File: gchecksum.c

package info (click to toggle)
glib2.0 2.58.3-2+deb10u2
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 48,956 kB
  • sloc: ansic: 452,656; xml: 16,781; python: 6,149; makefile: 3,776; sh: 1,499; perl: 1,140; cpp: 9
file content (1862 lines) | stat: -rw-r--r-- 55,139 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
/* gchecksum.h - data hashing functions
 *
 * Copyright (C) 2007  Emmanuele Bassi  <ebassi@gnome.org>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "config.h"

#include <string.h>

#include "gchecksum.h"

#include "gslice.h"
#include "gmem.h"
#include "gstrfuncs.h"
#include "gtestutils.h"
#include "gtypes.h"
#include "glibintl.h"


/**
 * SECTION:checksum
 * @title: Data Checksums
 * @short_description: computes the checksum for data
 *
 * GLib provides a generic API for computing checksums (or "digests")
 * for a sequence of arbitrary bytes, using various hashing algorithms
 * like MD5, SHA-1 and SHA-256. Checksums are commonly used in various
 * environments and specifications.
 *
 * GLib supports incremental checksums using the GChecksum data
 * structure, by calling g_checksum_update() as long as there's data
 * available and then using g_checksum_get_string() or
 * g_checksum_get_digest() to compute the checksum and return it either
 * as a string in hexadecimal form, or as a raw sequence of bytes. To
 * compute the checksum for binary blobs and NUL-terminated strings in
 * one go, use the convenience functions g_compute_checksum_for_data()
 * and g_compute_checksum_for_string(), respectively.
 *
 * Support for checksums has been added in GLib 2.16
 **/

#define IS_VALID_TYPE(type)     ((type) >= G_CHECKSUM_MD5 && (type) <= G_CHECKSUM_SHA384)

/* The fact that these are lower case characters is part of the ABI */
static const gchar hex_digits[] = "0123456789abcdef";

#define MD5_DATASIZE    64
#define MD5_DIGEST_LEN  16

typedef struct
{
  guint32 buf[4];
  guint32 bits[2];

  union {
    guchar data[MD5_DATASIZE];
    guint32 data32[MD5_DATASIZE / 4];
  } u;

  guchar digest[MD5_DIGEST_LEN];
} Md5sum;

#define SHA1_DATASIZE   64
#define SHA1_DIGEST_LEN 20

typedef struct
{
  guint32 buf[5];
  guint32 bits[2];

  /* we pack 64 unsigned chars into 16 32-bit unsigned integers */
  guint32 data[16];

  guchar digest[SHA1_DIGEST_LEN];
} Sha1sum;

#define SHA256_DATASIZE         64
#define SHA256_DIGEST_LEN       32

typedef struct
{
  guint32 buf[8];
  guint32 bits[2];

  guint8 data[SHA256_DATASIZE];

  guchar digest[SHA256_DIGEST_LEN];
} Sha256sum;

/* SHA2 is common thing for SHA-384, SHA-512, SHA-512/224 and SHA-512/256 */
#define SHA2_BLOCK_LEN         128 /* 1024 bits message block */
#define SHA384_DIGEST_LEN       48
#define SHA512_DIGEST_LEN       64

typedef struct
{
  guint64 H[8];

  guint8 block[SHA2_BLOCK_LEN];
  guint8 block_len;

  guint64 data_len[2];

  guchar digest[SHA512_DIGEST_LEN];
} Sha512sum;

struct _GChecksum
{
  GChecksumType type;

  gchar *digest_str;

  union {
    Md5sum md5;
    Sha1sum sha1;
    Sha256sum sha256;
    Sha512sum sha512;
  } sum;
};

/* we need different byte swapping functions because MD5 expects buffers
 * to be little-endian, while SHA1 and SHA256 expect them in big-endian
 * form.
 */

#if G_BYTE_ORDER == G_LITTLE_ENDIAN
#define md5_byte_reverse(buffer,length)
#else
/* assume that the passed buffer is integer aligned */
static inline void
md5_byte_reverse (guchar *buffer,
                  gulong  length)
{
  guint32 bit;

  do
    {
      bit = (guint32) ((unsigned) buffer[3] << 8 | buffer[2]) << 16 |
                      ((unsigned) buffer[1] << 8 | buffer[0]);
      * (guint32 *) buffer = bit;
      buffer += 4;
    }
  while (--length);
}
#endif /* G_BYTE_ORDER == G_LITTLE_ENDIAN */

#if G_BYTE_ORDER == G_BIG_ENDIAN
#define sha_byte_reverse(buffer,length)
#else
static inline void
sha_byte_reverse (guint32 *buffer,
                  gint     length)
{
  length /= sizeof (guint32);
  while (length--)
    {
      *buffer = GUINT32_SWAP_LE_BE (*buffer);
      ++buffer;
    }
}
#endif /* G_BYTE_ORDER == G_BIG_ENDIAN */

static gchar *
digest_to_string (guint8 *digest,
                  gsize   digest_len)
{
  gint len = digest_len * 2;
  gint i;
  gchar *retval;

  retval = g_new (gchar, len + 1);

  for (i = 0; i < digest_len; i++)
    {
      guint8 byte = digest[i];

      retval[2 * i] = hex_digits[byte >> 4];
      retval[2 * i + 1] = hex_digits[byte & 0xf];
    }

  retval[len] = 0;

  return retval;
}

/*
 * MD5 Checksum
 */

/* This MD5 digest computation is based on the equivalent code
 * written by Colin Plumb. It came with this notice:
 *
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 */

static void
md5_sum_init (Md5sum *md5)
{
  /* arbitrary constants */
  md5->buf[0] = 0x67452301;
  md5->buf[1] = 0xefcdab89;
  md5->buf[2] = 0x98badcfe;
  md5->buf[3] = 0x10325476;

  md5->bits[0] = md5->bits[1] = 0;
}

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  md5_sum_update()
 * blocks the data and converts bytes into longwords for this routine.
 */
static void
md5_transform (guint32       buf[4],
               guint32 const in[16])
{
  guint32 a, b, c, d;

/* The four core functions - F1 is optimized somewhat */
#define F1(x, y, z)     (z ^ (x & (y ^ z)))
#define F2(x, y, z)     F1 (z, x, y)
#define F3(x, y, z)     (x ^ y ^ z)
#define F4(x, y, z)     (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define md5_step(f, w, x, y, z, data, s) \
        ( w += f (x, y, z) + data,  w = w << s | w >> (32 - s),  w += x )

  a = buf[0];
  b = buf[1];
  c = buf[2];
  d = buf[3];

  md5_step (F1, a, b, c, d, in[0]  + 0xd76aa478,  7);
  md5_step (F1, d, a, b, c, in[1]  + 0xe8c7b756, 12);
  md5_step (F1, c, d, a, b, in[2]  + 0x242070db, 17);
  md5_step (F1, b, c, d, a, in[3]  + 0xc1bdceee, 22);
  md5_step (F1, a, b, c, d, in[4]  + 0xf57c0faf,  7);
  md5_step (F1, d, a, b, c, in[5]  + 0x4787c62a, 12);
  md5_step (F1, c, d, a, b, in[6]  + 0xa8304613, 17);
  md5_step (F1, b, c, d, a, in[7]  + 0xfd469501, 22);
  md5_step (F1, a, b, c, d, in[8]  + 0x698098d8,  7);
  md5_step (F1, d, a, b, c, in[9]  + 0x8b44f7af, 12);
  md5_step (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  md5_step (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  md5_step (F1, a, b, c, d, in[12] + 0x6b901122,  7);
  md5_step (F1, d, a, b, c, in[13] + 0xfd987193, 12);
  md5_step (F1, c, d, a, b, in[14] + 0xa679438e, 17);
  md5_step (F1, b, c, d, a, in[15] + 0x49b40821, 22);
        
  md5_step (F2, a, b, c, d, in[1]  + 0xf61e2562,  5);
  md5_step (F2, d, a, b, c, in[6]  + 0xc040b340,  9);
  md5_step (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  md5_step (F2, b, c, d, a, in[0]  + 0xe9b6c7aa, 20);
  md5_step (F2, a, b, c, d, in[5]  + 0xd62f105d,  5);
  md5_step (F2, d, a, b, c, in[10] + 0x02441453,  9);
  md5_step (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  md5_step (F2, b, c, d, a, in[4]  + 0xe7d3fbc8, 20);
  md5_step (F2, a, b, c, d, in[9]  + 0x21e1cde6,  5);
  md5_step (F2, d, a, b, c, in[14] + 0xc33707d6,  9);
  md5_step (F2, c, d, a, b, in[3]  + 0xf4d50d87, 14);
  md5_step (F2, b, c, d, a, in[8]  + 0x455a14ed, 20);
  md5_step (F2, a, b, c, d, in[13] + 0xa9e3e905,  5);
  md5_step (F2, d, a, b, c, in[2]  + 0xfcefa3f8,  9);
  md5_step (F2, c, d, a, b, in[7]  + 0x676f02d9, 14);
  md5_step (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

  md5_step (F3, a, b, c, d, in[5]  + 0xfffa3942,  4);
  md5_step (F3, d, a, b, c, in[8]  + 0x8771f681, 11);
  md5_step (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  md5_step (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  md5_step (F3, a, b, c, d, in[1]  + 0xa4beea44,  4);
  md5_step (F3, d, a, b, c, in[4]  + 0x4bdecfa9, 11);
  md5_step (F3, c, d, a, b, in[7]  + 0xf6bb4b60, 16);
  md5_step (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  md5_step (F3, a, b, c, d, in[13] + 0x289b7ec6,  4);
  md5_step (F3, d, a, b, c, in[0]  + 0xeaa127fa, 11);
  md5_step (F3, c, d, a, b, in[3]  + 0xd4ef3085, 16);
  md5_step (F3, b, c, d, a, in[6]  + 0x04881d05, 23);
  md5_step (F3, a, b, c, d, in[9]  + 0xd9d4d039,  4);
  md5_step (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  md5_step (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  md5_step (F3, b, c, d, a, in[2]  + 0xc4ac5665, 23);

  md5_step (F4, a, b, c, d, in[0]  + 0xf4292244,  6);
  md5_step (F4, d, a, b, c, in[7]  + 0x432aff97, 10);
  md5_step (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  md5_step (F4, b, c, d, a, in[5]  + 0xfc93a039, 21);
  md5_step (F4, a, b, c, d, in[12] + 0x655b59c3,  6);
  md5_step (F4, d, a, b, c, in[3]  + 0x8f0ccc92, 10);
  md5_step (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  md5_step (F4, b, c, d, a, in[1]  + 0x85845dd1, 21);
  md5_step (F4, a, b, c, d, in[8]  + 0x6fa87e4f,  6);
  md5_step (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  md5_step (F4, c, d, a, b, in[6]  + 0xa3014314, 15);
  md5_step (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  md5_step (F4, a, b, c, d, in[4]  + 0xf7537e82,  6);
  md5_step (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  md5_step (F4, c, d, a, b, in[2]  + 0x2ad7d2bb, 15);
  md5_step (F4, b, c, d, a, in[9]  + 0xeb86d391, 21);

  buf[0] += a;
  buf[1] += b;
  buf[2] += c;
  buf[3] += d;

#undef F1
#undef F2
#undef F3
#undef F4
#undef md5_step
}

static void
md5_sum_update (Md5sum       *md5,
                const guchar *data,
                gsize         length)
{
  guint32 bit;

  bit = md5->bits[0];
  md5->bits[0] = bit + ((guint32) length << 3);

  /* carry from low to high */
  if (md5->bits[0] < bit)
    md5->bits[1] += 1;

  md5->bits[1] += length >> 29;

  /* bytes already in Md5sum->u.data */
  bit = (bit >> 3) & 0x3f;

  /* handle any leading odd-sized chunks */
  if (bit)
    {
      guchar *p = md5->u.data + bit;

      bit = MD5_DATASIZE - bit;
      if (length < bit)
        {
          memcpy (p, data, length);
          return;
        }

      memcpy (p, data, bit);

      md5_byte_reverse (md5->u.data, 16);
      md5_transform (md5->buf, md5->u.data32);

      data += bit;
      length -= bit;
    }

  /* process data in 64-byte chunks */
  while (length >= MD5_DATASIZE)
    {
      memcpy (md5->u.data, data, MD5_DATASIZE);

      md5_byte_reverse (md5->u.data, 16);
      md5_transform (md5->buf, md5->u.data32);

      data += MD5_DATASIZE;
      length -= MD5_DATASIZE;
    }

  /* handle any remaining bytes of data */
  memcpy (md5->u.data, data, length);
}

/* closes a checksum */
static void
md5_sum_close (Md5sum *md5)
{
  guint count;
  guchar *p;

  /* Compute number of bytes mod 64 */
  count = (md5->bits[0] >> 3) & 0x3F;

  /* Set the first char of padding to 0x80.
   * This is safe since there is always at least one byte free
   */
  p = md5->u.data + count;
  *p++ = 0x80;

  /* Bytes of padding needed to make 64 bytes */
  count = MD5_DATASIZE - 1 - count;

  /* Pad out to 56 mod 64 */
  if (count < 8)
    {
      /* Two lots of padding:  Pad the first block to 64 bytes */
      memset (p, 0, count);

      md5_byte_reverse (md5->u.data, 16);
      md5_transform (md5->buf, md5->u.data32);

      /* Now fill the next block with 56 bytes */
      memset (md5->u.data, 0, MD5_DATASIZE - 8);
    }
  else
    {
      /* Pad block to 56 bytes */
      memset (p, 0, count - 8);
    }

  md5_byte_reverse (md5->u.data, 14);

  /* Append length in bits and transform */
  md5->u.data32[14] = md5->bits[0];
  md5->u.data32[15] = md5->bits[1];

  md5_transform (md5->buf, md5->u.data32);
  md5_byte_reverse ((guchar *) md5->buf, 4);

  memcpy (md5->digest, md5->buf, 16);

  /* Reset buffers in case they contain sensitive data */
  memset (md5->buf, 0, sizeof (md5->buf));
  memset (md5->u.data, 0, sizeof (md5->u.data));
}

static gchar *
md5_sum_to_string (Md5sum *md5)
{
  return digest_to_string (md5->digest, MD5_DIGEST_LEN);
}

static void
md5_sum_digest (Md5sum *md5,
                guint8 *digest)
{
  gint i;

  for (i = 0; i < MD5_DIGEST_LEN; i++)
    digest[i] = md5->digest[i];
}

/*
 * SHA-1 Checksum
 */

/* The following implementation comes from D-Bus dbus-sha.c. I've changed
 * it to use GLib types and to work more like the MD5 implementation above.
 * I left the comments to have an history of this code.
 *      -- Emmanuele Bassi, ebassi@gnome.org
 */

/* The following comments have the history of where this code
 * comes from. I actually copied it from GNet in GNOME CVS.
 * - hp@redhat.com
 */

/*
 *  sha.h : Implementation of the Secure Hash Algorithm
 *
 * Part of the Python Cryptography Toolkit, version 1.0.0
 *
 * Copyright (C) 1995, A.M. Kuchling
 *
 * Distribute and use freely; there are no restrictions on further
 * dissemination and usage except those imposed by the laws of your
 * country of residence.
 *
 */

/* SHA: NIST's Secure Hash Algorithm */

/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
   in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
   Modified to test for endianness on creation of SHA objects by AMK.
   Also, the original specification of SHA was found to have a weakness
   by NSA/NIST.  This code implements the fixed version of SHA.
*/

/* Here's the first paragraph of Peter Gutmann's posting:

The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
what's changed in the new version.  The fix is a simple change which involves
adding a single rotate in the initial expansion function.  It is unknown
whether this is an optimal solution to the problem which was discovered in the
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
effort (for example the reengineering of a great many Capstone chips).
*/

static void
sha1_sum_init (Sha1sum *sha1)
{
  /* initialize constants */
  sha1->buf[0] = 0x67452301L;
  sha1->buf[1] = 0xEFCDAB89L;
  sha1->buf[2] = 0x98BADCFEL;
  sha1->buf[3] = 0x10325476L;
  sha1->buf[4] = 0xC3D2E1F0L;

  /* initialize bits */
  sha1->bits[0] = sha1->bits[1] = 0;
}

/* The SHA f()-functions. */

#define f1(x,y,z)       (z ^ (x & (y ^ z)))             /* Rounds  0-19 */
#define f2(x,y,z)       (x ^ y ^ z)                     /* Rounds 20-39 */
#define f3(x,y,z)       (( x & y) | (z & (x | y)))      /* Rounds 40-59 */
#define f4(x,y,z)       (x ^ y ^ z)                     /* Rounds 60-79 */

/* The SHA Mysterious Constants */
#define K1  0x5A827999L                                 /* Rounds  0-19 */
#define K2  0x6ED9EBA1L                                 /* Rounds 20-39 */
#define K3  0x8F1BBCDCL                                 /* Rounds 40-59 */
#define K4  0xCA62C1D6L                                 /* Rounds 60-79 */

/* 32-bit rotate left - kludged with shifts */
#define ROTL(n,X) (((X) << n ) | ((X) >> (32 - n)))

/* The initial expanding function.  The hash function is defined over an
   80-word expanded input array W, where the first 16 are copies of the input
   data, and the remaining 64 are defined by

        W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]

   This implementation generates these values on the fly in a circular
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
   optimization.

   The updated SHA changes the expanding function by adding a rotate of 1
   bit.  Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
   for this information */

#define expand(W,i) (W[ i & 15 ] = ROTL (1, (W[ i       & 15] ^ \
                                             W[(i - 14) & 15] ^ \
                                             W[(i -  8) & 15] ^ \
                                             W[(i -  3) & 15])))


/* The prototype SHA sub-round.  The fundamental sub-round is:

        a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
        b' = a;
        c' = ROTL( 30, b );
        d' = c;
        e' = d;

   but this is implemented by unrolling the loop 5 times and renaming the
   variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
   This code is then replicated 20 times for each of the 4 functions, using
   the next 20 values from the W[] array each time */

#define subRound(a, b, c, d, e, f, k, data) \
   (e += ROTL (5, a) + f(b, c, d) + k + data, b = ROTL (30, b))

static void
sha1_transform (guint32  buf[5],
                guint32  in[16])
{
  guint32 A, B, C, D, E;

  A = buf[0];
  B = buf[1];
  C = buf[2];
  D = buf[3];
  E = buf[4];

  /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
  subRound (A, B, C, D, E, f1, K1, in[0]);
  subRound (E, A, B, C, D, f1, K1, in[1]);
  subRound (D, E, A, B, C, f1, K1, in[2]);
  subRound (C, D, E, A, B, f1, K1, in[3]);
  subRound (B, C, D, E, A, f1, K1, in[4]);
  subRound (A, B, C, D, E, f1, K1, in[5]);
  subRound (E, A, B, C, D, f1, K1, in[6]);
  subRound (D, E, A, B, C, f1, K1, in[7]);
  subRound (C, D, E, A, B, f1, K1, in[8]);
  subRound (B, C, D, E, A, f1, K1, in[9]);
  subRound (A, B, C, D, E, f1, K1, in[10]);
  subRound (E, A, B, C, D, f1, K1, in[11]);
  subRound (D, E, A, B, C, f1, K1, in[12]);
  subRound (C, D, E, A, B, f1, K1, in[13]);
  subRound (B, C, D, E, A, f1, K1, in[14]);
  subRound (A, B, C, D, E, f1, K1, in[15]);
  subRound (E, A, B, C, D, f1, K1, expand (in, 16));
  subRound (D, E, A, B, C, f1, K1, expand (in, 17));
  subRound (C, D, E, A, B, f1, K1, expand (in, 18));
  subRound (B, C, D, E, A, f1, K1, expand (in, 19));

  subRound (A, B, C, D, E, f2, K2, expand (in, 20));
  subRound (E, A, B, C, D, f2, K2, expand (in, 21));
  subRound (D, E, A, B, C, f2, K2, expand (in, 22));
  subRound (C, D, E, A, B, f2, K2, expand (in, 23));
  subRound (B, C, D, E, A, f2, K2, expand (in, 24));
  subRound (A, B, C, D, E, f2, K2, expand (in, 25));
  subRound (E, A, B, C, D, f2, K2, expand (in, 26));
  subRound (D, E, A, B, C, f2, K2, expand (in, 27));
  subRound (C, D, E, A, B, f2, K2, expand (in, 28));
  subRound (B, C, D, E, A, f2, K2, expand (in, 29));
  subRound (A, B, C, D, E, f2, K2, expand (in, 30));
  subRound (E, A, B, C, D, f2, K2, expand (in, 31));
  subRound (D, E, A, B, C, f2, K2, expand (in, 32));
  subRound (C, D, E, A, B, f2, K2, expand (in, 33));
  subRound (B, C, D, E, A, f2, K2, expand (in, 34));
  subRound (A, B, C, D, E, f2, K2, expand (in, 35));
  subRound (E, A, B, C, D, f2, K2, expand (in, 36));
  subRound (D, E, A, B, C, f2, K2, expand (in, 37));
  subRound (C, D, E, A, B, f2, K2, expand (in, 38));
  subRound (B, C, D, E, A, f2, K2, expand (in, 39));

  subRound (A, B, C, D, E, f3, K3, expand (in, 40));
  subRound (E, A, B, C, D, f3, K3, expand (in, 41));
  subRound (D, E, A, B, C, f3, K3, expand (in, 42));
  subRound (C, D, E, A, B, f3, K3, expand (in, 43));
  subRound (B, C, D, E, A, f3, K3, expand (in, 44));
  subRound (A, B, C, D, E, f3, K3, expand (in, 45));
  subRound (E, A, B, C, D, f3, K3, expand (in, 46));
  subRound (D, E, A, B, C, f3, K3, expand (in, 47));
  subRound (C, D, E, A, B, f3, K3, expand (in, 48));
  subRound (B, C, D, E, A, f3, K3, expand (in, 49));
  subRound (A, B, C, D, E, f3, K3, expand (in, 50));
  subRound (E, A, B, C, D, f3, K3, expand (in, 51));
  subRound (D, E, A, B, C, f3, K3, expand (in, 52));
  subRound (C, D, E, A, B, f3, K3, expand (in, 53));
  subRound (B, C, D, E, A, f3, K3, expand (in, 54));
  subRound (A, B, C, D, E, f3, K3, expand (in, 55));
  subRound (E, A, B, C, D, f3, K3, expand (in, 56));
  subRound (D, E, A, B, C, f3, K3, expand (in, 57));
  subRound (C, D, E, A, B, f3, K3, expand (in, 58));
  subRound (B, C, D, E, A, f3, K3, expand (in, 59));

  subRound (A, B, C, D, E, f4, K4, expand (in, 60));
  subRound (E, A, B, C, D, f4, K4, expand (in, 61));
  subRound (D, E, A, B, C, f4, K4, expand (in, 62));
  subRound (C, D, E, A, B, f4, K4, expand (in, 63));
  subRound (B, C, D, E, A, f4, K4, expand (in, 64));
  subRound (A, B, C, D, E, f4, K4, expand (in, 65));
  subRound (E, A, B, C, D, f4, K4, expand (in, 66));
  subRound (D, E, A, B, C, f4, K4, expand (in, 67));
  subRound (C, D, E, A, B, f4, K4, expand (in, 68));
  subRound (B, C, D, E, A, f4, K4, expand (in, 69));
  subRound (A, B, C, D, E, f4, K4, expand (in, 70));
  subRound (E, A, B, C, D, f4, K4, expand (in, 71));
  subRound (D, E, A, B, C, f4, K4, expand (in, 72));
  subRound (C, D, E, A, B, f4, K4, expand (in, 73));
  subRound (B, C, D, E, A, f4, K4, expand (in, 74));
  subRound (A, B, C, D, E, f4, K4, expand (in, 75));
  subRound (E, A, B, C, D, f4, K4, expand (in, 76));
  subRound (D, E, A, B, C, f4, K4, expand (in, 77));
  subRound (C, D, E, A, B, f4, K4, expand (in, 78));
  subRound (B, C, D, E, A, f4, K4, expand (in, 79));

  /* Build message digest */
  buf[0] += A;
  buf[1] += B;
  buf[2] += C;
  buf[3] += D;
  buf[4] += E;
}

#undef K1
#undef K2
#undef K3
#undef K4
#undef f1
#undef f2
#undef f3
#undef f4
#undef ROTL
#undef expand
#undef subRound

static void
sha1_sum_update (Sha1sum      *sha1,
                 const guchar *buffer,
                 gsize         count)
{
  guint32 tmp;
  guint dataCount;

  /* Update bitcount */
  tmp = sha1->bits[0];
  if ((sha1->bits[0] = tmp + ((guint32) count << 3) ) < tmp)
    sha1->bits[1] += 1;             /* Carry from low to high */
  sha1->bits[1] += count >> 29;

  /* Get count of bytes already in data */
  dataCount = (guint) (tmp >> 3) & 0x3F;

  /* Handle any leading odd-sized chunks */
  if (dataCount)
    {
      guchar *p = (guchar *) sha1->data + dataCount;

      dataCount = SHA1_DATASIZE - dataCount;
      if (count < dataCount)
        {
          memcpy (p, buffer, count);
          return;
        }

      memcpy (p, buffer, dataCount);

      sha_byte_reverse (sha1->data, SHA1_DATASIZE);
      sha1_transform (sha1->buf, sha1->data);

      buffer += dataCount;
      count -= dataCount;
    }

  /* Process data in SHA1_DATASIZE chunks */
  while (count >= SHA1_DATASIZE)
    {
      memcpy (sha1->data, buffer, SHA1_DATASIZE);

      sha_byte_reverse (sha1->data, SHA1_DATASIZE);
      sha1_transform (sha1->buf, sha1->data);

      buffer += SHA1_DATASIZE;
      count -= SHA1_DATASIZE;
    }

  /* Handle any remaining bytes of data. */
  memcpy (sha1->data, buffer, count);
}

/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
   1 0* (64-bit count of bits processed, MSB-first) */
static void
sha1_sum_close (Sha1sum *sha1)
{
  gint count;
  guchar *data_p;

  /* Compute number of bytes mod 64 */
  count = (gint) ((sha1->bits[0] >> 3) & 0x3f);

  /* Set the first char of padding to 0x80.  This is safe since there is
     always at least one byte free */
  data_p = (guchar *) sha1->data + count;
  *data_p++ = 0x80;

  /* Bytes of padding needed to make 64 bytes */
  count = SHA1_DATASIZE - 1 - count;

  /* Pad out to 56 mod 64 */
  if (count < 8)
    {
      /* Two lots of padding:  Pad the first block to 64 bytes */
      memset (data_p, 0, count);

      sha_byte_reverse (sha1->data, SHA1_DATASIZE);
      sha1_transform (sha1->buf, sha1->data);

      /* Now fill the next block with 56 bytes */
      memset (sha1->data, 0, SHA1_DATASIZE - 8);
    }
  else
    {
      /* Pad block to 56 bytes */
      memset (data_p, 0, count - 8);
    }

  /* Append length in bits and transform */
  sha1->data[14] = sha1->bits[1];
  sha1->data[15] = sha1->bits[0];

  sha_byte_reverse (sha1->data, SHA1_DATASIZE - 8);
  sha1_transform (sha1->buf, sha1->data);
  sha_byte_reverse (sha1->buf, SHA1_DIGEST_LEN);

  memcpy (sha1->digest, sha1->buf, SHA1_DIGEST_LEN);

  /* Reset buffers in case they contain sensitive data */
  memset (sha1->buf, 0, sizeof (sha1->buf));
  memset (sha1->data, 0, sizeof (sha1->data));
}

static gchar *
sha1_sum_to_string (Sha1sum *sha1)
{
  return digest_to_string (sha1->digest, SHA1_DIGEST_LEN);
}

static void
sha1_sum_digest (Sha1sum *sha1,
                 guint8  *digest)
{
  gint i;

  for (i = 0; i < SHA1_DIGEST_LEN; i++)
    digest[i] = sha1->digest[i];
}

/*
 * SHA-256 Checksum
 */

/* adapted from the SHA256 implementation in gsk/src/hash/gskhash.c.
 *
 * Copyright (C) 2006 Dave Benson
 * Released under the terms of the GNU Lesser General Public License
 */

static void
sha256_sum_init (Sha256sum *sha256)
{
  sha256->buf[0] = 0x6a09e667;
  sha256->buf[1] = 0xbb67ae85;
  sha256->buf[2] = 0x3c6ef372;
  sha256->buf[3] = 0xa54ff53a;
  sha256->buf[4] = 0x510e527f;
  sha256->buf[5] = 0x9b05688c;
  sha256->buf[6] = 0x1f83d9ab;
  sha256->buf[7] = 0x5be0cd19;

  sha256->bits[0] = sha256->bits[1] = 0;
}

#define GET_UINT32(n,b,i)               G_STMT_START{   \
    (n) = ((guint32) (b)[(i)    ] << 24)                \
        | ((guint32) (b)[(i) + 1] << 16)                \
        | ((guint32) (b)[(i) + 2] <<  8)                \
        | ((guint32) (b)[(i) + 3]      ); } G_STMT_END

#define PUT_UINT32(n,b,i)               G_STMT_START{   \
    (b)[(i)    ] = (guint8) ((n) >> 24);                \
    (b)[(i) + 1] = (guint8) ((n) >> 16);                \
    (b)[(i) + 2] = (guint8) ((n) >>  8);                \
    (b)[(i) + 3] = (guint8) ((n)      ); } G_STMT_END

static void
sha256_transform (guint32      buf[8],
                  guint8 const data[64])
{
  guint32 temp1, temp2, W[64];
  guint32 A, B, C, D, E, F, G, H;

  GET_UINT32 (W[0],  data,  0);
  GET_UINT32 (W[1],  data,  4);
  GET_UINT32 (W[2],  data,  8);
  GET_UINT32 (W[3],  data, 12);
  GET_UINT32 (W[4],  data, 16);
  GET_UINT32 (W[5],  data, 20);
  GET_UINT32 (W[6],  data, 24);
  GET_UINT32 (W[7],  data, 28);
  GET_UINT32 (W[8],  data, 32);
  GET_UINT32 (W[9],  data, 36);
  GET_UINT32 (W[10], data, 40);
  GET_UINT32 (W[11], data, 44);
  GET_UINT32 (W[12], data, 48);
  GET_UINT32 (W[13], data, 52);
  GET_UINT32 (W[14], data, 56);
  GET_UINT32 (W[15], data, 60);

#define SHR(x,n)        ((x & 0xFFFFFFFF) >> n)
#define ROTR(x,n)       (SHR (x,n) | (x << (32 - n)))

#define S0(x) (ROTR (x, 7) ^ ROTR (x,18) ^  SHR (x, 3))
#define S1(x) (ROTR (x,17) ^ ROTR (x,19) ^  SHR (x,10))
#define S2(x) (ROTR (x, 2) ^ ROTR (x,13) ^ ROTR (x,22))
#define S3(x) (ROTR (x, 6) ^ ROTR (x,11) ^ ROTR (x,25))

#define F0(x,y,z) ((x & y) | (z & (x | y)))
#define F1(x,y,z) (z ^ (x & (y ^ z)))

#define R(t)    (W[t] = S1(W[t -  2]) + W[t -  7] + \
                        S0(W[t - 15]) + W[t - 16])

#define P(a,b,c,d,e,f,g,h,x,K)          G_STMT_START {  \
        temp1 = h + S3(e) + F1(e,f,g) + K + x;          \
        temp2 = S2(a) + F0(a,b,c);                      \
        d += temp1; h = temp1 + temp2; } G_STMT_END

  A = buf[0];
  B = buf[1];
  C = buf[2];
  D = buf[3];
  E = buf[4];
  F = buf[5];
  G = buf[6];
  H = buf[7];

  P (A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98);
  P (H, A, B, C, D, E, F, G, W[ 1], 0x71374491);
  P (G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF);
  P (F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5);
  P (E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B);
  P (D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1);
  P (C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4);
  P (B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5);
  P (A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98);
  P (H, A, B, C, D, E, F, G, W[ 9], 0x12835B01);
  P (G, H, A, B, C, D, E, F, W[10], 0x243185BE);
  P (F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
  P (E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
  P (D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
  P (C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
  P (B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
  P (A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
  P (H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
  P (G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
  P (F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
  P (E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
  P (D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
  P (C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
  P (B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
  P (A, B, C, D, E, F, G, H, R(24), 0x983E5152);
  P (H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
  P (G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
  P (F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
  P (E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
  P (D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
  P (C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
  P (B, C, D, E, F, G, H, A, R(31), 0x14292967);
  P (A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
  P (H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
  P (G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
  P (F, G, H, A, B, C, D, E, R(35), 0x53380D13);
  P (E, F, G, H, A, B, C, D, R(36), 0x650A7354);
  P (D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
  P (C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
  P (B, C, D, E, F, G, H, A, R(39), 0x92722C85);
  P (A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
  P (H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
  P (G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
  P (F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
  P (E, F, G, H, A, B, C, D, R(44), 0xD192E819);
  P (D, E, F, G, H, A, B, C, R(45), 0xD6990624);
  P (C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
  P (B, C, D, E, F, G, H, A, R(47), 0x106AA070);
  P (A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
  P (H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
  P (G, H, A, B, C, D, E, F, R(50), 0x2748774C);
  P (F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
  P (E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
  P (D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
  P (C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
  P (B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
  P (A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
  P (H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
  P (G, H, A, B, C, D, E, F, R(58), 0x84C87814);
  P (F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
  P (E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
  P (D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
  P (C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
  P (B, C, D, E, F, G, H, A, R(63), 0xC67178F2);

#undef SHR
#undef ROTR
#undef S0
#undef S1
#undef S2
#undef S3
#undef F0
#undef F1
#undef R
#undef P

  buf[0] += A;
  buf[1] += B;
  buf[2] += C;
  buf[3] += D;
  buf[4] += E;
  buf[5] += F;
  buf[6] += G;
  buf[7] += H;
}

static void
sha256_sum_update (Sha256sum    *sha256,
                   const guchar *buffer,
                   gsize         length)
{
  guint32 left, fill;
  const guint8 *input = buffer;

  if (length == 0)
    return;

  left = sha256->bits[0] & 0x3F;
  fill = 64 - left;

  sha256->bits[0] += length;
  sha256->bits[0] &= 0xFFFFFFFF;

  if (sha256->bits[0] < length)
      sha256->bits[1]++;

  if (left > 0 && length >= fill)
    {
      memcpy ((sha256->data + left), input, fill);

      sha256_transform (sha256->buf, sha256->data);
      length -= fill;
      input += fill;

      left = 0;
    }

  while (length >= SHA256_DATASIZE)
    {
      sha256_transform (sha256->buf, input);

      length -= 64;
      input += 64;
    }

  if (length)
    memcpy (sha256->data + left, input, length);
}

static guint8 sha256_padding[64] =
{
 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

static void
sha256_sum_close (Sha256sum *sha256)
{
  guint32 last, padn;
  guint32 high, low;
  guint8 msglen[8];

  high = (sha256->bits[0] >> 29)
       | (sha256->bits[1] <<  3);
  low  = (sha256->bits[0] <<  3);

  PUT_UINT32 (high, msglen, 0);
  PUT_UINT32 (low, msglen, 4);

  last = sha256->bits[0] & 0x3F;
  padn = (last < 56) ? (56 - last) : (120 - last);

  sha256_sum_update (sha256, sha256_padding, padn);
  sha256_sum_update (sha256, msglen, 8);

  PUT_UINT32 (sha256->buf[0], sha256->digest,  0);
  PUT_UINT32 (sha256->buf[1], sha256->digest,  4);
  PUT_UINT32 (sha256->buf[2], sha256->digest,  8);
  PUT_UINT32 (sha256->buf[3], sha256->digest, 12);
  PUT_UINT32 (sha256->buf[4], sha256->digest, 16);
  PUT_UINT32 (sha256->buf[5], sha256->digest, 20);
  PUT_UINT32 (sha256->buf[6], sha256->digest, 24);
  PUT_UINT32 (sha256->buf[7], sha256->digest, 28);
}

#undef PUT_UINT32
#undef GET_UINT32

static gchar *
sha256_sum_to_string (Sha256sum *sha256)
{
  return digest_to_string (sha256->digest, SHA256_DIGEST_LEN);
}

static void
sha256_sum_digest (Sha256sum *sha256,
                   guint8    *digest)
{
  gint i;

  for (i = 0; i < SHA256_DIGEST_LEN; i++)
    digest[i] = sha256->digest[i];
}

/*
 * SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Checksums
 *
 * Implemented following FIPS-180-4 standard at
 * http://csrc.nist.gov/publications/fips/fips180-4/fips180-4.pdf.
 * References in the form [§x.y.z] map to sections in that document.
 *
 *   Author(s): Eduardo Lima Mitev <elima@igalia.com>
 *              Igor Gnatenko <ignatenko@src.gnome.org>
 */

/* SHA-384, SHA-512, SHA-512/224 and SHA-512/256 functions [§4.1.3] */
#define Ch(x,y,z)  ((x & y) ^ (~x & z))
#define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
#define SHR(n,x)   (x >> n)
#define ROTR(n,x)  (SHR (n, x) | (x << (64 - n)))
#define SIGMA0(x)  (ROTR (28, x) ^ ROTR (34, x) ^ ROTR (39, x))
#define SIGMA1(x)  (ROTR (14, x) ^ ROTR (18, x) ^ ROTR (41, x))
#define sigma0(x)  (ROTR ( 1, x) ^ ROTR ( 8, x) ^ SHR  ( 7, x))
#define sigma1(x)  (ROTR (19, x) ^ ROTR (61, x) ^ SHR  ( 6, x))

#define PUT_UINT64(n,b,i)                G_STMT_START{   \
    (b)[(i)    ] = (guint8) (n >> 56);                   \
    (b)[(i) + 1] = (guint8) (n >> 48);                   \
    (b)[(i) + 2] = (guint8) (n >> 40);                   \
    (b)[(i) + 3] = (guint8) (n >> 32);                   \
    (b)[(i) + 4] = (guint8) (n >> 24);                   \
    (b)[(i) + 5] = (guint8) (n >> 16);                   \
    (b)[(i) + 6] = (guint8) (n >>  8);                   \
    (b)[(i) + 7] = (guint8) (n      ); } G_STMT_END

/* SHA-384 and SHA-512 constants [§4.2.3] */
static const guint64 SHA2_K[80] = {
  G_GUINT64_CONSTANT (0x428a2f98d728ae22), G_GUINT64_CONSTANT (0x7137449123ef65cd),
  G_GUINT64_CONSTANT (0xb5c0fbcfec4d3b2f), G_GUINT64_CONSTANT (0xe9b5dba58189dbbc),
  G_GUINT64_CONSTANT (0x3956c25bf348b538), G_GUINT64_CONSTANT (0x59f111f1b605d019),
  G_GUINT64_CONSTANT (0x923f82a4af194f9b), G_GUINT64_CONSTANT (0xab1c5ed5da6d8118),
  G_GUINT64_CONSTANT (0xd807aa98a3030242), G_GUINT64_CONSTANT (0x12835b0145706fbe),
  G_GUINT64_CONSTANT (0x243185be4ee4b28c), G_GUINT64_CONSTANT (0x550c7dc3d5ffb4e2),
  G_GUINT64_CONSTANT (0x72be5d74f27b896f), G_GUINT64_CONSTANT (0x80deb1fe3b1696b1),
  G_GUINT64_CONSTANT (0x9bdc06a725c71235), G_GUINT64_CONSTANT (0xc19bf174cf692694),
  G_GUINT64_CONSTANT (0xe49b69c19ef14ad2), G_GUINT64_CONSTANT (0xefbe4786384f25e3),
  G_GUINT64_CONSTANT (0x0fc19dc68b8cd5b5), G_GUINT64_CONSTANT (0x240ca1cc77ac9c65),
  G_GUINT64_CONSTANT (0x2de92c6f592b0275), G_GUINT64_CONSTANT (0x4a7484aa6ea6e483),
  G_GUINT64_CONSTANT (0x5cb0a9dcbd41fbd4), G_GUINT64_CONSTANT (0x76f988da831153b5),
  G_GUINT64_CONSTANT (0x983e5152ee66dfab), G_GUINT64_CONSTANT (0xa831c66d2db43210),
  G_GUINT64_CONSTANT (0xb00327c898fb213f), G_GUINT64_CONSTANT (0xbf597fc7beef0ee4),
  G_GUINT64_CONSTANT (0xc6e00bf33da88fc2), G_GUINT64_CONSTANT (0xd5a79147930aa725),
  G_GUINT64_CONSTANT (0x06ca6351e003826f), G_GUINT64_CONSTANT (0x142929670a0e6e70),
  G_GUINT64_CONSTANT (0x27b70a8546d22ffc), G_GUINT64_CONSTANT (0x2e1b21385c26c926),
  G_GUINT64_CONSTANT (0x4d2c6dfc5ac42aed), G_GUINT64_CONSTANT (0x53380d139d95b3df),
  G_GUINT64_CONSTANT (0x650a73548baf63de), G_GUINT64_CONSTANT (0x766a0abb3c77b2a8),
  G_GUINT64_CONSTANT (0x81c2c92e47edaee6), G_GUINT64_CONSTANT (0x92722c851482353b),
  G_GUINT64_CONSTANT (0xa2bfe8a14cf10364), G_GUINT64_CONSTANT (0xa81a664bbc423001),
  G_GUINT64_CONSTANT (0xc24b8b70d0f89791), G_GUINT64_CONSTANT (0xc76c51a30654be30),
  G_GUINT64_CONSTANT (0xd192e819d6ef5218), G_GUINT64_CONSTANT (0xd69906245565a910),
  G_GUINT64_CONSTANT (0xf40e35855771202a), G_GUINT64_CONSTANT (0x106aa07032bbd1b8),
  G_GUINT64_CONSTANT (0x19a4c116b8d2d0c8), G_GUINT64_CONSTANT (0x1e376c085141ab53),
  G_GUINT64_CONSTANT (0x2748774cdf8eeb99), G_GUINT64_CONSTANT (0x34b0bcb5e19b48a8),
  G_GUINT64_CONSTANT (0x391c0cb3c5c95a63), G_GUINT64_CONSTANT (0x4ed8aa4ae3418acb),
  G_GUINT64_CONSTANT (0x5b9cca4f7763e373), G_GUINT64_CONSTANT (0x682e6ff3d6b2b8a3),
  G_GUINT64_CONSTANT (0x748f82ee5defb2fc), G_GUINT64_CONSTANT (0x78a5636f43172f60),
  G_GUINT64_CONSTANT (0x84c87814a1f0ab72), G_GUINT64_CONSTANT (0x8cc702081a6439ec),
  G_GUINT64_CONSTANT (0x90befffa23631e28), G_GUINT64_CONSTANT (0xa4506cebde82bde9),
  G_GUINT64_CONSTANT (0xbef9a3f7b2c67915), G_GUINT64_CONSTANT (0xc67178f2e372532b),
  G_GUINT64_CONSTANT (0xca273eceea26619c), G_GUINT64_CONSTANT (0xd186b8c721c0c207),
  G_GUINT64_CONSTANT (0xeada7dd6cde0eb1e), G_GUINT64_CONSTANT (0xf57d4f7fee6ed178),
  G_GUINT64_CONSTANT (0x06f067aa72176fba), G_GUINT64_CONSTANT (0x0a637dc5a2c898a6),
  G_GUINT64_CONSTANT (0x113f9804bef90dae), G_GUINT64_CONSTANT (0x1b710b35131c471b),
  G_GUINT64_CONSTANT (0x28db77f523047d84), G_GUINT64_CONSTANT (0x32caab7b40c72493),
  G_GUINT64_CONSTANT (0x3c9ebe0a15c9bebc), G_GUINT64_CONSTANT (0x431d67c49c100d4c),
  G_GUINT64_CONSTANT (0x4cc5d4becb3e42b6), G_GUINT64_CONSTANT (0x597f299cfc657e2a),
  G_GUINT64_CONSTANT (0x5fcb6fab3ad6faec), G_GUINT64_CONSTANT (0x6c44198c4a475817)
};


static void
sha384_sum_init (Sha512sum *sha512)
{
  /* Initial Hash Value [§5.3.4] */
  sha512->H[0] = G_GUINT64_CONSTANT (0xcbbb9d5dc1059ed8);
  sha512->H[1] = G_GUINT64_CONSTANT (0x629a292a367cd507);
  sha512->H[2] = G_GUINT64_CONSTANT (0x9159015a3070dd17);
  sha512->H[3] = G_GUINT64_CONSTANT (0x152fecd8f70e5939);
  sha512->H[4] = G_GUINT64_CONSTANT (0x67332667ffc00b31);
  sha512->H[5] = G_GUINT64_CONSTANT (0x8eb44a8768581511);
  sha512->H[6] = G_GUINT64_CONSTANT (0xdb0c2e0d64f98fa7);
  sha512->H[7] = G_GUINT64_CONSTANT (0x47b5481dbefa4fa4);

  sha512->block_len = 0;

  sha512->data_len[0] = 0;
  sha512->data_len[1] = 0;
}

static void
sha512_sum_init (Sha512sum *sha512)
{
  /* Initial Hash Value [§5.3.5] */
  sha512->H[0] = G_GUINT64_CONSTANT (0x6a09e667f3bcc908);
  sha512->H[1] = G_GUINT64_CONSTANT (0xbb67ae8584caa73b);
  sha512->H[2] = G_GUINT64_CONSTANT (0x3c6ef372fe94f82b);
  sha512->H[3] = G_GUINT64_CONSTANT (0xa54ff53a5f1d36f1);
  sha512->H[4] = G_GUINT64_CONSTANT (0x510e527fade682d1);
  sha512->H[5] = G_GUINT64_CONSTANT (0x9b05688c2b3e6c1f);
  sha512->H[6] = G_GUINT64_CONSTANT (0x1f83d9abfb41bd6b);
  sha512->H[7] = G_GUINT64_CONSTANT (0x5be0cd19137e2179);

  sha512->block_len = 0;

  sha512->data_len[0] = 0;
  sha512->data_len[1] = 0;
}

static void
sha512_transform (guint64      H[8],
                  guint8 const data[SHA2_BLOCK_LEN])
{
  gint i;
  gint t;
  guint64 a, b, c, d, e, f, g, h;
  guint64 M[16];
  guint64 W[80];

  /* SHA-512 hash computation [§6.4.2] */

  /* prepare the message schedule */
  for (i = 0; i < 16; i++)
    {
      gint p = i * 8;

      M[i] =
        ((guint64) data[p + 0] << 56) |
        ((guint64) data[p + 1] << 48) |
        ((guint64) data[p + 2] << 40) |
        ((guint64) data[p + 3] << 32) |
        ((guint64) data[p + 4] << 24) |
        ((guint64) data[p + 5] << 16) |
        ((guint64) data[p + 6] <<  8) |
        ((guint64) data[p + 7]      );
    }

  for (t = 0; t < 80; t++)
    if (t < 16)
      W[t] = M[t];
    else
      W[t] = sigma1 (W[t - 2]) + W[t - 7] + sigma0 (W[t - 15]) + W[t - 16];

  /* initialize the eight working variables */
  a = H[0];
  b = H[1];
  c = H[2];
  d = H[3];
  e = H[4];
  f = H[5];
  g = H[6];
  h = H[7];

  for (t = 0; t < 80; t++)
    {
      guint64 T1, T2;

      T1 = h + SIGMA1 (e) + Ch (e, f, g) + SHA2_K[t] + W[t];
      T2 = SIGMA0 (a) + Maj (a, b, c);
      h = g;
      g = f;
      f = e;
      e = d + T1;
      d = c;
      c = b;
      b = a;
      a = T1 + T2;
    }

  /* Compute the intermediate hash value H */
  H[0] += a;
  H[1] += b;
  H[2] += c;
  H[3] += d;
  H[4] += e;
  H[5] += f;
  H[6] += g;
  H[7] += h;
}

static void
sha512_sum_update (Sha512sum    *sha512,
                   const guchar *buffer,
                   gsize         length)
{
  gsize block_left, offset = 0;

  if (length == 0)
    return;

  sha512->data_len[0] += length * 8;
  if (sha512->data_len[0] < length)
    sha512->data_len[1]++;

  /* try to fill current block */
  block_left = SHA2_BLOCK_LEN - sha512->block_len;
  if (block_left > 0)
    {
      gsize fill_len;

      fill_len = MIN (block_left, length);
      memcpy (sha512->block + sha512->block_len, buffer, fill_len);
      sha512->block_len += fill_len;
      length -= fill_len;
      offset += fill_len;

      if (sha512->block_len == SHA2_BLOCK_LEN)
        {
          sha512_transform (sha512->H, sha512->block);
          sha512->block_len = 0;
        }
    }

  /* process complete blocks */
  while (length >= SHA2_BLOCK_LEN)
    {
      memcpy (sha512->block, buffer + offset, SHA2_BLOCK_LEN);

      sha512_transform (sha512->H, sha512->block);

      length -= SHA2_BLOCK_LEN;
      offset += SHA2_BLOCK_LEN;
    }

  /* keep remaining data for next block */
  if (length > 0)
    {
      memcpy (sha512->block, buffer + offset, length);
      sha512->block_len = length;
    }
}

static void
sha512_sum_close (Sha512sum *sha512)
{
  guint l;
  gint zeros;
  guint8 pad[SHA2_BLOCK_LEN * 2] = { 0, };
  guint pad_len = 0;
  gint i;

  /* apply padding [§5.1.2] */
  l = sha512->block_len * 8;
  zeros = 896 - (l + 1);

  if (zeros < 0)
    zeros += 128 * 8;

  pad[0] = 0x80; /* 1000 0000 */
  zeros -= 7;
  pad_len++;

  memset (pad + pad_len, 0x00, zeros / 8);
  pad_len += zeros / 8;
  zeros = zeros % 8;

  /* put message bit length at the end of padding */
  PUT_UINT64 (sha512->data_len[1], pad, pad_len);
  pad_len += 8;

  PUT_UINT64 (sha512->data_len[0], pad, pad_len);
  pad_len += 8;

  /* update checksum with the padded block */
  sha512_sum_update (sha512, pad, pad_len);

  /* copy resulting 64-bit words into digest */
  for (i = 0; i < 8; i++)
    PUT_UINT64 (sha512->H[i], sha512->digest, i * 8);
}

static gchar *
sha384_sum_to_string (Sha512sum *sha512)
{
  return digest_to_string (sha512->digest, SHA384_DIGEST_LEN);
}

static gchar *
sha512_sum_to_string (Sha512sum *sha512)
{
  return digest_to_string (sha512->digest, SHA512_DIGEST_LEN);
}

static void
sha384_sum_digest (Sha512sum *sha512,
                   guint8    *digest)
{
  memcpy (digest, sha512->digest, SHA384_DIGEST_LEN);
}

static void
sha512_sum_digest (Sha512sum *sha512,
                   guint8    *digest)
{
  memcpy (digest, sha512->digest, SHA512_DIGEST_LEN);
}

#undef Ch
#undef Maj
#undef SHR
#undef ROTR
#undef SIGMA0
#undef SIGMA1
#undef sigma0
#undef sigma1

#undef PUT_UINT64

/*
 * Public API
 */

/**
 * g_checksum_type_get_length:
 * @checksum_type: a #GChecksumType
 *
 * Gets the length in bytes of digests of type @checksum_type
 *
 * Returns: the checksum length, or -1 if @checksum_type is
 * not supported.
 *
 * Since: 2.16
 */
gssize
g_checksum_type_get_length (GChecksumType checksum_type)
{
  gssize len = -1;

  switch (checksum_type)
    {
    case G_CHECKSUM_MD5:
      len = MD5_DIGEST_LEN;
      break;
    case G_CHECKSUM_SHA1:
      len = SHA1_DIGEST_LEN;
      break;
    case G_CHECKSUM_SHA256:
      len = SHA256_DIGEST_LEN;
      break;
    case G_CHECKSUM_SHA384:
      len = SHA384_DIGEST_LEN;
      break;
    case G_CHECKSUM_SHA512:
      len = SHA512_DIGEST_LEN;
      break;
    default:
      len = -1;
      break;
    }

  return len;
}

/**
 * g_checksum_new:
 * @checksum_type: the desired type of checksum
 *
 * Creates a new #GChecksum, using the checksum algorithm @checksum_type.
 * If the @checksum_type is not known, %NULL is returned.
 * A #GChecksum can be used to compute the checksum, or digest, of an
 * arbitrary binary blob, using different hashing algorithms.
 *
 * A #GChecksum works by feeding a binary blob through g_checksum_update()
 * until there is data to be checked; the digest can then be extracted
 * using g_checksum_get_string(), which will return the checksum as a
 * hexadecimal string; or g_checksum_get_digest(), which will return a
 * vector of raw bytes. Once either g_checksum_get_string() or
 * g_checksum_get_digest() have been called on a #GChecksum, the checksum
 * will be closed and it won't be possible to call g_checksum_update()
 * on it anymore.
 *
 * Returns: (transfer full): the newly created #GChecksum, or %NULL.
 *   Use g_checksum_free() to free the memory allocated by it.
 *
 * Since: 2.16
 */
GChecksum *
g_checksum_new (GChecksumType checksum_type)
{
  GChecksum *checksum;

  if (! IS_VALID_TYPE (checksum_type))
    return NULL;

  checksum = g_slice_new0 (GChecksum);
  checksum->type = checksum_type;

  g_checksum_reset (checksum);

  return checksum;
}

/**
 * g_checksum_reset:
 * @checksum: the #GChecksum to reset
 *
 * Resets the state of the @checksum back to its initial state.
 *
 * Since: 2.18
 **/
void
g_checksum_reset (GChecksum *checksum)
{
  g_return_if_fail (checksum != NULL);

  g_free (checksum->digest_str);
  checksum->digest_str = NULL;

  switch (checksum->type)
    {
    case G_CHECKSUM_MD5:
      md5_sum_init (&(checksum->sum.md5));
      break;
    case G_CHECKSUM_SHA1:
      sha1_sum_init (&(checksum->sum.sha1));
      break;
    case G_CHECKSUM_SHA256:
      sha256_sum_init (&(checksum->sum.sha256));
      break;
    case G_CHECKSUM_SHA384:
      sha384_sum_init (&(checksum->sum.sha512));
      break;
    case G_CHECKSUM_SHA512:
      sha512_sum_init (&(checksum->sum.sha512));
      break;
    default:
      g_assert_not_reached ();
      break;
    }
}

/**
 * g_checksum_copy:
 * @checksum: the #GChecksum to copy
 *
 * Copies a #GChecksum. If @checksum has been closed, by calling
 * g_checksum_get_string() or g_checksum_get_digest(), the copied
 * checksum will be closed as well.
 *
 * Returns: the copy of the passed #GChecksum. Use g_checksum_free()
 *   when finished using it.
 *
 * Since: 2.16
 */
GChecksum *
g_checksum_copy (const GChecksum *checksum)
{
  GChecksum *copy;

  g_return_val_if_fail (checksum != NULL, NULL);

  copy = g_slice_new (GChecksum);
  *copy = *checksum;

  copy->digest_str = g_strdup (checksum->digest_str);

  return copy;
}

/**
 * g_checksum_free:
 * @checksum: a #GChecksum
 *
 * Frees the memory allocated for @checksum.
 *
 * Since: 2.16
 */
void
g_checksum_free (GChecksum *checksum)
{
  if (G_LIKELY (checksum))
    {
      g_free (checksum->digest_str);

      g_slice_free (GChecksum, checksum);
    }
}

/**
 * g_checksum_update:
 * @checksum: a #GChecksum
 * @data: (array length=length) (element-type guint8): buffer used to compute the checksum
 * @length: size of the buffer, or -1 if it is a null-terminated string.
 *
 * Feeds @data into an existing #GChecksum. The checksum must still be
 * open, that is g_checksum_get_string() or g_checksum_get_digest() must
 * not have been called on @checksum.
 *
 * Since: 2.16
 */
void
g_checksum_update (GChecksum    *checksum,
                   const guchar *data,
                   gssize        length)
{
  g_return_if_fail (checksum != NULL);
  g_return_if_fail (length == 0 || data != NULL);

  if (length < 0)
    length = strlen ((const gchar *) data);

  if (checksum->digest_str)
    {
      g_warning ("The checksum '%s' has been closed and cannot be updated "
                 "anymore.",
                 checksum->digest_str);
      return;
    }

  switch (checksum->type)
    {
    case G_CHECKSUM_MD5:
      md5_sum_update (&(checksum->sum.md5), data, length);
      break;
    case G_CHECKSUM_SHA1:
      sha1_sum_update (&(checksum->sum.sha1), data, length);
      break;
    case G_CHECKSUM_SHA256:
      sha256_sum_update (&(checksum->sum.sha256), data, length);
      break;
    case G_CHECKSUM_SHA384:
    case G_CHECKSUM_SHA512:
      sha512_sum_update (&(checksum->sum.sha512), data, length);
      break;
    default:
      g_assert_not_reached ();
      break;
    }
}

/**
 * g_checksum_get_string:
 * @checksum: a #GChecksum
 *
 * Gets the digest as an hexadecimal string.
 *
 * Once this function has been called the #GChecksum can no longer be
 * updated with g_checksum_update().
 *
 * The hexadecimal characters will be lower case.
 *
 * Returns: the hexadecimal representation of the checksum. The
 *   returned string is owned by the checksum and should not be modified
 *   or freed.
 *
 * Since: 2.16
 */
const gchar *
g_checksum_get_string (GChecksum *checksum)
{
  gchar *str = NULL;

  g_return_val_if_fail (checksum != NULL, NULL);

  if (checksum->digest_str)
    return checksum->digest_str;

  switch (checksum->type)
    {
    case G_CHECKSUM_MD5:
      md5_sum_close (&(checksum->sum.md5));
      str = md5_sum_to_string (&(checksum->sum.md5));
      break;
    case G_CHECKSUM_SHA1:
      sha1_sum_close (&(checksum->sum.sha1));
      str = sha1_sum_to_string (&(checksum->sum.sha1));
      break;
    case G_CHECKSUM_SHA256:
      sha256_sum_close (&(checksum->sum.sha256));
      str = sha256_sum_to_string (&(checksum->sum.sha256));
      break;
    case G_CHECKSUM_SHA384:
      sha512_sum_close (&(checksum->sum.sha512));
      str = sha384_sum_to_string (&(checksum->sum.sha512));
      break;
    case G_CHECKSUM_SHA512:
      sha512_sum_close (&(checksum->sum.sha512));
      str = sha512_sum_to_string (&(checksum->sum.sha512));
      break;
    default:
      g_assert_not_reached ();
      break;
    }

  checksum->digest_str = str;

  return checksum->digest_str;
}

/**
 * g_checksum_get_digest: (skip)
 * @checksum: a #GChecksum
 * @buffer: (array length=digest_len): output buffer
 * @digest_len: (inout): an inout parameter. The caller initializes it to the size of @buffer.
 *   After the call it contains the length of the digest.
 *
 * Gets the digest from @checksum as a raw binary vector and places it
 * into @buffer. The size of the digest depends on the type of checksum.
 *
 * Once this function has been called, the #GChecksum is closed and can
 * no longer be updated with g_checksum_update().
 *
 * Since: 2.16
 */
void
g_checksum_get_digest (GChecksum  *checksum,
                       guint8     *buffer,
                       gsize      *digest_len)
{
  gboolean checksum_open = FALSE;
  gchar *str = NULL;
  gsize len;

  g_return_if_fail (checksum != NULL);

  len = g_checksum_type_get_length (checksum->type);
  g_return_if_fail (*digest_len >= len);

  checksum_open = !!(checksum->digest_str == NULL);

  switch (checksum->type)
    {
    case G_CHECKSUM_MD5:
      if (checksum_open)
        {
          md5_sum_close (&(checksum->sum.md5));
          str = md5_sum_to_string (&(checksum->sum.md5));
        }
      md5_sum_digest (&(checksum->sum.md5), buffer);
      break;
    case G_CHECKSUM_SHA1:
      if (checksum_open)
        {
          sha1_sum_close (&(checksum->sum.sha1));
          str = sha1_sum_to_string (&(checksum->sum.sha1));
        }
      sha1_sum_digest (&(checksum->sum.sha1), buffer);
      break;
    case G_CHECKSUM_SHA256:
      if (checksum_open)
        {
          sha256_sum_close (&(checksum->sum.sha256));
          str = sha256_sum_to_string (&(checksum->sum.sha256));
        }
      sha256_sum_digest (&(checksum->sum.sha256), buffer);
      break;
    case G_CHECKSUM_SHA384:
      if (checksum_open)
        {
          sha512_sum_close (&(checksum->sum.sha512));
          str = sha384_sum_to_string (&(checksum->sum.sha512));
        }
      sha384_sum_digest (&(checksum->sum.sha512), buffer);
      break;
    case G_CHECKSUM_SHA512:
      if (checksum_open)
        {
          sha512_sum_close (&(checksum->sum.sha512));
          str = sha512_sum_to_string (&(checksum->sum.sha512));
        }
      sha512_sum_digest (&(checksum->sum.sha512), buffer);
      break;
    default:
      g_assert_not_reached ();
      break;
    }

  if (str)
    checksum->digest_str = str;

  *digest_len = len;
}

/**
 * g_compute_checksum_for_data:
 * @checksum_type: a #GChecksumType
 * @data: (array length=length) (element-type guint8): binary blob to compute the digest of
 * @length: length of @data
 *
 * Computes the checksum for a binary @data of @length. This is a
 * convenience wrapper for g_checksum_new(), g_checksum_get_string()
 * and g_checksum_free().
 *
 * The hexadecimal string returned will be in lower case.
 *
 * Returns: the digest of the binary data as a string in hexadecimal.
 *   The returned string should be freed with g_free() when done using it.
 *
 * Since: 2.16
 */
gchar *
g_compute_checksum_for_data (GChecksumType  checksum_type,
                             const guchar  *data,
                             gsize          length)
{
  GChecksum *checksum;
  gchar *retval;

  g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
  g_return_val_if_fail (length == 0 || data != NULL, NULL);

  checksum = g_checksum_new (checksum_type);
  if (!checksum)
    return NULL;

  g_checksum_update (checksum, data, length);
  retval = g_strdup (g_checksum_get_string (checksum));
  g_checksum_free (checksum);

  return retval;
}

/**
 * g_compute_checksum_for_string:
 * @checksum_type: a #GChecksumType
 * @str: the string to compute the checksum of
 * @length: the length of the string, or -1 if the string is null-terminated.
 *
 * Computes the checksum of a string.
 *
 * The hexadecimal string returned will be in lower case.
 *
 * Returns: the checksum as a hexadecimal string. The returned string
 *   should be freed with g_free() when done using it.
 *
 * Since: 2.16
 */
gchar *
g_compute_checksum_for_string (GChecksumType  checksum_type,
                               const gchar   *str,
                               gssize         length)
{
  g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
  g_return_val_if_fail (length == 0 || str != NULL, NULL);

  if (length < 0)
    length = strlen (str);

  return g_compute_checksum_for_data (checksum_type, (const guchar *) str, length);
}

/**
 * g_compute_checksum_for_bytes:
 * @checksum_type: a #GChecksumType
 * @data: binary blob to compute the digest of
 *
 * Computes the checksum for a binary @data. This is a
 * convenience wrapper for g_checksum_new(), g_checksum_get_string()
 * and g_checksum_free().
 *
 * The hexadecimal string returned will be in lower case.
 *
 * Returns: the digest of the binary data as a string in hexadecimal.
 *   The returned string should be freed with g_free() when done using it.
 *
 * Since: 2.34
 */
gchar *
g_compute_checksum_for_bytes (GChecksumType  checksum_type,
                              GBytes        *data)
{
  gconstpointer byte_data;
  gsize length;

  g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
  g_return_val_if_fail (data != NULL, NULL);

  byte_data = g_bytes_get_data (data, &length);
  return g_compute_checksum_for_data (checksum_type, byte_data, length);
}