0.0)) || (((k % 2) == 1) && (dwsum < 0.0)))
for (l = 1; l <= n; l++)
v[l] = -v[l];
return ifault;
}
int dpss(int nmax, int kmax, int n, double w, double **v, double *sig, int *totit)
{
/* Calculates discrete prolate spheroidal sequences for use as data tapers.
Calls auxiliary routines SYTOEP and SPOL also given below.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
NMAX integer input: maximum possible length of taper
KMAX integer input: dpss orders 0 to KMAX required
N integer input: length of sequence to generate
W real input: half-bandwidth, W < 1/2
V(NMAX, KMAX+1) real array output: columns contain tapers
SIG(KMAX+1) real array output: eigenvalues are 1+SIG(j)
TOTIT integer output: total number of iterations
SINES(0:N-1) real array work array
VOLD(N) real array work array
U(N) real array work array
SCR1(N) real array work array
IFAULT integer output: 0 indicates success
1 if W > 1/2
2 if N < 2
3 if NMAX < N; matrix too small
4 if KMAX < 0
5 failure in SYTOEP
6 > MAXIT its required for some order
(Output values are undefined for
IFAULT in the range 1 to 5.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
int j, jj, k, k1, m, isig, ilow, ihigh, it, maxit, ifail, ifault;
double *u, *vold, *sines;
double *scr1, delta, rootn;
double proj, snorm, ssnorm, diff, sum, rone;
double eps = 0.5e-6;
sines = dvector(0, n - 1);
vold = dvector(1, n);
u = dvector(1, n);
scr1 = dvector(1, n);
/* initialize max number of iterations flag */
ifail = 0;
/* check input parameters */
if (w > 0.5)
return 1;
if (n < 2)
return 2;
if (nmax < n)
return 3;
if ((kmax < 0) || (kmax > n - 1))
return 4;
/* set up SINES so that S in eqn. (1) is given by */
/* S(n,m)=SINES(n-m) for n not equal to m */
for (m = 1; m < n; m++)
sines[m] = sin(2.0 * M_PI * w * m) / (M_PI * m);
/* set total iteration counter and constant */
*totit = 0;
rootn = sqrt(n);
rone = 1.0 / rootn;
/* major loop over dpss orders 0 to KMAX */
/* modify SINES(0) so that B_k in Section 2.2 is given by */
/* B_k(n,m)=SINES(n-m) */
for (k = 0; k <= kmax; k++) {
if (k == 0) {
sines[0] = 2.0 * w - 1.0;
} else {
sines[0] = 2.0 * w - (1.0 + sig[k - 1]);
}
/* define suitable starting vector for inverse iteration; */
/* see Section 2.2 */
isig = 1;
k1 = k + 1;
for (j = 1; j <= k1; j++) {
ilow = ((j - 1) * n / k1) + 1;
ihigh = (j * n / k1);
for (jj = ilow; jj <= ihigh; jj++) {
u[jj] = isig * rone;
}
isig = -isig;
}
if (((k % 2) != 0) && ((n % 2) > 0))
u[n / 2 + 1] = 0.0;
/* maximum number of iterations */
maxit = (k + 3) * rootn;
/* carry out inverse iteration */
for (it = 1; it <= maxit; it++) {
/* copy U into old V; VOLD = previous iterate */
for (j = 1; j <= n; j++)
vold[j] = u[j];
/* solve symmetric Toeplitz matrix equation B_k*U=VOLD for U */
ifail = sytoep(n, sines, vold, u);
/* check no problems */
if (ifail != 0)
return 5;
/* new vector must be orthogonal to previous eigenvectors */
if (k > 0) {
for (k1 = 0; k1 < k; k1++) {
/* projection of u onto v(*,k1) */
proj = 0.0;
for (j = 1; j <= n; j++)
proj = proj + u[j] * v[j][k1];
/* subtract projection */
for (j = 1; j <= n; j++)
u[j] = u[j] - proj * v[j][k1];
}
}
/* normalize */
snorm = 0.0;
for (j = 1; j <= n; j++)
snorm = snorm + u[j] * u[j];
ssnorm = sqrt(snorm);
for (j = 1; j <= n; j++)
u[j] = u[j] / ssnorm;
/* check for convergence */
sum = 0.0;
diff = 0.0;
for (j = 1; j <= n; j++) {
/* first previous-current */
diff = diff + (vold[j] - u[j]) * (vold[j] - u[j]);
/* next, previous+current */
sum = sum + (vold[j] + u[j]) * (vold[j] + u[j]);
}
delta = sqrt(MIN(diff, sum));
if (delta < eps) {
ifail = 0;
goto endloop;
}
}
/* FIXME */
/* if here, max number of iterations exceeded for this order dpss */
it = maxit;
ifail = 1;
endloop:
*totit += it;
if (sum < diff) {
if (k == 0) {
sig[0] = -1.0 / ssnorm;
} else {
sig[k] = sig[k - 1] - 1.0 / ssnorm;
}
} else {
if (k == 0) {
sig[0] = 1.0 / ssnorm;
} else {
sig[k] = sig[k - 1] + 1.0 / ssnorm;
}
}
/* ensure tapers satisfy Slepian convention */
ifault = spol(n, u, k);
for (j = 1; j <= n; j++)
v[j][k] = u[j];
}
/* one order of dpss did not converge set IFAULT to 6 */
if (ifail == 1)
return 6;
else
return 0;
}
|