1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
|
//========================================================================
// This is a simple, but cool particle engine (buzz-word meaning many
// small objects that are treated as points and drawn as textures
// projected on simple geometry).
//
// This demonstration generates a colorful fountain-like animation. It
// uses several advanced OpenGL teqhniques:
//
// 1) Lighting (per vertex)
// 2) Alpha blending
// 3) Fog
// 4) Texturing
// 5) Display lists (for drawing the static environment geometry)
// 6) Vertex arrays (for drawing the particles)
// 7) GL_EXT_separate_specular_color is used (if available)
//
// Even more so, this program uses multi threading. The program is
// essentialy divided into a main rendering thread and a particle physics
// calculation thread. My benchmarks under Windows 2000 on a single
// processor system show that running this program as two threads instead
// of a single thread means no difference (there may be a very marginal
// advantage for the multi threaded case). On dual processor systems I
// have had reports of 5-25% of speed increase when running this program
// as two threads instead of one thread.
//
// The default behaviour of this program is to use two threads. To force
// a single thread to be used, use the command line switch -s.
//
// To run a fixed length benchmark (60 s), use the command line switch -b.
//
// Benchmark results (640x480x16, best of three tests):
//
// CPU GFX 1 thread 2 threads
// Athlon XP 2700+ GeForce Ti4200 (oc) 757 FPS 759 FPS
// P4 2.8 GHz (SMT) GeForce FX5600 548 FPS 550 FPS
//
// One more thing: Press 'w' during the demo to toggle wireframe mode.
//========================================================================
import std.math;
import std.c.string;
import std.random;
import glfw;
// Define tokens for GL_EXT_separate_specular_color if not already defined
// #ifndef GL_EXT_separate_specular_color
const int GL_LIGHT_MODEL_COLOR_CONTROL_EXT = 0x81F8;
const int GL_SINGLE_COLOR_EXT = 0x81F9;
const int GL_SEPARATE_SPECULAR_COLOR_EXT = 0x81FA;
// #endif // GL_EXT_separate_specular_color
// Desired fullscreen resolution
const int WIDTH = 640;
const int HEIGHT = 480;
//========================================================================
// Type definitions
//========================================================================
struct VEC { float x,y,z; }
// This structure is used for interleaved vertex arrays (see the
// DrawParticles function) - Note: This structure SHOULD be packed on most
// systems. It uses 32-bit fields on 32-bit boundaries, and is a multiple
// of 64 bits in total (6x32=3x64). If it does not work, try using pragmas
// or whatever to force the structure to be packed.
struct VERTEX {
GLfloat s, t; // Texture coordinates
GLuint rgba; // Color (four ubytes packed into an uint)
GLfloat x, y, z; // Vertex coordinates
}
//========================================================================
// Program control global variables
//========================================================================
// "Running" flag (true if program shall continue to run)
int running = 0;
// Window dimensions
int width=640, height=480;
// "wireframe" flag (true if we use wireframe view)
int wireframe = 0;
// "multithreading" flag (true if we use multithreading)
int multithreading = 0;
// Thread synchronization
struct TS {
double t; // Time (s)
float dt; // Time since last frame (s)
int p_frame; // Particle physics frame number
int d_frame; // Particle draw frame number
GLFWcond p_done; // Condition: particle physics done
GLFWcond d_done; // Condition: particle draw done
GLFWmutex particles_lock; // Particles data sharing mutex
}
TS thread_sync;
//========================================================================
// Texture declarations (we hard-code them into the source code, since
// they are so simple)
//========================================================================
const int P_TEX_WIDTH = 8; // Particle texture dimensions
const int P_TEX_HEIGHT = 8;
const int F_TEX_WIDTH = 16; // Floor texture dimensions
const int F_TEX_HEIGHT = 16;
// Texture object IDs
GLuint particle_tex_id=0, floor_tex_id=0;
// Particle texture (a simple spot)
const ubyte[ P_TEX_WIDTH * P_TEX_HEIGHT ] particle_texture = [
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x11, 0x22, 0x22, 0x11, 0x00, 0x00,
0x00, 0x11, 0x33, 0x88, 0x77, 0x33, 0x11, 0x00,
0x00, 0x22, 0x88, 0xff, 0xee, 0x77, 0x22, 0x00,
0x00, 0x22, 0x77, 0xee, 0xff, 0x88, 0x22, 0x00,
0x00, 0x11, 0x33, 0x77, 0x88, 0x33, 0x11, 0x00,
0x00, 0x00, 0x11, 0x33, 0x22, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
];
// Floor texture (your basic checkered floor)
const ubyte[ F_TEX_WIDTH * F_TEX_HEIGHT ] floor_texture = [
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
0xff, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
0xf0, 0xcc, 0xee, 0xff, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x66, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30,
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xee, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
0xf0, 0xf0, 0xf0, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x55, 0x30, 0x30, 0x44, 0x30, 0x30,
0xf0, 0xdd, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x60, 0x30,
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x33, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
0x30, 0x30, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30, 0xf0, 0xff, 0xf0, 0xf0, 0xdd, 0xf0, 0xf0, 0xff,
0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x55, 0x33, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0,
0x30, 0x44, 0x66, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xaa, 0xf0, 0xf0, 0xcc, 0xf0,
0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xff, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xdd, 0xf0,
0x30, 0x30, 0x30, 0x77, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
];
//========================================================================
// These are fixed constants that control the particle engine. In a
// modular world, these values should be variables...
//========================================================================
// Maximum number of particles
const int MAX_PARTICLES = 3000;
// Life span of a particle (in seconds)
const float LIFE_SPAN = 8.0f;
// A new particle is born every [BIRTH_INTERVAL] second
const float BIRTH_INTERVAL = (LIFE_SPAN/cast(float)MAX_PARTICLES);
// Particle size (meters)
const float PARTICLE_SIZE = 0.7f;
// Gravitational constant (m/s^2)
const float GRAVITY = 9.8f;
// Base initial velocity (m/s)
const float VELOCITY = 8.0f;
// Bounce friction (1.0 = no friction, 0.0 = maximum friction)
const float FRICTION = 0.75f;
// "Fountain" height (m)
const float FOUNTAIN_HEIGHT = 3.0f;
// Fountain radius (m)
const float FOUNTAIN_RADIUS = 1.6f;
// Minimum delta-time for particle phisics (s)
const float MIN_DELTA_T = (BIRTH_INTERVAL*0.5);
//========================================================================
// Particle system global variables
//========================================================================
// This structure holds all state for a single particle
struct PARTICLE {
float x,y,z; // Position in space
float vx,vy,vz; // Velocity vector
float r,g,b; // Color of particle
float life; // Life of particle (1.0 = newborn, < 0.0 = dead)
int active; // Tells if this particle is active
}
// Global vectors holding all particles. We use two vectors for double
// buffering.
static PARTICLE[ MAX_PARTICLES ] particles;
// Global variable holding the age of the youngest particle
static float min_age = 0.0;
// Color of latest born particle (used for fountain lighting)
static float[4] glow_color = [0.0, 0.0, 0.0, 0.0];
// Position of latest born particle (used for fountain lighting)
static float[4] glow_pos = [0.0, 0.0, 0.0, 0.0];
//========================================================================
// Object material and fog configuration constants
//========================================================================
const GLfloat[4] fountain_diffuse = [0.7f,1.0f,1.0f,1.0f];
const GLfloat[4] fountain_specular = [1.0f,1.0f,1.0f,1.0f];
const GLfloat fountain_shininess = 12.0f;
const GLfloat[4] floor_diffuse = [1.0f,0.6f,0.6f,1.0f];
const GLfloat[4] floor_specular = [0.6f,0.6f,0.6f,1.0f];
const GLfloat floor_shininess = 18.0f;
const GLfloat[4] fog_color = [0.1f, 0.1f, 0.1f, 1.0f];
//========================================================================
// InitParticle() - Initialize a new particle
//========================================================================
void InitParticle( PARTICLE* p, double t )
{
float xy_angle=0.0, velocity=0.0;
// Start position of particle is at the fountain blow-out
p.x = 0.0f;
p.y = 0.0f;
p.z = FOUNTAIN_HEIGHT;
// Start velocity is up (Z)...
p.vz = 0.7f + (0.3/4096.0) * cast(float) (rand() & 4095);
// ...and a randomly chosen X/Y direction
xy_angle = (2.0*PI/4096.0) * cast(float) (rand() & 4095);
p.vx = 0.4f * cast(float) cos( xy_angle );
p.vy = 0.4f * cast(float) sin( xy_angle );
// Scale velocity vector according to a time-varying velocity
velocity = VELOCITY*(0.8f + 0.1f*cast(float)(sin( 0.5*t )+sin( 1.31*t )));
p.vx *= velocity;
p.vy *= velocity;
p.vz *= velocity;
// Color is time-varying
p.r = 0.7f + 0.3f * cast(float) sin( 0.34*t + 0.1 );
p.g = 0.6f + 0.4f * cast(float) sin( 0.63*t + 1.1 );
p.b = 0.6f + 0.4f * cast(float) sin( 0.91*t + 2.1 );
// Store settings for fountain glow lighting
glow_pos[0] = 0.4f * cast(float) sin( 1.34*t );
glow_pos[1] = 0.4f * cast(float) sin( 3.11*t );
glow_pos[2] = FOUNTAIN_HEIGHT + 1.0f;
glow_pos[3] = 1.0f;
glow_color[0] = p.r;
glow_color[1] = p.g;
glow_color[2] = p.b;
glow_color[3] = 1.0f;
// The particle is new-born and active
p.life = 1.0f;
p.active = 1;
}
//========================================================================
// UpdateParticle() - Update a particle
//========================================================================
const float FOUNTAIN_R2 = (FOUNTAIN_RADIUS+PARTICLE_SIZE/2) * (FOUNTAIN_RADIUS+PARTICLE_SIZE/2);
void UpdateParticle( PARTICLE* p, float dt )
{
// If the particle is not active, we need not do anything
if( !p.active )
{
return;
}
// The particle is getting older...
p.life = p.life - dt * (1.0f / LIFE_SPAN);
// Did the particle die?
if( p.life <= 0.0f )
{
p.active = 0;
return;
}
// Update particle velocity (apply gravity)
p.vz = p.vz - GRAVITY * dt;
// Update particle position
p.x = p.x + p.vx * dt;
p.y = p.y + p.vy * dt;
p.z = p.z + p.vz * dt;
// Simple collision detection + response
if( p.vz < 0.0f )
{
// Particles should bounce on the fountain (with friction)
if( (p.x*p.x + p.y*p.y) < FOUNTAIN_R2 &&
p.z < (FOUNTAIN_HEIGHT + PARTICLE_SIZE/2) )
{
p.vz = -FRICTION * p.vz;
p.z = FOUNTAIN_HEIGHT + PARTICLE_SIZE/2 +
FRICTION * (FOUNTAIN_HEIGHT +
PARTICLE_SIZE/2 - p.z);
}
// Particles should bounce on the floor (with friction)
else if( p.z < PARTICLE_SIZE/2 )
{
p.vz = -FRICTION * p.vz;
p.z = PARTICLE_SIZE/2 +
FRICTION * (PARTICLE_SIZE/2 - p.z);
}
}
}
//========================================================================
// ParticleEngine() - The main frame for the particle engine. Called once
// per frame.
//========================================================================
void ParticleEngine( double t, float dt )
{
int i;
float dt2 = 0.0;
// Update particles (iterated several times per frame if dt is too
// large)
while( dt > 0.0f )
{
// Calculate delta time for this iteration
dt2 = dt < MIN_DELTA_T ? dt : MIN_DELTA_T;
// Update particles
for( i = 0; i < MAX_PARTICLES; i ++ )
{
UpdateParticle( &particles[ i ], dt2 );
}
// Increase minimum age
min_age += dt2;
// Should we create any new particle(s)?
while( min_age >= BIRTH_INTERVAL )
{
min_age -= BIRTH_INTERVAL;
// Find a dead particle to replace with a new one
for( i = 0; i < MAX_PARTICLES; i ++ )
{
if( !particles[ i ].active )
{
InitParticle( &particles[ i ], t + min_age );
UpdateParticle( &particles[ i ], min_age );
break;
}
}
}
// Decrease frame delta time
dt -= dt2;
}
}
//========================================================================
// DrawParticles() - Draw all active particles. We use OpenGL 1.1 vertex
// arrays for this in order to accelerate the drawing.
//========================================================================
const int BATCH_PARTICLES = 70; // Number of particles to draw in each batch
// (70 corresponds to 7.5 KB = will not blow
// the L1 data cache on most CPUs)
const int PARTICLE_VERTS = 4; // Number of vertices per particle
void DrawParticles( double t, float dt )
{
int i = 0, particle_count = 0;
VERTEX[ BATCH_PARTICLES * PARTICLE_VERTS ] vertex_array;
VERTEX *vptr;
float alpha = 0.0;
GLuint rgba;
VEC quad_lower_left, quad_lower_right;
GLfloat mat[ 16 ];
PARTICLE *pptr;
// Here comes the real trick with flat single primitive objects (s.c.
// "billboards"): We must rotate the textured primitive so that it
// always faces the viewer (is coplanar with the view-plane).
// We:
// 1) Create the primitive around origo (0,0,0)
// 2) Rotate it so that it is coplanar with the view plane
// 3) Translate it according to the particle position
// Note that 1) and 2) is the same for all particles (done only once).
// Get modelview matrix. We will only use the upper left 3x3 part of
// the matrix, which represents the rotation.
glGetFloatv( GL_MODELVIEW_MATRIX, mat );
// 1) & 2) We do it in one swift step:
// Although not obvious, the following six lines represent two matrix/
// vector multiplications. The matrix is the inverse 3x3 rotation
// matrix (i.e. the transpose of the same matrix), and the two vectors
// represent the lower left corner of the quad, PARTICLE_SIZE/2 *
// (-1,-1,0), and the lower right corner, PARTICLE_SIZE/2 * (1,-1,0).
// The upper left/right corners of the quad is always the negative of
// the opposite corners (regardless of rotation).
quad_lower_left.x = (-PARTICLE_SIZE/2) * (mat[0] + mat[1]);
quad_lower_left.y = (-PARTICLE_SIZE/2) * (mat[4] + mat[5]);
quad_lower_left.z = (-PARTICLE_SIZE/2) * (mat[8] + mat[9]);
quad_lower_right.x = (PARTICLE_SIZE/2) * (mat[0] - mat[1]);
quad_lower_right.y = (PARTICLE_SIZE/2) * (mat[4] - mat[5]);
quad_lower_right.z = (PARTICLE_SIZE/2) * (mat[8] - mat[9]);
// Don't update z-buffer, since all particles are transparent!
glDepthMask( GL_FALSE );
// Enable blending
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE );
// Select particle texture
if( !wireframe )
{
glEnable( GL_TEXTURE_2D );
glBindTexture( GL_TEXTURE_2D, particle_tex_id );
}
// Set up vertex arrays. We use interleaved arrays, which is easier to
// handle (in most situations) and it gives a linear memeory access
// access pattern (which may give better performance in some
// situations). GL_T2F_C4UB_V3F means: 2 floats for texture coords,
// 4 ubytes for color and 3 floats for vertex coord (in that order).
// Most OpenGL cards / drivers are optimized for this format.
glInterleavedArrays( GL_T2F_C4UB_V3F, 0, vertex_array );
// Is particle physics carried out in a separate thread?
if( multithreading )
{
// Wait for particle physics thread to be done
glfwLockMutex( thread_sync.particles_lock );
while( running && thread_sync.p_frame <= thread_sync.d_frame )
{
glfwWaitCond( thread_sync.p_done, thread_sync.particles_lock,
0.1 );
}
// Store the frame time and delta time for the physics thread
thread_sync.t = t;
thread_sync.dt = dt;
// Update frame counter
thread_sync.d_frame ++;
}
else
{
// Perform particle physics in this thread
ParticleEngine( t, dt );
}
// Loop through all particles and build vertex arrays.
particle_count = 0;
vptr = vertex_array;
pptr = particles;
for( i = 0; i < MAX_PARTICLES; i ++ )
{
if( pptr.active )
{
// Calculate particle intensity (we set it to max during 75%
// of its life, then it fades out)
alpha = 4.0f * pptr.life;
if( alpha > 1.0f )
{
alpha = 1.0f;
}
// Convert color from float to 8-bit (store it in a 32-bit
// integer using endian independent type casting)
(cast(GLubyte *)&rgba)[0] = cast(GLubyte)(pptr.r * 255.0f);
(cast(GLubyte *)&rgba)[1] = cast(GLubyte)(pptr.g * 255.0f);
(cast(GLubyte *)&rgba)[2] = cast(GLubyte)(pptr.b * 255.0f);
(cast(GLubyte *)&rgba)[3] = cast(GLubyte)(alpha * 255.0f);
// 3) Translate the quad to the correct position in modelview
// space and store its parameters in vertex arrays (we also
// store texture coord and color information for each vertex).
// Lower left corner
vptr.s = 0.0f;
vptr.t = 0.0f;
vptr.rgba = rgba;
vptr.x = pptr.x + quad_lower_left.x;
vptr.y = pptr.y + quad_lower_left.y;
vptr.z = pptr.z + quad_lower_left.z;
vptr ++;
// Lower right corner
vptr.s = 1.0f;
vptr.t = 0.0f;
vptr.rgba = rgba;
vptr.x = pptr.x + quad_lower_right.x;
vptr.y = pptr.y + quad_lower_right.y;
vptr.z = pptr.z + quad_lower_right.z;
vptr ++;
// Upper right corner
vptr.s = 1.0f;
vptr.t = 1.0f;
vptr.rgba = rgba;
vptr.x = pptr.x - quad_lower_left.x;
vptr.y = pptr.y - quad_lower_left.y;
vptr.z = pptr.z - quad_lower_left.z;
vptr ++;
// Upper left corner
vptr.s = 0.0f;
vptr.t = 1.0f;
vptr.rgba = rgba;
vptr.x = pptr.x - quad_lower_right.x;
vptr.y = pptr.y - quad_lower_right.y;
vptr.z = pptr.z - quad_lower_right.z;
vptr ++;
// Increase count of drawable particles
particle_count ++;
}
// If we have filled up one batch of particles, draw it as a set
// of quads using glDrawArrays.
if( particle_count >= BATCH_PARTICLES )
{
// The first argument tells which primitive type we use (QUAD)
// The second argument tells the index of the first vertex (0)
// The last argument is the vertex count
glDrawArrays( GL_QUADS, 0, PARTICLE_VERTS * particle_count );
particle_count = 0;
vptr = vertex_array;
}
// Next particle
pptr ++;
}
// We are done with the particle data: Unlock mutex and signal physics
// thread
if( multithreading )
{
glfwUnlockMutex( thread_sync.particles_lock );
glfwSignalCond( thread_sync.d_done );
}
// Draw final batch of particles (if any)
glDrawArrays( GL_QUADS, 0, PARTICLE_VERTS * particle_count );
// Disable vertex arrays (Note: glInterleavedArrays implicitly called
// glEnableClientState for vertex, texture coord and color arrays)
glDisableClientState( GL_VERTEX_ARRAY );
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
glDisableClientState( GL_COLOR_ARRAY );
// Disable texturing and blending
glDisable( GL_TEXTURE_2D );
glDisable( GL_BLEND );
// Allow Z-buffer updates again
glDepthMask( GL_TRUE );
}
//========================================================================
// Fountain geometry specification
//========================================================================
const int FOUNTAIN_SIDE_POINTS = 14;
const int FOUNTAIN_SWEEP_STEPS = 32;
static const float[ FOUNTAIN_SIDE_POINTS*2 ] fountain_side = [
1.2f, 0.0f, 1.0f, 0.2f, 0.41f, 0.3f, 0.4f, 0.35f,
0.4f, 1.95f, 0.41f, 2.0f, 0.8f, 2.2f, 1.2f, 2.4f,
1.5f, 2.7f, 1.55f,2.95f, 1.6f, 3.0f, 1.0f, 3.0f,
0.5f, 3.0f, 0.0f, 3.0f
];
static const float[ FOUNTAIN_SIDE_POINTS*2 ] fountain_normal = [
1.0000f, 0.0000f, 0.6428f, 0.7660f, 0.3420f, 0.9397f, 1.0000f, 0.0000f,
1.0000f, 0.0000f, 0.3420f,-0.9397f, 0.4226f,-0.9063f, 0.5000f,-0.8660f,
0.7660f,-0.6428f, 0.9063f,-0.4226f, 0.0000f,1.00000f, 0.0000f,1.00000f,
0.0000f,1.00000f, 0.0000f,1.00000f
];
//========================================================================
// DrawFountain() - Draw a fountain
//========================================================================
void DrawFountain()
{
static GLuint fountain_list = 0;
double angle = 0.0;
float x = 0.0, y = 0.0;
int m, n;
// The first time, we build the fountain display list
if( !fountain_list )
{
// Start recording of a new display list
fountain_list = glGenLists( 1 );
glNewList( fountain_list, GL_COMPILE_AND_EXECUTE );
// Set fountain material
glMaterialfv( GL_FRONT, GL_DIFFUSE, fountain_diffuse );
glMaterialfv( GL_FRONT, GL_SPECULAR, fountain_specular );
glMaterialf( GL_FRONT, GL_SHININESS, fountain_shininess );
// Build fountain using triangle strips
for( n = 0; n < FOUNTAIN_SIDE_POINTS-1; n ++ )
{
glBegin( GL_TRIANGLE_STRIP );
for( m = 0; m <= FOUNTAIN_SWEEP_STEPS; m ++ )
{
angle = cast(double) m * (2.0*PI/cast(double)FOUNTAIN_SWEEP_STEPS);
x = cast(float) cos( angle );
y = cast(float) sin( angle );
// Draw triangle strip
glNormal3f( x * fountain_normal[ n*2+2 ],
y * fountain_normal[ n*2+2 ],
fountain_normal[ n*2+3 ] );
glVertex3f( x * fountain_side[ n*2+2 ],
y * fountain_side[ n*2+2 ],
fountain_side[ n*2+3 ] );
glNormal3f( x * fountain_normal[ n*2 ],
y * fountain_normal[ n*2 ],
fountain_normal[ n*2+1 ] );
glVertex3f( x * fountain_side[ n*2 ],
y * fountain_side[ n*2 ],
fountain_side[ n*2+1 ] );
}
glEnd();
}
// End recording of display list
glEndList();
}
else
{
// Playback display list
glCallList( fountain_list );
}
}
//========================================================================
// TesselateFloor() - Recursive function for building variable tesselated
// floor
//========================================================================
void TesselateFloor( float x1, float y1, float x2, float y2,
int recursion )
{
float delta, x, y;
// Last recursion?
if( recursion >= 5 )
{
delta = 999999.0f;
}
else
{
x = fabs(x1) < fabs(x2) ? fabs(x1) : fabs(x2);
y = fabs(y1) < fabs(y2) ? fabs(y1) : fabs(y2);
delta = x*x + y*y;
}
// Recurse further?
if( delta < 0.1f )
{
x = (x1+x2) * 0.5f;
y = (y1+y2) * 0.5f;
TesselateFloor( x1,y1, x, y, recursion + 1 );
TesselateFloor( x,y1, x2, y, recursion + 1 );
TesselateFloor( x1, y, x,y2, recursion + 1 );
TesselateFloor( x, y, x2,y2, recursion + 1 );
}
else
{
glTexCoord2f( x1*30.0f, y1*30.0f );
glVertex3f( x1*80.0f, y1*80.0f , 0.0f );
glTexCoord2f( x2*30.0f, y1*30.0f );
glVertex3f( x2*80.0f, y1*80.0f , 0.0f );
glTexCoord2f( x2*30.0f, y2*30.0f );
glVertex3f( x2*80.0f, y2*80.0f , 0.0f );
glTexCoord2f( x1*30.0f, y2*30.0f );
glVertex3f( x1*80.0f, y2*80.0f , 0.0f );
}
}
//========================================================================
// DrawFloor() - Draw floor. We builde the floor recursively, and let the
// tesselation in the centre (near x,y=0,0) be high, while the selleation
// around the edges be low.
//========================================================================
void DrawFloor()
{
static GLuint floor_list = 0;
// Select floor texture
if( !wireframe )
{
glEnable( GL_TEXTURE_2D );
glBindTexture( GL_TEXTURE_2D, floor_tex_id );
}
// The first time, we build the floor display list
if( !floor_list )
{
// Start recording of a new display list
floor_list = glGenLists( 1 );
glNewList( floor_list, GL_COMPILE_AND_EXECUTE );
// Set floor material
glMaterialfv( GL_FRONT, GL_DIFFUSE, floor_diffuse );
glMaterialfv( GL_FRONT, GL_SPECULAR, floor_specular );
glMaterialf( GL_FRONT, GL_SHININESS, floor_shininess );
// Draw floor as a bunch of triangle strips (high tesselation
// improves lighting)
glNormal3f( 0.0f, 0.0f, 1.0f );
glBegin( GL_QUADS );
TesselateFloor( -1.0f,-1.0f, 0.0f,0.0f, 0 );
TesselateFloor( 0.0f,-1.0f, 1.0f,0.0f, 0 );
TesselateFloor( 0.0f, 0.0f, 1.0f,1.0f, 0 );
TesselateFloor( -1.0f, 0.0f, 0.0f,1.0f, 0 );
glEnd();
// End recording of display list
glEndList();
}
else
{
// Playback display list
glCallList( floor_list );
}
glDisable( GL_TEXTURE_2D );
}
//========================================================================
// SetupLights() - Position and configure light sources
//========================================================================
void SetupLights()
{
float[4] l1pos, l1amb, l1dif, l1spec;
float[4] l2pos, l2amb, l2dif, l2spec;
// Set light source 1 parameters
l1pos[0] = 0.0f; l1pos[1] = -9.0f; l1pos[2] = 8.0f; l1pos[3] = 1.0f;
l1amb[0] = 0.2f; l1amb[1] = 0.2f; l1amb[2] = 0.2f; l1amb[3] = 1.0f;
l1dif[0] = 0.8f; l1dif[1] = 0.4f; l1dif[2] = 0.2f; l1dif[3] = 1.0f;
l1spec[0] = 1.0f; l1spec[1] = 0.6f; l1spec[2] = 0.2f; l1spec[3] = 0.0f;
// Set light source 2 parameters
l2pos[0] = -15.0f; l2pos[1] = 12.0f; l2pos[2] = 1.5f; l2pos[3] = 1.0f;
l2amb[0] = 0.0f; l2amb[1] = 0.0f; l2amb[2] = 0.0f; l2amb[3] = 1.0f;
l2dif[0] = 0.2f; l2dif[1] = 0.4f; l2dif[2] = 0.8f; l2dif[3] = 1.0f;
l2spec[0] = 0.2f; l2spec[1] = 0.6f; l2spec[2] = 1.0f; l2spec[3] = 0.0f;
// Configure light sources in OpenGL
glLightfv( GL_LIGHT1, GL_POSITION, l1pos );
glLightfv( GL_LIGHT1, GL_AMBIENT, l1amb );
glLightfv( GL_LIGHT1, GL_DIFFUSE, l1dif );
glLightfv( GL_LIGHT1, GL_SPECULAR, l1spec );
glLightfv( GL_LIGHT2, GL_POSITION, l2pos );
glLightfv( GL_LIGHT2, GL_AMBIENT, l2amb );
glLightfv( GL_LIGHT2, GL_DIFFUSE, l2dif );
glLightfv( GL_LIGHT2, GL_SPECULAR, l2spec );
glLightfv( GL_LIGHT3, GL_POSITION, glow_pos );
glLightfv( GL_LIGHT3, GL_DIFFUSE, glow_color );
glLightfv( GL_LIGHT3, GL_SPECULAR, glow_color );
// Enable light sources
glEnable( GL_LIGHT1 );
glEnable( GL_LIGHT2 );
glEnable( GL_LIGHT3 );
}
//========================================================================
// Draw() - Main rendering function
//========================================================================
void Draw( double t )
{
double xpos, ypos, zpos, angle_x, angle_y, angle_z;
static double t_old = 0.0;
float dt;
// Calculate frame-to-frame delta time
dt = cast(float)(t-t_old);
t_old = t;
// Setup viewport
glViewport( 0, 0, width, height );
// Clear color and Z-buffer
glClearColor( 0.1f, 0.1f, 0.1f, 1.0f );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
// Setup projection
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
gluPerspective( 65.0, cast(double)width/cast(double)height, 1.0, 60.0 );
// Setup camera
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
// Rotate camera
angle_x = 90.0 - 10.0;
angle_y = 10.0 * sin( 0.3 * t );
angle_z = 10.0 * t;
glRotated( -angle_x, 1.0, 0.0, 0.0 );
glRotated( -angle_y, 0.0, 1.0, 0.0 );
glRotated( -angle_z, 0.0, 0.0, 1.0 );
// Translate camera
xpos = 15.0 * sin( (PI/180.0) * angle_z ) +
2.0 * sin( (PI/180.0) * 3.1 * t );
ypos = -15.0 * cos( (PI/180.0) * angle_z ) +
2.0 * cos( (PI/180.0) * 2.9 * t );
zpos = 4.0 + 2.0 * cos( (PI/180.0) * 4.9 * t );
glTranslated( -xpos, -ypos, -zpos );
// Enable face culling
glFrontFace( GL_CCW );
glCullFace( GL_BACK );
glEnable( GL_CULL_FACE );
// Enable lighting
SetupLights();
glEnable( GL_LIGHTING );
// Enable fog (dim details far away)
glEnable( GL_FOG );
glFogi( GL_FOG_MODE, GL_EXP );
glFogf( GL_FOG_DENSITY, 0.05f );
glFogfv( GL_FOG_COLOR, fog_color );
// Draw floor
DrawFloor();
// Enable Z-buffering
glEnable( GL_DEPTH_TEST );
glDepthFunc( GL_LEQUAL );
glDepthMask( GL_TRUE );
// Draw fountain
DrawFountain();
// Disable fog & lighting
glDisable( GL_LIGHTING );
glDisable( GL_FOG );
// Draw all particles (must be drawn after all solid objects have been
// drawn!)
DrawParticles( t, dt );
// Z-buffer not needed anymore
glDisable( GL_DEPTH_TEST );
}
//========================================================================
// Resize() - GLFW window resize callback function
//========================================================================
extern (Windows)
{
void Resize( int x, int y )
{
width = x;
height = y > 0 ? y : 1; // Prevent division by zero in aspect calc.
}
}
//========================================================================
// Input callback functions
//========================================================================
extern (Windows)
{
void KeyFun( int key, int action )
{
if( action == GLFW_PRESS )
{
switch( key )
{
case GLFW_KEY_ESC:
running = 0;
break;
case 'W':
wireframe = !wireframe;
glPolygonMode( GL_FRONT_AND_BACK,
wireframe ? GL_LINE : GL_FILL );
break;
default:
break;
}
}
}
}
//========================================================================
// PhysicsThreadFun() - Thread for updating particle physics
//========================================================================
extern (Windows)
{
void PhysicsThreadFun( void *arg )
{
while( running )
{
// Lock mutex
glfwLockMutex( thread_sync.particles_lock );
// Wait for particle drawing to be done
while( running && thread_sync.p_frame > thread_sync.d_frame )
{
glfwWaitCond( thread_sync.d_done, thread_sync.particles_lock,
0.1 );
}
// No longer running?
if( !running )
{
break;
}
// Update particles
ParticleEngine( thread_sync.t, thread_sync.dt );
// Update frame counter
thread_sync.p_frame ++;
// Unlock mutex and signal drawing thread
glfwUnlockMutex( thread_sync.particles_lock );
glfwSignalCond( thread_sync.p_done );
}
}
}
//========================================================================
// main()
//========================================================================
int main(char[][] args)
{
int i=0, frames=0, benchmark=0;
double t0=0.0, t=0.0;
GLFWthread physics_thread = 0;
// Use multithreading by default, but don't benchmark
multithreading = 1;
benchmark = 0;
// Check command line arguments
for( i = 1; i < args.length; i ++ )
{
// Use benchmarking?
if( strcmp( args[i], "-b" ) == 0 )
{
benchmark = 1;
}
// Force multithreading off?
else if( strcmp( args[i], "-s" ) == 0 )
{
multithreading = 0;
}
// With a Finder launch on Mac OS X we get a bogus -psn_0_46268417
// kind of argument (actual numbers vary). Ignore it.
// else if( strncmp( args[i], "-psn_", 5) == 0 ) { }
// Usage
else
{
if( strcmp( args[i], "-?" ) != 0 )
{
printf( "Unknown option %.*s\n\n", args[ i ] );
}
printf( "Usage: %.*s [options]\n", args[ 0 ] );
printf( "\n");
printf( "Options:\n" );
printf( " -b Benchmark (run program for 60 s)\n" );
printf( " -s Run program as single thread (default is to use two threads)\n" );
printf( " -? Display this text\n" );
printf( "\n");
printf( "Program runtime controls:\n" );
printf( " w Toggle wireframe mode\n" );
printf( " ESC Exit program\n" );
return 0;
}
}
// Initialize GLFW
glfwInit();
// Open OpenGL fullscreen window
if( !glfwOpenWindow( WIDTH, HEIGHT, 5,6,5,0, 16,0, GLFW_FULLSCREEN ) )
{
glfwTerminate();
return 0;
}
// Set window title
glfwSetWindowTitle( "Particle engine" );
// Disable VSync (we want to get as high FPS as possible!)
glfwSwapInterval( 0 );
// Window resize callback function
glfwSetWindowSizeCallback( &Resize );
// Set keyboard input callback function
glfwSetKeyCallback( &KeyFun );
// Upload particle texture
glGenTextures( 1, &particle_tex_id );
glBindTexture( GL_TEXTURE_2D, particle_tex_id );
glPixelStorei( GL_UNPACK_ALIGNMENT, 1 );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexImage2D( GL_TEXTURE_2D, 0, GL_LUMINANCE, P_TEX_WIDTH, P_TEX_HEIGHT,
0, GL_LUMINANCE, GL_UNSIGNED_BYTE, particle_texture );
// Upload floor texture
glGenTextures( 1, &floor_tex_id );
glBindTexture( GL_TEXTURE_2D, floor_tex_id );
glPixelStorei( GL_UNPACK_ALIGNMENT, 1 );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexImage2D( GL_TEXTURE_2D, 0, GL_LUMINANCE, F_TEX_WIDTH, F_TEX_HEIGHT,
0, GL_LUMINANCE, GL_UNSIGNED_BYTE, floor_texture );
// Check if we have GL_EXT_separate_specular_color, and if so use it
// (This extension should ALWAYS be used when OpenGL lighting is used
// together with texturing, since it gives more realistic results)
if( glfwExtensionSupported( "GL_EXT_separate_specular_color" ) )
{
glLightModeli( GL_LIGHT_MODEL_COLOR_CONTROL_EXT,
GL_SEPARATE_SPECULAR_COLOR_EXT );
}
// Set filled polygon mode as default (not wireframe)
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
wireframe = 0;
// Clear particle system
for( i = 0; i < MAX_PARTICLES; i ++ )
{
particles[ i ].active = 0;
}
min_age = 0.0f;
// Set "running" flag
running = 1;
// Set initial times
thread_sync.t = 0.0;
thread_sync.dt = 0.001f;
// Init threading
if( multithreading )
{
thread_sync.p_frame = 0;
thread_sync.d_frame = 0;
thread_sync.particles_lock = glfwCreateMutex();
thread_sync.p_done = glfwCreateCond();
thread_sync.d_done = glfwCreateCond();
physics_thread = glfwCreateThread( &PhysicsThreadFun, null );
}
// Main loop
t0 = glfwGetTime();
frames = 0;
while( running )
{
// Get frame time
t = glfwGetTime() - t0;
// Draw...
Draw( t );
// Swap buffers
glfwSwapBuffers();
// Check if window was closed
running = running && glfwGetWindowParam( GLFW_OPENED );
// Increase frame count
frames ++;
// End of benchmark?
if( benchmark && t >= 60.0 )
{
running = 0;
}
}
t = glfwGetTime() - t0;
// Wait for particle physics thread to die
if( multithreading )
{
glfwWaitThread( physics_thread, GLFW_WAIT );
}
// Display profiling information
printf( "%d frames in %.2f seconds = %.1f FPS", frames, t,
cast(double)frames / t );
printf( " (multithreading %.*s)\n", multithreading ? "on" : "off" );
// Terminate OpenGL
glfwTerminate();
return 0;
}
|