File: gslice.c

package info (click to toggle)
glib2.0 2.42.1-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-backports, jessie-kfreebsd, jessie-kfreebsd-proposed-updates
  • size: 82,084 kB
  • sloc: ansic: 411,692; xml: 15,280; sh: 12,977; python: 5,145; makefile: 3,567; perl: 1,422; cpp: 9
file content (1712 lines) | stat: -rw-r--r-- 59,413 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
/* GLIB sliced memory - fast concurrent memory chunk allocator
 * Copyright (C) 2005 Tim Janik
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
/* MT safe */

#include "config.h"
#include "glibconfig.h"

#if     defined HAVE_POSIX_MEMALIGN && defined POSIX_MEMALIGN_WITH_COMPLIANT_ALLOCS
#  define HAVE_COMPLIANT_POSIX_MEMALIGN 1
#endif

#if defined(HAVE_COMPLIANT_POSIX_MEMALIGN) && !defined(_XOPEN_SOURCE)
#define _XOPEN_SOURCE 600       /* posix_memalign() */
#endif
#include <stdlib.h>             /* posix_memalign() */
#include <string.h>
#include <errno.h>

#ifdef G_OS_UNIX
#include <unistd.h>             /* sysconf() */
#endif
#ifdef G_OS_WIN32
#include <windows.h>
#include <process.h>
#endif

#include <stdio.h>              /* fputs/fprintf */

#include "gslice.h"

#include "gmain.h"
#include "gmem.h"               /* gslice.h */
#include "gstrfuncs.h"
#include "gutils.h"
#include "gtrashstack.h"
#include "gtestutils.h"
#include "gthread.h"
#include "glib_trace.h"

#include "valgrind.h"

/**
 * SECTION:memory_slices
 * @title: Memory Slices
 * @short_description: efficient way to allocate groups of equal-sized
 *     chunks of memory
 *
 * Memory slices provide a space-efficient and multi-processing scalable
 * way to allocate equal-sized pieces of memory, just like the original
 * #GMemChunks (from GLib 2.8), while avoiding their excessive
 * memory-waste, scalability and performance problems.
 *
 * To achieve these goals, the slice allocator uses a sophisticated,
 * layered design that has been inspired by Bonwick's slab allocator
 * ([Bonwick94](http://citeseer.ist.psu.edu/bonwick94slab.html)
 * Jeff Bonwick, The slab allocator: An object-caching kernel
 * memory allocator. USENIX 1994, and
 * [Bonwick01](http://citeseer.ist.psu.edu/bonwick01magazines.html)
 * Bonwick and Jonathan Adams, Magazines and vmem: Extending the
 * slab allocator to many cpu's and arbitrary resources. USENIX 2001)
 *
 * It uses posix_memalign() to optimize allocations of many equally-sized
 * chunks, and has per-thread free lists (the so-called magazine layer)
 * to quickly satisfy allocation requests of already known structure sizes.
 * This is accompanied by extra caching logic to keep freed memory around
 * for some time before returning it to the system. Memory that is unused
 * due to alignment constraints is used for cache colorization (random
 * distribution of chunk addresses) to improve CPU cache utilization. The
 * caching layer of the slice allocator adapts itself to high lock contention
 * to improve scalability.
 *
 * The slice allocator can allocate blocks as small as two pointers, and
 * unlike malloc(), it does not reserve extra space per block. For large block
 * sizes, g_slice_new() and g_slice_alloc() will automatically delegate to the
 * system malloc() implementation. For newly written code it is recommended
 * to use the new `g_slice` API instead of g_malloc() and
 * friends, as long as objects are not resized during their lifetime and the
 * object size used at allocation time is still available when freeing.
 *
 * Here is an example for using the slice allocator:
 * |[<!-- language="C" --> 
 * gchar *mem[10000];
 * gint i;
 *
 * // Allocate 10000 blocks.
 * for (i = 0; i < 10000; i++)
 *   {
 *     mem[i] = g_slice_alloc (50);
 *
 *     // Fill in the memory with some junk.
 *     for (j = 0; j < 50; j++)
 *       mem[i][j] = i * j;
 *   }
 *
 * // Now free all of the blocks.
 * for (i = 0; i < 10000; i++)
 *   g_slice_free1 (50, mem[i]);
 * ]|
 *
 * And here is an example for using the using the slice allocator
 * with data structures:
 * |[<!-- language="C" --> 
 * GRealArray *array;
 *
 * // Allocate one block, using the g_slice_new() macro.
 * array = g_slice_new (GRealArray);

 * // We can now use array just like a normal pointer to a structure.
 * array->data            = NULL;
 * array->len             = 0;
 * array->alloc           = 0;
 * array->zero_terminated = (zero_terminated ? 1 : 0);
 * array->clear           = (clear ? 1 : 0);
 * array->elt_size        = elt_size;
 *
 * // We can free the block, so it can be reused.
 * g_slice_free (GRealArray, array);
 * ]|
 */

/* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
 * allocator and magazine extensions as outlined in:
 * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
 *   memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
 * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
 *   slab allocator to many cpu's and arbitrary resources.
 *   USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
 * the layers are:
 * - the thread magazines. for each (aligned) chunk size, a magazine (a list)
 *   of recently freed and soon to be allocated chunks is maintained per thread.
 *   this way, most alloc/free requests can be quickly satisfied from per-thread
 *   free lists which only require one g_private_get() call to retrive the
 *   thread handle.
 * - the magazine cache. allocating and freeing chunks to/from threads only
 *   occours at magazine sizes from a global depot of magazines. the depot
 *   maintaines a 15 second working set of allocated magazines, so full
 *   magazines are not allocated and released too often.
 *   the chunk size dependent magazine sizes automatically adapt (within limits,
 *   see [3]) to lock contention to properly scale performance across a variety
 *   of SMP systems.
 * - the slab allocator. this allocator allocates slabs (blocks of memory) close
 *   to the system page size or multiples thereof which have to be page aligned.
 *   the blocks are divided into smaller chunks which are used to satisfy
 *   allocations from the upper layers. the space provided by the reminder of
 *   the chunk size division is used for cache colorization (random distribution
 *   of chunk addresses) to improve processor cache utilization. multiple slabs
 *   with the same chunk size are kept in a partially sorted ring to allow O(1)
 *   freeing and allocation of chunks (as long as the allocation of an entirely
 *   new slab can be avoided).
 * - the page allocator. on most modern systems, posix_memalign(3) or
 *   memalign(3) should be available, so this is used to allocate blocks with
 *   system page size based alignments and sizes or multiples thereof.
 *   if no memalign variant is provided, valloc() is used instead and
 *   block sizes are limited to the system page size (no multiples thereof).
 *   as a fallback, on system without even valloc(), a malloc(3)-based page
 *   allocator with alloc-only behaviour is used.
 *
 * NOTES:
 * [1] some systems memalign(3) implementations may rely on boundary tagging for
 *     the handed out memory chunks. to avoid excessive page-wise fragmentation,
 *     we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
 *     specified in NATIVE_MALLOC_PADDING.
 * [2] using the slab allocator alone already provides for a fast and efficient
 *     allocator, it doesn't properly scale beyond single-threaded uses though.
 *     also, the slab allocator implements eager free(3)-ing, i.e. does not
 *     provide any form of caching or working set maintenance. so if used alone,
 *     it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
 *     at certain thresholds.
 * [3] magazine sizes are bound by an implementation specific minimum size and
 *     a chunk size specific maximum to limit magazine storage sizes to roughly
 *     16KB.
 * [4] allocating ca. 8 chunks per block/page keeps a good balance between
 *     external and internal fragmentation (<= 12.5%). [Bonwick94]
 */

/* --- macros and constants --- */
#define LARGEALIGNMENT          (256)
#define P2ALIGNMENT             (2 * sizeof (gsize))                            /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
#define ALIGN(size, base)       ((base) * (gsize) (((size) + (base) - 1) / (base)))
#define NATIVE_MALLOC_PADDING   P2ALIGNMENT                                     /* per-page padding left for native malloc(3) see [1] */
#define SLAB_INFO_SIZE          P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
#define MAX_MAGAZINE_SIZE       (256)                                           /* see [3] and allocator_get_magazine_threshold() for this */
#define MIN_MAGAZINE_SIZE       (4)
#define MAX_STAMP_COUNTER       (7)                                             /* distributes the load of gettimeofday() */
#define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8)    /* we want at last 8 chunks per page, see [4] */
#define MAX_SLAB_INDEX(al)      (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
#define SLAB_INDEX(al, asize)   ((asize) / P2ALIGNMENT - 1)                     /* asize must be P2ALIGNMENT aligned */
#define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
#define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)

/* optimized version of ALIGN (size, P2ALIGNMENT) */
#if     GLIB_SIZEOF_SIZE_T * 2 == 8  /* P2ALIGNMENT */
#define P2ALIGN(size)   (((size) + 0x7) & ~(gsize) 0x7)
#elif   GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
#define P2ALIGN(size)   (((size) + 0xf) & ~(gsize) 0xf)
#else
#define P2ALIGN(size)   ALIGN (size, P2ALIGNMENT)
#endif

/* special helpers to avoid gmessage.c dependency */
static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2);
#define mem_assert(cond)    do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)

/* --- structures --- */
typedef struct _ChunkLink      ChunkLink;
typedef struct _SlabInfo       SlabInfo;
typedef struct _CachedMagazine CachedMagazine;
struct _ChunkLink {
  ChunkLink *next;
  ChunkLink *data;
};
struct _SlabInfo {
  ChunkLink *chunks;
  guint n_allocated;
  SlabInfo *next, *prev;
};
typedef struct {
  ChunkLink *chunks;
  gsize      count;                     /* approximative chunks list length */
} Magazine;
typedef struct {
  Magazine   *magazine1;                /* array of MAX_SLAB_INDEX (allocator) */
  Magazine   *magazine2;                /* array of MAX_SLAB_INDEX (allocator) */
} ThreadMemory;
typedef struct {
  gboolean always_malloc;
  gboolean bypass_magazines;
  gboolean debug_blocks;
  gsize    working_set_msecs;
  guint    color_increment;
} SliceConfig;
typedef struct {
  /* const after initialization */
  gsize         min_page_size, max_page_size;
  SliceConfig   config;
  gsize         max_slab_chunk_size_for_magazine_cache;
  /* magazine cache */
  GMutex        magazine_mutex;
  ChunkLink   **magazines;                /* array of MAX_SLAB_INDEX (allocator) */
  guint        *contention_counters;      /* array of MAX_SLAB_INDEX (allocator) */
  gint          mutex_counter;
  guint         stamp_counter;
  guint         last_stamp;
  /* slab allocator */
  GMutex        slab_mutex;
  SlabInfo    **slab_stack;                /* array of MAX_SLAB_INDEX (allocator) */
  guint        color_accu;
} Allocator;

/* --- g-slice prototypes --- */
static gpointer     slab_allocator_alloc_chunk       (gsize      chunk_size);
static void         slab_allocator_free_chunk        (gsize      chunk_size,
                                                      gpointer   mem);
static void         private_thread_memory_cleanup    (gpointer   data);
static gpointer     allocator_memalign               (gsize      alignment,
                                                      gsize      memsize);
static void         allocator_memfree                (gsize      memsize,
                                                      gpointer   mem);
static inline void  magazine_cache_update_stamp      (void);
static inline gsize allocator_get_magazine_threshold (Allocator *allocator,
                                                      guint      ix);

/* --- g-slice memory checker --- */
static void     smc_notify_alloc  (void   *pointer,
                                   size_t  size);
static int      smc_notify_free   (void   *pointer,
                                   size_t  size);

/* --- variables --- */
static GPrivate    private_thread_memory = G_PRIVATE_INIT (private_thread_memory_cleanup);
static gsize       sys_page_size = 0;
static Allocator   allocator[1] = { { 0, }, };
static SliceConfig slice_config = {
  FALSE,        /* always_malloc */
  FALSE,        /* bypass_magazines */
  FALSE,        /* debug_blocks */
  15 * 1000,    /* working_set_msecs */
  1,            /* color increment, alt: 0x7fffffff */
};
static GMutex      smc_tree_mutex; /* mutex for G_SLICE=debug-blocks */

/* --- auxiliary funcitons --- */
void
g_slice_set_config (GSliceConfig ckey,
                    gint64       value)
{
  g_return_if_fail (sys_page_size == 0);
  switch (ckey)
    {
    case G_SLICE_CONFIG_ALWAYS_MALLOC:
      slice_config.always_malloc = value != 0;
      break;
    case G_SLICE_CONFIG_BYPASS_MAGAZINES:
      slice_config.bypass_magazines = value != 0;
      break;
    case G_SLICE_CONFIG_WORKING_SET_MSECS:
      slice_config.working_set_msecs = value;
      break;
    case G_SLICE_CONFIG_COLOR_INCREMENT:
      slice_config.color_increment = value;
    default: ;
    }
}

gint64
g_slice_get_config (GSliceConfig ckey)
{
  switch (ckey)
    {
    case G_SLICE_CONFIG_ALWAYS_MALLOC:
      return slice_config.always_malloc;
    case G_SLICE_CONFIG_BYPASS_MAGAZINES:
      return slice_config.bypass_magazines;
    case G_SLICE_CONFIG_WORKING_SET_MSECS:
      return slice_config.working_set_msecs;
    case G_SLICE_CONFIG_CHUNK_SIZES:
      return MAX_SLAB_INDEX (allocator);
    case G_SLICE_CONFIG_COLOR_INCREMENT:
      return slice_config.color_increment;
    default:
      return 0;
    }
}

gint64*
g_slice_get_config_state (GSliceConfig ckey,
                          gint64       address,
                          guint       *n_values)
{
  guint i = 0;
  g_return_val_if_fail (n_values != NULL, NULL);
  *n_values = 0;
  switch (ckey)
    {
      gint64 array[64];
    case G_SLICE_CONFIG_CONTENTION_COUNTER:
      array[i++] = SLAB_CHUNK_SIZE (allocator, address);
      array[i++] = allocator->contention_counters[address];
      array[i++] = allocator_get_magazine_threshold (allocator, address);
      *n_values = i;
      return g_memdup (array, sizeof (array[0]) * *n_values);
    default:
      return NULL;
    }
}

static void
slice_config_init (SliceConfig *config)
{
  const gchar *val;

  *config = slice_config;

  val = getenv ("G_SLICE");
  if (val != NULL)
    {
      gint flags;
      const GDebugKey keys[] = {
        { "always-malloc", 1 << 0 },
        { "debug-blocks",  1 << 1 },
      };

      flags = g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
      if (flags & (1 << 0))
        config->always_malloc = TRUE;
      if (flags & (1 << 1))
        config->debug_blocks = TRUE;
    }
  else
    {
      /* G_SLICE was not specified, so check if valgrind is running and
       * disable ourselves if it is.
       *
       * This way it's possible to force gslice to be enabled under
       * valgrind just by setting G_SLICE to the empty string.
       */
      if (RUNNING_ON_VALGRIND)
        config->always_malloc = TRUE;
    }
}

static void
g_slice_init_nomessage (void)
{
  /* we may not use g_error() or friends here */
  mem_assert (sys_page_size == 0);
  mem_assert (MIN_MAGAZINE_SIZE >= 4);

#ifdef G_OS_WIN32
  {
    SYSTEM_INFO system_info;
    GetSystemInfo (&system_info);
    sys_page_size = system_info.dwPageSize;
  }
#else
  sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
#endif
  mem_assert (sys_page_size >= 2 * LARGEALIGNMENT);
  mem_assert ((sys_page_size & (sys_page_size - 1)) == 0);
  slice_config_init (&allocator->config);
  allocator->min_page_size = sys_page_size;
#if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN
  /* allow allocation of pages up to 8KB (with 8KB alignment).
   * this is useful because many medium to large sized structures
   * fit less than 8 times (see [4]) into 4KB pages.
   * we allow very small page sizes here, to reduce wastage in
   * threads if only small allocations are required (this does
   * bear the risk of increasing allocation times and fragmentation
   * though).
   */
  allocator->min_page_size = MAX (allocator->min_page_size, 4096);
  allocator->max_page_size = MAX (allocator->min_page_size, 8192);
  allocator->min_page_size = MIN (allocator->min_page_size, 128);
#else
  /* we can only align to system page size */
  allocator->max_page_size = sys_page_size;
#endif
  if (allocator->config.always_malloc)
    {
      allocator->contention_counters = NULL;
      allocator->magazines = NULL;
      allocator->slab_stack = NULL;
    }
  else
    {
      allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator));
      allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator));
      allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator));
    }

  allocator->mutex_counter = 0;
  allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */
  allocator->last_stamp = 0;
  allocator->color_accu = 0;
  magazine_cache_update_stamp();
  /* values cached for performance reasons */
  allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator);
  if (allocator->config.always_malloc || allocator->config.bypass_magazines)
    allocator->max_slab_chunk_size_for_magazine_cache = 0;      /* non-optimized cases */
}

static inline guint
allocator_categorize (gsize aligned_chunk_size)
{
  /* speed up the likely path */
  if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache))
    return 1;           /* use magazine cache */

  if (!allocator->config.always_malloc &&
      aligned_chunk_size &&
      aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator))
    {
      if (allocator->config.bypass_magazines)
        return 2;       /* use slab allocator, see [2] */
      return 1;         /* use magazine cache */
    }
  return 0;             /* use malloc() */
}

static inline void
g_mutex_lock_a (GMutex *mutex,
                guint  *contention_counter)
{
  gboolean contention = FALSE;
  if (!g_mutex_trylock (mutex))
    {
      g_mutex_lock (mutex);
      contention = TRUE;
    }
  if (contention)
    {
      allocator->mutex_counter++;
      if (allocator->mutex_counter >= 1)        /* quickly adapt to contention */
        {
          allocator->mutex_counter = 0;
          *contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE);
        }
    }
  else /* !contention */
    {
      allocator->mutex_counter--;
      if (allocator->mutex_counter < -11)       /* moderately recover magazine sizes */
        {
          allocator->mutex_counter = 0;
          *contention_counter = MAX (*contention_counter, 1) - 1;
        }
    }
}

static inline ThreadMemory*
thread_memory_from_self (void)
{
  ThreadMemory *tmem = g_private_get (&private_thread_memory);
  if (G_UNLIKELY (!tmem))
    {
      static GMutex init_mutex;
      guint n_magazines;

      g_mutex_lock (&init_mutex);
      if G_UNLIKELY (sys_page_size == 0)
        g_slice_init_nomessage ();
      g_mutex_unlock (&init_mutex);

      n_magazines = MAX_SLAB_INDEX (allocator);
      tmem = g_malloc0 (sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines);
      tmem->magazine1 = (Magazine*) (tmem + 1);
      tmem->magazine2 = &tmem->magazine1[n_magazines];
      g_private_set (&private_thread_memory, tmem);
    }
  return tmem;
}

static inline ChunkLink*
magazine_chain_pop_head (ChunkLink **magazine_chunks)
{
  /* magazine chains are linked via ChunkLink->next.
   * each ChunkLink->data of the toplevel chain may point to a subchain,
   * linked via ChunkLink->next. ChunkLink->data of the subchains just
   * contains uninitialized junk.
   */
  ChunkLink *chunk = (*magazine_chunks)->data;
  if (G_UNLIKELY (chunk))
    {
      /* allocating from freed list */
      (*magazine_chunks)->data = chunk->next;
    }
  else
    {
      chunk = *magazine_chunks;
      *magazine_chunks = chunk->next;
    }
  return chunk;
}

#if 0 /* useful for debugging */
static guint
magazine_count (ChunkLink *head)
{
  guint count = 0;
  if (!head)
    return 0;
  while (head)
    {
      ChunkLink *child = head->data;
      count += 1;
      for (child = head->data; child; child = child->next)
        count += 1;
      head = head->next;
    }
  return count;
}
#endif

static inline gsize
allocator_get_magazine_threshold (Allocator *allocator,
                                  guint      ix)
{
  /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
   * which is required by the implementation. also, for moderately sized chunks
   * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
   * of chunks available per page/2 to avoid excessive traffic in the magazine
   * cache for small to medium sized structures.
   * the upper bound of the magazine size is effectively provided by
   * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
   * the content of a single magazine doesn't exceed ca. 16KB.
   */
  gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
  guint threshold = MAX (MIN_MAGAZINE_SIZE, allocator->max_page_size / MAX (5 * chunk_size, 5 * 32));
  guint contention_counter = allocator->contention_counters[ix];
  if (G_UNLIKELY (contention_counter))  /* single CPU bias */
    {
      /* adapt contention counter thresholds to chunk sizes */
      contention_counter = contention_counter * 64 / chunk_size;
      threshold = MAX (threshold, contention_counter);
    }
  return threshold;
}

/* --- magazine cache --- */
static inline void
magazine_cache_update_stamp (void)
{
  if (allocator->stamp_counter >= MAX_STAMP_COUNTER)
    {
      GTimeVal tv;
      g_get_current_time (&tv);
      allocator->last_stamp = tv.tv_sec * 1000 + tv.tv_usec / 1000; /* milli seconds */
      allocator->stamp_counter = 0;
    }
  else
    allocator->stamp_counter++;
}

static inline ChunkLink*
magazine_chain_prepare_fields (ChunkLink *magazine_chunks)
{
  ChunkLink *chunk1;
  ChunkLink *chunk2;
  ChunkLink *chunk3;
  ChunkLink *chunk4;
  /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
  /* ensure a magazine with at least 4 unused data pointers */
  chunk1 = magazine_chain_pop_head (&magazine_chunks);
  chunk2 = magazine_chain_pop_head (&magazine_chunks);
  chunk3 = magazine_chain_pop_head (&magazine_chunks);
  chunk4 = magazine_chain_pop_head (&magazine_chunks);
  chunk4->next = magazine_chunks;
  chunk3->next = chunk4;
  chunk2->next = chunk3;
  chunk1->next = chunk2;
  return chunk1;
}

/* access the first 3 fields of a specially prepared magazine chain */
#define magazine_chain_prev(mc)         ((mc)->data)
#define magazine_chain_stamp(mc)        ((mc)->next->data)
#define magazine_chain_uint_stamp(mc)   GPOINTER_TO_UINT ((mc)->next->data)
#define magazine_chain_next(mc)         ((mc)->next->next->data)
#define magazine_chain_count(mc)        ((mc)->next->next->next->data)

static void
magazine_cache_trim (Allocator *allocator,
                     guint      ix,
                     guint      stamp)
{
  /* g_mutex_lock (allocator->mutex); done by caller */
  /* trim magazine cache from tail */
  ChunkLink *current = magazine_chain_prev (allocator->magazines[ix]);
  ChunkLink *trash = NULL;
  while (ABS (stamp - magazine_chain_uint_stamp (current)) >= allocator->config.working_set_msecs)
    {
      /* unlink */
      ChunkLink *prev = magazine_chain_prev (current);
      ChunkLink *next = magazine_chain_next (current);
      magazine_chain_next (prev) = next;
      magazine_chain_prev (next) = prev;
      /* clear special fields, put on trash stack */
      magazine_chain_next (current) = NULL;
      magazine_chain_count (current) = NULL;
      magazine_chain_stamp (current) = NULL;
      magazine_chain_prev (current) = trash;
      trash = current;
      /* fixup list head if required */
      if (current == allocator->magazines[ix])
        {
          allocator->magazines[ix] = NULL;
          break;
        }
      current = prev;
    }
  g_mutex_unlock (&allocator->magazine_mutex);
  /* free trash */
  if (trash)
    {
      const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
      g_mutex_lock (&allocator->slab_mutex);
      while (trash)
        {
          current = trash;
          trash = magazine_chain_prev (current);
          magazine_chain_prev (current) = NULL; /* clear special field */
          while (current)
            {
              ChunkLink *chunk = magazine_chain_pop_head (&current);
              slab_allocator_free_chunk (chunk_size, chunk);
            }
        }
      g_mutex_unlock (&allocator->slab_mutex);
    }
}

static void
magazine_cache_push_magazine (guint      ix,
                              ChunkLink *magazine_chunks,
                              gsize      count) /* must be >= MIN_MAGAZINE_SIZE */
{
  ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks);
  ChunkLink *next, *prev;
  g_mutex_lock (&allocator->magazine_mutex);
  /* add magazine at head */
  next = allocator->magazines[ix];
  if (next)
    prev = magazine_chain_prev (next);
  else
    next = prev = current;
  magazine_chain_next (prev) = current;
  magazine_chain_prev (next) = current;
  magazine_chain_prev (current) = prev;
  magazine_chain_next (current) = next;
  magazine_chain_count (current) = (gpointer) count;
  /* stamp magazine */
  magazine_cache_update_stamp();
  magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp);
  allocator->magazines[ix] = current;
  /* free old magazines beyond a certain threshold */
  magazine_cache_trim (allocator, ix, allocator->last_stamp);
  /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
}

static ChunkLink*
magazine_cache_pop_magazine (guint  ix,
                             gsize *countp)
{
  g_mutex_lock_a (&allocator->magazine_mutex, &allocator->contention_counters[ix]);
  if (!allocator->magazines[ix])
    {
      guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix);
      gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
      ChunkLink *chunk, *head;
      g_mutex_unlock (&allocator->magazine_mutex);
      g_mutex_lock (&allocator->slab_mutex);
      head = slab_allocator_alloc_chunk (chunk_size);
      head->data = NULL;
      chunk = head;
      for (i = 1; i < magazine_threshold; i++)
        {
          chunk->next = slab_allocator_alloc_chunk (chunk_size);
          chunk = chunk->next;
          chunk->data = NULL;
        }
      chunk->next = NULL;
      g_mutex_unlock (&allocator->slab_mutex);
      *countp = i;
      return head;
    }
  else
    {
      ChunkLink *current = allocator->magazines[ix];
      ChunkLink *prev = magazine_chain_prev (current);
      ChunkLink *next = magazine_chain_next (current);
      /* unlink */
      magazine_chain_next (prev) = next;
      magazine_chain_prev (next) = prev;
      allocator->magazines[ix] = next == current ? NULL : next;
      g_mutex_unlock (&allocator->magazine_mutex);
      /* clear special fields and hand out */
      *countp = (gsize) magazine_chain_count (current);
      magazine_chain_prev (current) = NULL;
      magazine_chain_next (current) = NULL;
      magazine_chain_count (current) = NULL;
      magazine_chain_stamp (current) = NULL;
      return current;
    }
}

/* --- thread magazines --- */
static void
private_thread_memory_cleanup (gpointer data)
{
  ThreadMemory *tmem = data;
  const guint n_magazines = MAX_SLAB_INDEX (allocator);
  guint ix;
  for (ix = 0; ix < n_magazines; ix++)
    {
      Magazine *mags[2];
      guint j;
      mags[0] = &tmem->magazine1[ix];
      mags[1] = &tmem->magazine2[ix];
      for (j = 0; j < 2; j++)
        {
          Magazine *mag = mags[j];
          if (mag->count >= MIN_MAGAZINE_SIZE)
            magazine_cache_push_magazine (ix, mag->chunks, mag->count);
          else
            {
              const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
              g_mutex_lock (&allocator->slab_mutex);
              while (mag->chunks)
                {
                  ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
                  slab_allocator_free_chunk (chunk_size, chunk);
                }
              g_mutex_unlock (&allocator->slab_mutex);
            }
        }
    }
  g_free (tmem);
}

static void
thread_memory_magazine1_reload (ThreadMemory *tmem,
                                guint         ix)
{
  Magazine *mag = &tmem->magazine1[ix];
  mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */
  mag->count = 0;
  mag->chunks = magazine_cache_pop_magazine (ix, &mag->count);
}

static void
thread_memory_magazine2_unload (ThreadMemory *tmem,
                                guint         ix)
{
  Magazine *mag = &tmem->magazine2[ix];
  magazine_cache_push_magazine (ix, mag->chunks, mag->count);
  mag->chunks = NULL;
  mag->count = 0;
}

static inline void
thread_memory_swap_magazines (ThreadMemory *tmem,
                              guint         ix)
{
  Magazine xmag = tmem->magazine1[ix];
  tmem->magazine1[ix] = tmem->magazine2[ix];
  tmem->magazine2[ix] = xmag;
}

static inline gboolean
thread_memory_magazine1_is_empty (ThreadMemory *tmem,
                                  guint         ix)
{
  return tmem->magazine1[ix].chunks == NULL;
}

static inline gboolean
thread_memory_magazine2_is_full (ThreadMemory *tmem,
                                 guint         ix)
{
  return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix);
}

static inline gpointer
thread_memory_magazine1_alloc (ThreadMemory *tmem,
                               guint         ix)
{
  Magazine *mag = &tmem->magazine1[ix];
  ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
  if (G_LIKELY (mag->count > 0))
    mag->count--;
  return chunk;
}

static inline void
thread_memory_magazine2_free (ThreadMemory *tmem,
                              guint         ix,
                              gpointer      mem)
{
  Magazine *mag = &tmem->magazine2[ix];
  ChunkLink *chunk = mem;
  chunk->data = NULL;
  chunk->next = mag->chunks;
  mag->chunks = chunk;
  mag->count++;
}

/* --- API functions --- */

/**
 * g_slice_new:
 * @type: the type to allocate, typically a structure name
 *
 * A convenience macro to allocate a block of memory from the
 * slice allocator.
 *
 * It calls g_slice_alloc() with `sizeof (@type)` and casts the
 * returned pointer to a pointer of the given type, avoiding a type
 * cast in the source code. Note that the underlying slice allocation
 * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
 * environment variable.
 *
 * Returns: a pointer to the allocated block, cast to a pointer to @type
 *
 * Since: 2.10
 */

/**
 * g_slice_new0:
 * @type: the type to allocate, typically a structure name
 *
 * A convenience macro to allocate a block of memory from the
 * slice allocator and set the memory to 0.
 *
 * It calls g_slice_alloc0() with `sizeof (@type)`
 * and casts the returned pointer to a pointer of the given type,
 * avoiding a type cast in the source code.
 * Note that the underlying slice allocation mechanism can
 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
 * environment variable.
 *
 * Since: 2.10
 */

/**
 * g_slice_dup:
 * @type: the type to duplicate, typically a structure name
 * @mem: the memory to copy into the allocated block
 *
 * A convenience macro to duplicate a block of memory using
 * the slice allocator.
 *
 * It calls g_slice_copy() with `sizeof (@type)`
 * and casts the returned pointer to a pointer of the given type,
 * avoiding a type cast in the source code.
 * Note that the underlying slice allocation mechanism can
 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
 * environment variable.
 *
 * Returns: a pointer to the allocated block, cast to a pointer to @type
 *
 * Since: 2.14
 */

/**
 * g_slice_free:
 * @type: the type of the block to free, typically a structure name
 * @mem: a pointer to the block to free
 *
 * A convenience macro to free a block of memory that has
 * been allocated from the slice allocator.
 *
 * It calls g_slice_free1() using `sizeof (type)`
 * as the block size.
 * Note that the exact release behaviour can be changed with the
 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
 * [`G_SLICE`][G_SLICE] for related debugging options.
 *
 * Since: 2.10
 */

/**
 * g_slice_free_chain:
 * @type: the type of the @mem_chain blocks
 * @mem_chain: a pointer to the first block of the chain
 * @next: the field name of the next pointer in @type
 *
 * Frees a linked list of memory blocks of structure type @type.
 * The memory blocks must be equal-sized, allocated via
 * g_slice_alloc() or g_slice_alloc0() and linked together by
 * a @next pointer (similar to #GSList). The name of the
 * @next field in @type is passed as third argument.
 * Note that the exact release behaviour can be changed with the
 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
 * [`G_SLICE`][G_SLICE] for related debugging options.
 *
 * Since: 2.10
 */

/**
 * g_slice_alloc:
 * @block_size: the number of bytes to allocate
 *
 * Allocates a block of memory from the slice allocator.
 * The block adress handed out can be expected to be aligned
 * to at least 1 * sizeof (void*),
 * though in general slices are 2 * sizeof (void*) bytes aligned,
 * if a malloc() fallback implementation is used instead,
 * the alignment may be reduced in a libc dependent fashion.
 * Note that the underlying slice allocation mechanism can
 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
 * environment variable.
 *
 * Returns: a pointer to the allocated memory block
 *
 * Since: 2.10
 */
gpointer
g_slice_alloc (gsize mem_size)
{
  ThreadMemory *tmem;
  gsize chunk_size;
  gpointer mem;
  guint acat;

  /* This gets the private structure for this thread.  If the private
   * structure does not yet exist, it is created.
   *
   * This has a side effect of causing GSlice to be initialised, so it
   * must come first.
   */
  tmem = thread_memory_from_self ();

  chunk_size = P2ALIGN (mem_size);
  acat = allocator_categorize (chunk_size);
  if (G_LIKELY (acat == 1))     /* allocate through magazine layer */
    {
      guint ix = SLAB_INDEX (allocator, chunk_size);
      if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
        {
          thread_memory_swap_magazines (tmem, ix);
          if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
            thread_memory_magazine1_reload (tmem, ix);
        }
      mem = thread_memory_magazine1_alloc (tmem, ix);
    }
  else if (acat == 2)           /* allocate through slab allocator */
    {
      g_mutex_lock (&allocator->slab_mutex);
      mem = slab_allocator_alloc_chunk (chunk_size);
      g_mutex_unlock (&allocator->slab_mutex);
    }
  else                          /* delegate to system malloc */
    mem = g_malloc (mem_size);
  if (G_UNLIKELY (allocator->config.debug_blocks))
    smc_notify_alloc (mem, mem_size);

  TRACE (GLIB_SLICE_ALLOC((void*)mem, mem_size));

  return mem;
}

/**
 * g_slice_alloc0:
 * @block_size: the number of bytes to allocate
 *
 * Allocates a block of memory via g_slice_alloc() and initializes
 * the returned memory to 0. Note that the underlying slice allocation
 * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
 * environment variable.
 *
 * Returns: a pointer to the allocated block
 *
 * Since: 2.10
 */
gpointer
g_slice_alloc0 (gsize mem_size)
{
  gpointer mem = g_slice_alloc (mem_size);
  if (mem)
    memset (mem, 0, mem_size);
  return mem;
}

/**
 * g_slice_copy:
 * @block_size: the number of bytes to allocate
 * @mem_block: the memory to copy
 *
 * Allocates a block of memory from the slice allocator
 * and copies @block_size bytes into it from @mem_block.
 *
 * Returns: a pointer to the allocated memory block
 *
 * Since: 2.14
 */
gpointer
g_slice_copy (gsize         mem_size,
              gconstpointer mem_block)
{
  gpointer mem = g_slice_alloc (mem_size);
  if (mem)
    memcpy (mem, mem_block, mem_size);
  return mem;
}

/**
 * g_slice_free1:
 * @block_size: the size of the block
 * @mem_block: a pointer to the block to free
 *
 * Frees a block of memory.
 *
 * The memory must have been allocated via g_slice_alloc() or
 * g_slice_alloc0() and the @block_size has to match the size
 * specified upon allocation. Note that the exact release behaviour
 * can be changed with the [`G_DEBUG=gc-friendly`][G_DEBUG] environment
 * variable, also see [`G_SLICE`][G_SLICE] for related debugging options.
 *
 * Since: 2.10
 */
void
g_slice_free1 (gsize    mem_size,
               gpointer mem_block)
{
  gsize chunk_size = P2ALIGN (mem_size);
  guint acat = allocator_categorize (chunk_size);
  if (G_UNLIKELY (!mem_block))
    return;
  if (G_UNLIKELY (allocator->config.debug_blocks) &&
      !smc_notify_free (mem_block, mem_size))
    abort();
  if (G_LIKELY (acat == 1))             /* allocate through magazine layer */
    {
      ThreadMemory *tmem = thread_memory_from_self();
      guint ix = SLAB_INDEX (allocator, chunk_size);
      if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
        {
          thread_memory_swap_magazines (tmem, ix);
          if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
            thread_memory_magazine2_unload (tmem, ix);
        }
      if (G_UNLIKELY (g_mem_gc_friendly))
        memset (mem_block, 0, chunk_size);
      thread_memory_magazine2_free (tmem, ix, mem_block);
    }
  else if (acat == 2)                   /* allocate through slab allocator */
    {
      if (G_UNLIKELY (g_mem_gc_friendly))
        memset (mem_block, 0, chunk_size);
      g_mutex_lock (&allocator->slab_mutex);
      slab_allocator_free_chunk (chunk_size, mem_block);
      g_mutex_unlock (&allocator->slab_mutex);
    }
  else                                  /* delegate to system malloc */
    {
      if (G_UNLIKELY (g_mem_gc_friendly))
        memset (mem_block, 0, mem_size);
      g_free (mem_block);
    }
  TRACE (GLIB_SLICE_FREE((void*)mem_block, mem_size));
}

/**
 * g_slice_free_chain_with_offset:
 * @block_size: the size of the blocks
 * @mem_chain:  a pointer to the first block of the chain
 * @next_offset: the offset of the @next field in the blocks
 *
 * Frees a linked list of memory blocks of structure type @type.
 *
 * The memory blocks must be equal-sized, allocated via
 * g_slice_alloc() or g_slice_alloc0() and linked together by a
 * @next pointer (similar to #GSList). The offset of the @next
 * field in each block is passed as third argument.
 * Note that the exact release behaviour can be changed with the
 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
 * [`G_SLICE`][G_SLICE] for related debugging options.
 *
 * Since: 2.10
 */
void
g_slice_free_chain_with_offset (gsize    mem_size,
                                gpointer mem_chain,
                                gsize    next_offset)
{
  gpointer slice = mem_chain;
  /* while the thread magazines and the magazine cache are implemented so that
   * they can easily be extended to allow for free lists containing more free
   * lists for the first level nodes, which would allow O(1) freeing in this
   * function, the benefit of such an extension is questionable, because:
   * - the magazine size counts will become mere lower bounds which confuses
   *   the code adapting to lock contention;
   * - freeing a single node to the thread magazines is very fast, so this
   *   O(list_length) operation is multiplied by a fairly small factor;
   * - memory usage histograms on larger applications seem to indicate that
   *   the amount of released multi node lists is negligible in comparison
   *   to single node releases.
   * - the major performance bottle neck, namely g_private_get() or
   *   g_mutex_lock()/g_mutex_unlock() has already been moved out of the
   *   inner loop for freeing chained slices.
   */
  gsize chunk_size = P2ALIGN (mem_size);
  guint acat = allocator_categorize (chunk_size);
  if (G_LIKELY (acat == 1))             /* allocate through magazine layer */
    {
      ThreadMemory *tmem = thread_memory_from_self();
      guint ix = SLAB_INDEX (allocator, chunk_size);
      while (slice)
        {
          guint8 *current = slice;
          slice = *(gpointer*) (current + next_offset);
          if (G_UNLIKELY (allocator->config.debug_blocks) &&
              !smc_notify_free (current, mem_size))
            abort();
          if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
            {
              thread_memory_swap_magazines (tmem, ix);
              if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
                thread_memory_magazine2_unload (tmem, ix);
            }
          if (G_UNLIKELY (g_mem_gc_friendly))
            memset (current, 0, chunk_size);
          thread_memory_magazine2_free (tmem, ix, current);
        }
    }
  else if (acat == 2)                   /* allocate through slab allocator */
    {
      g_mutex_lock (&allocator->slab_mutex);
      while (slice)
        {
          guint8 *current = slice;
          slice = *(gpointer*) (current + next_offset);
          if (G_UNLIKELY (allocator->config.debug_blocks) &&
              !smc_notify_free (current, mem_size))
            abort();
          if (G_UNLIKELY (g_mem_gc_friendly))
            memset (current, 0, chunk_size);
          slab_allocator_free_chunk (chunk_size, current);
        }
      g_mutex_unlock (&allocator->slab_mutex);
    }
  else                                  /* delegate to system malloc */
    while (slice)
      {
        guint8 *current = slice;
        slice = *(gpointer*) (current + next_offset);
        if (G_UNLIKELY (allocator->config.debug_blocks) &&
            !smc_notify_free (current, mem_size))
          abort();
        if (G_UNLIKELY (g_mem_gc_friendly))
          memset (current, 0, mem_size);
        g_free (current);
      }
}

/* --- single page allocator --- */
static void
allocator_slab_stack_push (Allocator *allocator,
                           guint      ix,
                           SlabInfo  *sinfo)
{
  /* insert slab at slab ring head */
  if (!allocator->slab_stack[ix])
    {
      sinfo->next = sinfo;
      sinfo->prev = sinfo;
    }
  else
    {
      SlabInfo *next = allocator->slab_stack[ix], *prev = next->prev;
      next->prev = sinfo;
      prev->next = sinfo;
      sinfo->next = next;
      sinfo->prev = prev;
    }
  allocator->slab_stack[ix] = sinfo;
}

static gsize
allocator_aligned_page_size (Allocator *allocator,
                             gsize      n_bytes)
{
  gsize val = 1 << g_bit_storage (n_bytes - 1);
  val = MAX (val, allocator->min_page_size);
  return val;
}

static void
allocator_add_slab (Allocator *allocator,
                    guint      ix,
                    gsize      chunk_size)
{
  ChunkLink *chunk;
  SlabInfo *sinfo;
  gsize addr, padding, n_chunks, color = 0;
  gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
  /* allocate 1 page for the chunks and the slab */
  gpointer aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING);
  guint8 *mem = aligned_memory;
  guint i;
  if (!mem)
    {
      const gchar *syserr = strerror (errno);
      mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
                 (guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr);
    }
  /* mask page address */
  addr = ((gsize) mem / page_size) * page_size;
  /* assert alignment */
  mem_assert (aligned_memory == (gpointer) addr);
  /* basic slab info setup */
  sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE);
  sinfo->n_allocated = 0;
  sinfo->chunks = NULL;
  /* figure cache colorization */
  n_chunks = ((guint8*) sinfo - mem) / chunk_size;
  padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size;
  if (padding)
    {
      color = (allocator->color_accu * P2ALIGNMENT) % padding;
      allocator->color_accu += allocator->config.color_increment;
    }
  /* add chunks to free list */
  chunk = (ChunkLink*) (mem + color);
  sinfo->chunks = chunk;
  for (i = 0; i < n_chunks - 1; i++)
    {
      chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size);
      chunk = chunk->next;
    }
  chunk->next = NULL;   /* last chunk */
  /* add slab to slab ring */
  allocator_slab_stack_push (allocator, ix, sinfo);
}

static gpointer
slab_allocator_alloc_chunk (gsize chunk_size)
{
  ChunkLink *chunk;
  guint ix = SLAB_INDEX (allocator, chunk_size);
  /* ensure non-empty slab */
  if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks)
    allocator_add_slab (allocator, ix, chunk_size);
  /* allocate chunk */
  chunk = allocator->slab_stack[ix]->chunks;
  allocator->slab_stack[ix]->chunks = chunk->next;
  allocator->slab_stack[ix]->n_allocated++;
  /* rotate empty slabs */
  if (!allocator->slab_stack[ix]->chunks)
    allocator->slab_stack[ix] = allocator->slab_stack[ix]->next;
  return chunk;
}

static void
slab_allocator_free_chunk (gsize    chunk_size,
                           gpointer mem)
{
  ChunkLink *chunk;
  gboolean was_empty;
  guint ix = SLAB_INDEX (allocator, chunk_size);
  gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
  gsize addr = ((gsize) mem / page_size) * page_size;
  /* mask page address */
  guint8 *page = (guint8*) addr;
  SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE);
  /* assert valid chunk count */
  mem_assert (sinfo->n_allocated > 0);
  /* add chunk to free list */
  was_empty = sinfo->chunks == NULL;
  chunk = (ChunkLink*) mem;
  chunk->next = sinfo->chunks;
  sinfo->chunks = chunk;
  sinfo->n_allocated--;
  /* keep slab ring partially sorted, empty slabs at end */
  if (was_empty)
    {
      /* unlink slab */
      SlabInfo *next = sinfo->next, *prev = sinfo->prev;
      next->prev = prev;
      prev->next = next;
      if (allocator->slab_stack[ix] == sinfo)
        allocator->slab_stack[ix] = next == sinfo ? NULL : next;
      /* insert slab at head */
      allocator_slab_stack_push (allocator, ix, sinfo);
    }
  /* eagerly free complete unused slabs */
  if (!sinfo->n_allocated)
    {
      /* unlink slab */
      SlabInfo *next = sinfo->next, *prev = sinfo->prev;
      next->prev = prev;
      prev->next = next;
      if (allocator->slab_stack[ix] == sinfo)
        allocator->slab_stack[ix] = next == sinfo ? NULL : next;
      /* free slab */
      allocator_memfree (page_size, page);
    }
}

/* --- memalign implementation --- */
#ifdef HAVE_MALLOC_H
#include <malloc.h>             /* memalign() */
#endif

/* from config.h:
 * define HAVE_POSIX_MEMALIGN           1 // if free(posix_memalign(3)) works, <stdlib.h>
 * define HAVE_COMPLIANT_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works for sizes != 2^n, <stdlib.h>
 * define HAVE_MEMALIGN                 1 // if free(memalign(3)) works, <malloc.h>
 * define HAVE_VALLOC                   1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
 * if none is provided, we implement malloc(3)-based alloc-only page alignment
 */

#if !(HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
static GTrashStack *compat_valloc_trash = NULL;
#endif

static gpointer
allocator_memalign (gsize alignment,
                    gsize memsize)
{
  gpointer aligned_memory = NULL;
  gint err = ENOMEM;
#if     HAVE_COMPLIANT_POSIX_MEMALIGN
  err = posix_memalign (&aligned_memory, alignment, memsize);
#elif   HAVE_MEMALIGN
  errno = 0;
  aligned_memory = memalign (alignment, memsize);
  err = errno;
#elif   HAVE_VALLOC
  errno = 0;
  aligned_memory = valloc (memsize);
  err = errno;
#else
  /* simplistic non-freeing page allocator */
  mem_assert (alignment == sys_page_size);
  mem_assert (memsize <= sys_page_size);
  if (!compat_valloc_trash)
    {
      const guint n_pages = 16;
      guint8 *mem = malloc (n_pages * sys_page_size);
      err = errno;
      if (mem)
        {
          gint i = n_pages;
          guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size);
          if (amem != mem)
            i--;        /* mem wasn't page aligned */
          while (--i >= 0)
            g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size);
        }
    }
  aligned_memory = g_trash_stack_pop (&compat_valloc_trash);
#endif
  if (!aligned_memory)
    errno = err;
  return aligned_memory;
}

static void
allocator_memfree (gsize    memsize,
                   gpointer mem)
{
#if     HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
  free (mem);
#else
  mem_assert (memsize <= sys_page_size);
  g_trash_stack_push (&compat_valloc_trash, mem);
#endif
}

static void
mem_error (const char *format,
           ...)
{
  const char *pname;
  va_list args;
  /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
  fputs ("\n***MEMORY-ERROR***: ", stderr);
  pname = g_get_prgname();
  fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid());
  va_start (args, format);
  vfprintf (stderr, format, args);
  va_end (args);
  fputs ("\n", stderr);
  abort();
  _exit (1);
}

/* --- g-slice memory checker tree --- */
typedef size_t SmcKType;                /* key type */
typedef size_t SmcVType;                /* value type */
typedef struct {
  SmcKType key;
  SmcVType value;
} SmcEntry;
static void             smc_tree_insert      (SmcKType  key,
                                              SmcVType  value);
static gboolean         smc_tree_lookup      (SmcKType  key,
                                              SmcVType *value_p);
static gboolean         smc_tree_remove      (SmcKType  key);


/* --- g-slice memory checker implementation --- */
static void
smc_notify_alloc (void   *pointer,
                  size_t  size)
{
  size_t adress = (size_t) pointer;
  if (pointer)
    smc_tree_insert (adress, size);
}

#if 0
static void
smc_notify_ignore (void *pointer)
{
  size_t adress = (size_t) pointer;
  if (pointer)
    smc_tree_remove (adress);
}
#endif

static int
smc_notify_free (void   *pointer,
                 size_t  size)
{
  size_t adress = (size_t) pointer;
  SmcVType real_size;
  gboolean found_one;

  if (!pointer)
    return 1; /* ignore */
  found_one = smc_tree_lookup (adress, &real_size);
  if (!found_one)
    {
      fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
      return 0;
    }
  if (real_size != size && (real_size || size))
    {
      fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size);
      return 0;
    }
  if (!smc_tree_remove (adress))
    {
      fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
      return 0;
    }
  return 1; /* all fine */
}

/* --- g-slice memory checker tree implementation --- */
#define SMC_TRUNK_COUNT     (4093 /* 16381 */)          /* prime, to distribute trunk collisions (big, allocated just once) */
#define SMC_BRANCH_COUNT    (511)                       /* prime, to distribute branch collisions */
#define SMC_TRUNK_EXTENT    (SMC_BRANCH_COUNT * 2039)   /* key address space per trunk, should distribute uniformly across BRANCH_COUNT */
#define SMC_TRUNK_HASH(k)   ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT)  /* generate new trunk hash per megabyte (roughly) */
#define SMC_BRANCH_HASH(k)  (k % SMC_BRANCH_COUNT)

typedef struct {
  SmcEntry    *entries;
  unsigned int n_entries;
} SmcBranch;

static SmcBranch     **smc_tree_root = NULL;

static void
smc_tree_abort (int errval)
{
  const char *syserr = strerror (errval);
  mem_error ("MemChecker: failure in debugging tree: %s", syserr);
}

static inline SmcEntry*
smc_tree_branch_grow_L (SmcBranch   *branch,
                        unsigned int index)
{
  unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]);
  unsigned int new_size = old_size + sizeof (branch->entries[0]);
  SmcEntry *entry;
  mem_assert (index <= branch->n_entries);
  branch->entries = (SmcEntry*) realloc (branch->entries, new_size);
  if (!branch->entries)
    smc_tree_abort (errno);
  entry = branch->entries + index;
  memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0]));
  branch->n_entries += 1;
  return entry;
}

static inline SmcEntry*
smc_tree_branch_lookup_nearest_L (SmcBranch *branch,
                                  SmcKType   key)
{
  unsigned int n_nodes = branch->n_entries, offs = 0;
  SmcEntry *check = branch->entries;
  int cmp = 0;
  while (offs < n_nodes)
    {
      unsigned int i = (offs + n_nodes) >> 1;
      check = branch->entries + i;
      cmp = key < check->key ? -1 : key != check->key;
      if (cmp == 0)
        return check;                   /* return exact match */
      else if (cmp < 0)
        n_nodes = i;
      else /* (cmp > 0) */
        offs = i + 1;
    }
  /* check points at last mismatch, cmp > 0 indicates greater key */
  return cmp > 0 ? check + 1 : check;   /* return insertion position for inexact match */
}

static void
smc_tree_insert (SmcKType key,
                 SmcVType value)
{
  unsigned int ix0, ix1;
  SmcEntry *entry;

  g_mutex_lock (&smc_tree_mutex);
  ix0 = SMC_TRUNK_HASH (key);
  ix1 = SMC_BRANCH_HASH (key);
  if (!smc_tree_root)
    {
      smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0]));
      if (!smc_tree_root)
        smc_tree_abort (errno);
    }
  if (!smc_tree_root[ix0])
    {
      smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0]));
      if (!smc_tree_root[ix0])
        smc_tree_abort (errno);
    }
  entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
  if (!entry ||                                                                         /* need create */
      entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries ||   /* need append */
      entry->key != key)                                                                /* need insert */
    entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries);
  entry->key = key;
  entry->value = value;
  g_mutex_unlock (&smc_tree_mutex);
}

static gboolean
smc_tree_lookup (SmcKType  key,
                 SmcVType *value_p)
{
  SmcEntry *entry = NULL;
  unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
  gboolean found_one = FALSE;
  *value_p = 0;
  g_mutex_lock (&smc_tree_mutex);
  if (smc_tree_root && smc_tree_root[ix0])
    {
      entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
      if (entry &&
          entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
          entry->key == key)
        {
          found_one = TRUE;
          *value_p = entry->value;
        }
    }
  g_mutex_unlock (&smc_tree_mutex);
  return found_one;
}

static gboolean
smc_tree_remove (SmcKType key)
{
  unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
  gboolean found_one = FALSE;
  g_mutex_lock (&smc_tree_mutex);
  if (smc_tree_root && smc_tree_root[ix0])
    {
      SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
      if (entry &&
          entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
          entry->key == key)
        {
          unsigned int i = entry - smc_tree_root[ix0][ix1].entries;
          smc_tree_root[ix0][ix1].n_entries -= 1;
          memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0]));
          if (!smc_tree_root[ix0][ix1].n_entries)
            {
              /* avoid useless pressure on the memory system */
              free (smc_tree_root[ix0][ix1].entries);
              smc_tree_root[ix0][ix1].entries = NULL;
            }
          found_one = TRUE;
        }
    }
  g_mutex_unlock (&smc_tree_mutex);
  return found_one;
}

#ifdef G_ENABLE_DEBUG
void
g_slice_debug_tree_statistics (void)
{
  g_mutex_lock (&smc_tree_mutex);
  if (smc_tree_root)
    {
      unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u;
      double tf, bf;
      for (i = 0; i < SMC_TRUNK_COUNT; i++)
        if (smc_tree_root[i])
          {
            t++;
            for (j = 0; j < SMC_BRANCH_COUNT; j++)
              if (smc_tree_root[i][j].n_entries)
                {
                  b++;
                  su += smc_tree_root[i][j].n_entries;
                  en = MIN (en, smc_tree_root[i][j].n_entries);
                  ex = MAX (ex, smc_tree_root[i][j].n_entries);
                }
              else if (smc_tree_root[i][j].entries)
                o++; /* formerly used, now empty */
          }
      en = b ? en : 0;
      tf = MAX (t, 1.0); /* max(1) to be a valid divisor */
      bf = MAX (b, 1.0); /* max(1) to be a valid divisor */
      fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o);
      fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
               b / tf,
               100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT));
      fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
               su / bf, en, ex);
    }
  else
    fprintf (stderr, "GSlice: MemChecker: root=NULL\n");
  g_mutex_unlock (&smc_tree_mutex);
  
  /* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
   *  PID %CPU %MEM   VSZ  RSS      COMMAND
   * 8887 30.3 45.8 456068 414856   beast-0.7.1 empty.bse
   * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
   * 114017 103714 2354 344 0 108676 0
   * $ cat /proc/8887/status 
   * Name:   beast-0.7.1
   * VmSize:   456068 kB
   * VmLck:         0 kB
   * VmRSS:    414856 kB
   * VmData:   434620 kB
   * VmStk:        84 kB
   * VmExe:      1376 kB
   * VmLib:     13036 kB
   * VmPTE:       456 kB
   * Threads:        3
   * (gdb) print g_slice_debug_tree_statistics ()
   * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
   * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
   * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
   */
}
#endif /* G_ENABLE_DEBUG */