File: gvarianttypeinfo.c

package info (click to toggle)
glib2.0 2.58.3-2+deb10u2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, buster-backports, sid
  • size: 48,956 kB
  • sloc: ansic: 452,656; xml: 16,781; python: 6,149; makefile: 3,776; sh: 1,499; perl: 1,140; cpp: 9
file content (892 lines) | stat: -rw-r--r-- 28,485 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
/*
 * Copyright © 2008 Ryan Lortie
 * Copyright © 2010 Codethink Limited
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 *
 * Author: Ryan Lortie <desrt@desrt.ca>
 */

#include "config.h"

#include "gvarianttypeinfo.h"

#include <glib/gtestutils.h>
#include <glib/gthread.h>
#include <glib/gslice.h>
#include <glib/ghash.h>

/* < private >
 * GVariantTypeInfo:
 *
 * This structure contains the necessary information to facilitate the
 * serialisation and fast deserialisation of a given type of GVariant
 * value.  A GVariant instance holds a pointer to one of these
 * structures to provide for efficient operation.
 *
 * The GVariantTypeInfo structures for all of the base types, plus the
 * "variant" type are stored in a read-only static array.
 *
 * For container types, a hash table and reference counting is used to
 * ensure that only one of these structures exists for any given type.
 * In general, a container GVariantTypeInfo will exist for a given type
 * only if one or more GVariant instances of that type exist or if
 * another GVariantTypeInfo has that type as a subtype.  For example, if
 * a process contains a single GVariant instance with type "(asv)", then
 * container GVariantTypeInfo structures will exist for "(asv)" and
 * for "as" (note that "s" and "v" always exist in the static array).
 *
 * The trickiest part of GVariantTypeInfo (and in fact, the major reason
 * for its existence) is the storage of somewhat magical constants that
 * allow for O(1) lookups of items in tuples.  This is described below.
 *
 * 'container_class' is set to 'a' or 'r' if the GVariantTypeInfo is
 * contained inside of an ArrayInfo or TupleInfo, respectively.  This
 * allows the storage of the necessary additional information.
 *
 * 'fixed_size' is set to the fixed size of the type, if applicable, or
 * 0 otherwise (since no type has a fixed size of 0).
 *
 * 'alignment' is set to one less than the alignment requirement for
 * this type.  This makes many operations much more convenient.
 */
struct _GVariantTypeInfo
{
  gsize fixed_size;
  guchar alignment;
  guchar container_class;
};

/* Container types are reference counted.  They also need to have their
 * type string stored explicitly since it is not merely a single letter.
 */
typedef struct
{
  GVariantTypeInfo info;

  gchar *type_string;
  gint ref_count;
} ContainerInfo;

/* For 'array' and 'maybe' types, we store some extra information on the
 * end of the GVariantTypeInfo struct -- the element type (ie: "s" for
 * "as").  The container GVariantTypeInfo structure holds a reference to
 * the element typeinfo.
 */
typedef struct
{
  ContainerInfo container;

  GVariantTypeInfo *element;
} ArrayInfo;

/* For 'tuple' and 'dict entry' types, we store extra information for
 * each member -- its type and how to find it inside the serialised data
 * in O(1) time using 4 variables -- 'i', 'a', 'b', and 'c'.  See the
 * comment on GVariantMemberInfo in gvarianttypeinfo.h.
 */
typedef struct
{
  ContainerInfo container;

  GVariantMemberInfo *members;
  gsize n_members;
} TupleInfo;


/* Hard-code the base types in a constant array */
static const GVariantTypeInfo g_variant_type_info_basic_table[24] = {
#define fixed_aligned(x)  x, x - 1
#define not_a_type             0,
#define unaligned         0, 0
#define aligned(x)        0, x - 1
  /* 'b' */ { fixed_aligned(1) },   /* boolean */
  /* 'c' */ { not_a_type },
  /* 'd' */ { fixed_aligned(8) },   /* double */
  /* 'e' */ { not_a_type },
  /* 'f' */ { not_a_type },
  /* 'g' */ { unaligned        },   /* signature string */
  /* 'h' */ { fixed_aligned(4) },   /* file handle (int32) */
  /* 'i' */ { fixed_aligned(4) },   /* int32 */
  /* 'j' */ { not_a_type },
  /* 'k' */ { not_a_type },
  /* 'l' */ { not_a_type },
  /* 'm' */ { not_a_type },
  /* 'n' */ { fixed_aligned(2) },   /* int16 */
  /* 'o' */ { unaligned        },   /* object path string */
  /* 'p' */ { not_a_type },
  /* 'q' */ { fixed_aligned(2) },   /* uint16 */
  /* 'r' */ { not_a_type },
  /* 's' */ { unaligned        },   /* string */
  /* 't' */ { fixed_aligned(8) },   /* uint64 */
  /* 'u' */ { fixed_aligned(4) },   /* uint32 */
  /* 'v' */ { aligned(8)       },   /* variant */
  /* 'w' */ { not_a_type },
  /* 'x' */ { fixed_aligned(8) },   /* int64 */
  /* 'y' */ { fixed_aligned(1) },   /* byte */
#undef fixed_aligned
#undef not_a_type
#undef unaligned
#undef aligned
};

/* We need to have type strings to return for the base types.  We store
 * those in another array.  Since all base type strings are single
 * characters this is easy.  By not storing pointers to strings into the
 * GVariantTypeInfo itself, we save a bunch of relocations.
 */
static const char g_variant_type_info_basic_chars[24][2] = {
  "b", " ", "d", " ", " ", "g", "h", "i", " ", " ", " ", " ",
  "n", "o", " ", "q", " ", "s", "t", "u", "v", " ", "x", "y"
};

/* sanity checks to make debugging easier */
static void
g_variant_type_info_check (const GVariantTypeInfo *info,
                           char                    container_class)
{
  g_assert (!container_class || info->container_class == container_class);

  /* alignment can only be one of these */
  g_assert (info->alignment == 0 || info->alignment == 1 ||
            info->alignment == 3 || info->alignment == 7);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      /* extra checks for containers */
      g_assert_cmpint (container->ref_count, >, 0);
      g_assert (container->type_string != NULL);
    }
  else
    {
      gint index;

      /* if not a container, then ensure that it is a valid member of
       * the basic types table
       */
      index = info - g_variant_type_info_basic_table;

      g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table) == 24);
      g_assert (G_N_ELEMENTS (g_variant_type_info_basic_chars) == 24);
      g_assert (0 <= index && index < 24);
      g_assert (g_variant_type_info_basic_chars[index][0] != ' ');
    }
}

/* < private >
 * g_variant_type_info_get_type_string:
 * @info: a #GVariantTypeInfo
 *
 * Gets the type string for @info.  The string is nul-terminated.
 */
const gchar *
g_variant_type_info_get_type_string (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, 0);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      /* containers have their type string stored inside them */
      return container->type_string;
    }
  else
    {
      gint index;

      /* look up the type string in the base type array.  the call to
       * g_variant_type_info_check() above already ensured validity.
       */
      index = info - g_variant_type_info_basic_table;

      return g_variant_type_info_basic_chars[index];
    }
}

/* < private >
 * g_variant_type_info_query:
 * @info: a #GVariantTypeInfo
 * @alignment: (nullable): the location to store the alignment, or %NULL
 * @fixed_size: (nullable): the location to store the fixed size, or %NULL
 *
 * Queries @info to determine the alignment requirements and fixed size
 * (if any) of the type.
 *
 * @fixed_size, if non-%NULL is set to the fixed size of the type, or 0
 * to indicate that the type is a variable-sized type.  No type has a
 * fixed size of 0.
 *
 * @alignment, if non-%NULL, is set to one less than the required
 * alignment of the type.  For example, for a 32bit integer, @alignment
 * would be set to 3.  This allows you to round an integer up to the
 * proper alignment by performing the following efficient calculation:
 *
 *   offset += ((-offset) & alignment);
 */
void
g_variant_type_info_query (GVariantTypeInfo *info,
                           guint            *alignment,
                           gsize            *fixed_size)
{
  g_variant_type_info_check (info, 0);

  if (alignment)
    *alignment = info->alignment;

  if (fixed_size)
    *fixed_size = info->fixed_size;
}

/* < private >
 * g_variant_type_info_query_depth:
 * @info: a #GVariantTypeInfo
 *
 * Queries @info to determine the depth of the type.
 *
 * See g_variant_type_string_get_depth_() for more details.
 *
 * Returns: depth of @info
 * Since: 2.60 (backported to 2.58)
 */
gsize
g_variant_type_info_query_depth (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, 0);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;
      return g_variant_type_string_get_depth_ (container->type_string);
    }

  return 1;
}

/* == array == */
#define GV_ARRAY_INFO_CLASS 'a'
static ArrayInfo *
GV_ARRAY_INFO (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, GV_ARRAY_INFO_CLASS);

  return (ArrayInfo *) info;
}

static void
array_info_free (GVariantTypeInfo *info)
{
  ArrayInfo *array_info;

  g_assert (info->container_class == GV_ARRAY_INFO_CLASS);
  array_info = (ArrayInfo *) info;

  g_variant_type_info_unref (array_info->element);
  g_slice_free (ArrayInfo, array_info);
}

static ContainerInfo *
array_info_new (const GVariantType *type)
{
  ArrayInfo *info;

  info = g_slice_new (ArrayInfo);
  info->container.info.container_class = GV_ARRAY_INFO_CLASS;

  info->element = g_variant_type_info_get (g_variant_type_element (type));
  info->container.info.alignment = info->element->alignment;
  info->container.info.fixed_size = 0;

  return (ContainerInfo *) info;
}

/* < private >
 * g_variant_type_info_element:
 * @info: a #GVariantTypeInfo for an array or maybe type
 *
 * Returns the element type for the array or maybe type.  A reference is
 * not added, so the caller must add their own.
 */
GVariantTypeInfo *
g_variant_type_info_element (GVariantTypeInfo *info)
{
  return GV_ARRAY_INFO (info)->element;
}

/* < private >
 * g_variant_type_query_element:
 * @info: a #GVariantTypeInfo for an array or maybe type
 * @alignment: (nullable): the location to store the alignment, or %NULL
 * @fixed_size: (nullable): the location to store the fixed size, or %NULL
 *
 * Returns the alignment requires and fixed size (if any) for the
 * element type of the array.  This call is a convenience wrapper around
 * g_variant_type_info_element() and g_variant_type_info_query().
 */
void
g_variant_type_info_query_element (GVariantTypeInfo *info,
                                   guint            *alignment,
                                   gsize            *fixed_size)
{
  g_variant_type_info_query (GV_ARRAY_INFO (info)->element,
                             alignment, fixed_size);
}

/* == tuple == */
#define GV_TUPLE_INFO_CLASS 'r'
static TupleInfo *
GV_TUPLE_INFO (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, GV_TUPLE_INFO_CLASS);

  return (TupleInfo *) info;
}

static void
tuple_info_free (GVariantTypeInfo *info)
{
  TupleInfo *tuple_info;
  gint i;

  g_assert (info->container_class == GV_TUPLE_INFO_CLASS);
  tuple_info = (TupleInfo *) info;

  for (i = 0; i < tuple_info->n_members; i++)
    g_variant_type_info_unref (tuple_info->members[i].type_info);

  g_slice_free1 (sizeof (GVariantMemberInfo) * tuple_info->n_members,
                 tuple_info->members);
  g_slice_free (TupleInfo, tuple_info);
}

static void
tuple_allocate_members (const GVariantType  *type,
                        GVariantMemberInfo **members,
                        gsize               *n_members)
{
  const GVariantType *item_type;
  gsize i = 0;

  *n_members = g_variant_type_n_items (type);
  *members = g_slice_alloc (sizeof (GVariantMemberInfo) * *n_members);

  item_type = g_variant_type_first (type);
  while (item_type)
    {
      GVariantMemberInfo *member = &(*members)[i++];

      member->type_info = g_variant_type_info_get (item_type);
      item_type = g_variant_type_next (item_type);

      if (member->type_info->fixed_size)
        member->ending_type = G_VARIANT_MEMBER_ENDING_FIXED;
      else if (item_type == NULL)
        member->ending_type = G_VARIANT_MEMBER_ENDING_LAST;
      else
        member->ending_type = G_VARIANT_MEMBER_ENDING_OFFSET;
    }

  g_assert (i == *n_members);
}

/* this is g_variant_type_info_query for a given member of the tuple.
 * before the access is done, it is ensured that the item is within
 * range and %FALSE is returned if not.
 */
static gboolean
tuple_get_item (TupleInfo          *info,
                GVariantMemberInfo *item,
                gsize              *d,
                gsize              *e)
{
  if (&info->members[info->n_members] == item)
    return FALSE;

  *d = item->type_info->alignment;
  *e = item->type_info->fixed_size;
  return TRUE;
}

/* Read the documentation for #GVariantMemberInfo in gvarianttype.h
 * before attempting to understand this.
 *
 * This function adds one set of "magic constant" values (for one item
 * in the tuple) to the table.
 *
 * The algorithm in tuple_generate_table() calculates values of 'a', 'b'
 * and 'c' for each item, such that the procedure for finding the item
 * is to start at the end of the previous variable-sized item, add 'a',
 * then round up to the nearest multiple of 'b', then then add 'c'.
 * Note that 'b' is stored in the usual "one less than" form.  ie:
 *
 *   start = ROUND_UP(prev_end + a, (b + 1)) + c;
 *
 * We tweak these values a little to allow for a slightly easier
 * computation and more compact storage.
 */
static void
tuple_table_append (GVariantMemberInfo **items,
                    gsize                i,
                    gsize                a,
                    gsize                b,
                    gsize                c)
{
  GVariantMemberInfo *item = (*items)++;

  /* We can shift multiples of the alignment size from 'c' into 'a'.
   * As long as we're shifting whole multiples, it won't affect the
   * result.  This means that we can take the "aligned" portion off of
   * 'c' and add it into 'a'.
   *
   *  Imagine (for sake of clarity) that ROUND_10 rounds up to the
   *  nearest 10.  It is clear that:
   *
   *   ROUND_10(a) + c == ROUND_10(a + 10*(c / 10)) + (c % 10)
   *
   * ie: remove the 10s portion of 'c' and add it onto 'a'.
   *
   * To put some numbers on it, imagine we start with a = 34 and c = 27:
   *
   *  ROUND_10(34) + 27 = 40 + 27 = 67
   *
   * but also, we can split 27 up into 20 and 7 and do this:
   *
   *  ROUND_10(34 + 20) + 7 = ROUND_10(54) + 7 = 60 + 7 = 67
   *                ^^    ^
   * without affecting the result.  We do that here.
   *
   * This reduction in the size of 'c' means that we can store it in a
   * gchar instead of a gsize.  Due to how the structure is packed, this
   * ends up saving us 'two pointer sizes' per item in each tuple when
   * allocating using GSlice.
   */
  a += ~b & c;    /* take the "aligned" part of 'c' and add to 'a' */
  c &= b;         /* chop 'c' to contain only the unaligned part */


  /* Finally, we made one last adjustment.  Recall:
   *
   *   start = ROUND_UP(prev_end + a, (b + 1)) + c;
   *
   * Forgetting the '+ c' for the moment:
   *
   *   ROUND_UP(prev_end + a, (b + 1));
   *
   * we can do a "round up" operation by adding 1 less than the amount
   * to round up to, then rounding down.  ie:
   *
   *   #define ROUND_UP(x, y)    ROUND_DOWN(x + (y-1), y)
   *
   * Of course, for rounding down to a power of two, we can just mask
   * out the appropriate number of low order bits:
   *
   *   #define ROUND_DOWN(x, y)  (x & ~(y - 1))
   *
   * Which gives us
   *
   *   #define ROUND_UP(x, y)    (x + (y - 1) & ~(y - 1))
   *
   * but recall that our alignment value 'b' is already "one less".
   * This means that to round 'prev_end + a' up to 'b' we can just do:
   *
   *   ((prev_end + a) + b) & ~b
   *
   * Associativity, and putting the 'c' back on:
   *
   *   (prev_end + (a + b)) & ~b + c
   *
   * Now, since (a + b) is constant, we can just add 'b' to 'a' now and
   * store that as the number to add to prev_end.  Then we use ~b as the
   * number to take a bitwise 'and' with.  Finally, 'c' is added on.
   *
   * Note, however, that all the low order bits of the 'aligned' value
   * are masked out and that all of the high order bits of 'c' have been
   * "moved" to 'a' (in the previous step).  This means that there are
   * no overlapping bits in the addition -- so we can do a bitwise 'or'
   * equivalently.
   *
   * This means that we can now compute the start address of a given
   * item in the tuple using the algorithm given in the documentation
   * for #GVariantMemberInfo:
   *
   *   item_start = ((prev_end + a) & b) | c;
   */

  item->i = i;
  item->a = a + b;
  item->b = ~b;
  item->c = c;
}

static gsize
tuple_align (gsize offset,
             guint alignment)
{
  return offset + ((-offset) & alignment);
}

/* This function is the heart of the algorithm for calculating 'i', 'a',
 * 'b' and 'c' for each item in the tuple.
 *
 * Imagine we want to find the start of the "i" in the type "(su(qx)ni)".
 * That's a string followed by a uint32, then a tuple containing a
 * uint16 and a int64, then an int16, then our "i".  In order to get to
 * our "i" we:
 *
 * Start at the end of the string, align to 4 (for the uint32), add 4.
 * Align to 8, add 16 (for the tuple).  Align to 2, add 2 (for the
 * int16).  Then we're there.  It turns out that, given 3 simple rules,
 * we can flatten this iteration into one addition, one alignment, then
 * one more addition.
 *
 * The loop below plays through each item in the tuple, querying its
 * alignment and fixed_size into 'd' and 'e', respectively.  At all
 * times the variables 'a', 'b', and 'c' are maintained such that in
 * order to get to the current point, you add 'a', align to 'b' then add
 * 'c'.  'b' is kept in "one less than" form.  For each item, the proper
 * alignment is applied to find the values of 'a', 'b' and 'c' to get to
 * the start of that item.  Those values are recorded into the table.
 * The fixed size of the item (if applicable) is then added on.
 *
 * These 3 rules are how 'a', 'b' and 'c' are modified for alignment and
 * addition of fixed size.  They have been proven correct but are
 * presented here, without proof:
 *
 *  1) in order to "align to 'd'" where 'd' is less than or equal to the
 *     largest level of alignment seen so far ('b'), you align 'c' to
 *     'd'.
 *  2) in order to "align to 'd'" where 'd' is greater than the largest
 *     level of alignment seen so far, you add 'c' aligned to 'b' to the
 *     value of 'a', set 'b' to 'd' (ie: increase the 'largest alignment
 *     seen') and reset 'c' to 0.
 *  3) in order to "add 'e'", just add 'e' to 'c'.
 */
static void
tuple_generate_table (TupleInfo *info)
{
  GVariantMemberInfo *items = info->members;
  gsize i = -1, a = 0, b = 0, c = 0, d, e;

  /* iterate over each item in the tuple.
   *   'd' will be the alignment of the item (in one-less form)
   *   'e' will be the fixed size (or 0 for variable-size items)
   */
  while (tuple_get_item (info, items, &d, &e))
    {
      /* align to 'd' */
      if (d <= b)
        c = tuple_align (c, d);                   /* rule 1 */
      else
        a += tuple_align (c, b), b = d, c = 0;    /* rule 2 */

      /* the start of the item is at this point (ie: right after we
       * have aligned for it).  store this information in the table.
       */
      tuple_table_append (&items, i, a, b, c);

      /* "move past" the item by adding in its size. */
      if (e == 0)
        /* variable size:
         *
         * we'll have an offset stored to mark the end of this item, so
         * just bump the offset index to give us a new starting point
         * and reset all the counters.
         */
        i++, a = b = c = 0;
      else
        /* fixed size */
        c += e;                                   /* rule 3 */
    }
}

static void
tuple_set_base_info (TupleInfo *info)
{
  GVariantTypeInfo *base = &info->container.info;

  if (info->n_members > 0)
    {
      GVariantMemberInfo *m;

      /* the alignment requirement of the tuple is the alignment
       * requirement of its largest item.
       */
      base->alignment = 0;
      for (m = info->members; m < &info->members[info->n_members]; m++)
        /* can find the max of a list of "one less than" powers of two
         * by 'or'ing them
         */
        base->alignment |= m->type_info->alignment;

      m--; /* take 'm' back to the last item */

      /* the structure only has a fixed size if no variable-size
       * offsets are stored and the last item is fixed-sized too (since
       * an offset is never stored for the last item).
       */
      if (m->i == -1 && m->type_info->fixed_size)
        /* in that case, the fixed size can be found by finding the
         * start of the last item (in the usual way) and adding its
         * fixed size.
         *
         * if a tuple has a fixed size then it is always a multiple of
         * the alignment requirement (to make packing into arrays
         * easier) so we round up to that here.
         */
        base->fixed_size =
          tuple_align (((m->a & m->b) | m->c) + m->type_info->fixed_size,
                       base->alignment);
      else
        /* else, the tuple is not fixed size */
        base->fixed_size = 0;
    }
  else
    {
      /* the empty tuple: '()'.
       *
       * has a size of 1 and an no alignment requirement.
       *
       * It has a size of 1 (not 0) for two practical reasons:
       *
       *  1) So we can determine how many of them are in an array
       *     without dividing by zero or without other tricks.
       *
       *  2) Even if we had some trick to know the number of items in
       *     the array (as GVariant did at one time) this would open a
       *     potential denial of service attack: an attacker could send
       *     you an extremely small array (in terms of number of bytes)
       *     containing trillions of zero-sized items.  If you iterated
       *     over this array you would effectively infinite-loop your
       *     program.  By forcing a size of at least one, we bound the
       *     amount of computation done in response to a message to a
       *     reasonable function of the size of that message.
       */
      base->alignment = 0;
      base->fixed_size = 1;
    }
}

static ContainerInfo *
tuple_info_new (const GVariantType *type)
{
  TupleInfo *info;

  info = g_slice_new (TupleInfo);
  info->container.info.container_class = GV_TUPLE_INFO_CLASS;

  tuple_allocate_members (type, &info->members, &info->n_members);
  tuple_generate_table (info);
  tuple_set_base_info (info);

  return (ContainerInfo *) info;
}

/* < private >
 * g_variant_type_info_n_members:
 * @info: a #GVariantTypeInfo for a tuple or dictionary entry type
 *
 * Returns the number of members in a tuple or dictionary entry type.
 * For a dictionary entry this will always be 2.
 */
gsize
g_variant_type_info_n_members (GVariantTypeInfo *info)
{
  return GV_TUPLE_INFO (info)->n_members;
}

/* < private >
 * g_variant_type_info_member_info:
 * @info: a #GVariantTypeInfo for a tuple or dictionary entry type
 * @index: the member to fetch information for
 *
 * Returns the #GVariantMemberInfo for a given member.  See
 * documentation for that structure for why you would want this
 * information.
 *
 * @index must refer to a valid child (ie: strictly less than
 * g_variant_type_info_n_members() returns).
 */
const GVariantMemberInfo *
g_variant_type_info_member_info (GVariantTypeInfo *info,
                                 gsize             index)
{
  TupleInfo *tuple_info = GV_TUPLE_INFO (info);

  if (index < tuple_info->n_members)
    return &tuple_info->members[index];

  return NULL;
}

/* == new/ref/unref == */
static GRecMutex g_variant_type_info_lock;
static GHashTable *g_variant_type_info_table;

/* < private >
 * g_variant_type_info_get:
 * @type: a #GVariantType
 *
 * Returns a reference to a #GVariantTypeInfo for @type.
 *
 * If an info structure already exists for this type, a new reference is
 * returned.  If not, the required calculations are performed and a new
 * info structure is returned.
 *
 * It is appropriate to call g_variant_type_info_unref() on the return
 * value.
 */
GVariantTypeInfo *
g_variant_type_info_get (const GVariantType *type)
{
  char type_char;

  type_char = g_variant_type_peek_string (type)[0];

  if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_TUPLE ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY)
    {
      GVariantTypeInfo *info;
      gchar *type_string;

      type_string = g_variant_type_dup_string (type);

      g_rec_mutex_lock (&g_variant_type_info_lock);

      if (g_variant_type_info_table == NULL)
        g_variant_type_info_table = g_hash_table_new (g_str_hash,
                                                      g_str_equal);
      info = g_hash_table_lookup (g_variant_type_info_table, type_string);

      if (info == NULL)
        {
          ContainerInfo *container;

          if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
              type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY)
            {
              container = array_info_new (type);
            }
          else /* tuple or dict entry */
            {
              container = tuple_info_new (type);
            }

          info = (GVariantTypeInfo *) container;
          container->type_string = type_string;
          container->ref_count = 1;

          g_hash_table_insert (g_variant_type_info_table, type_string, info);
          type_string = NULL;
        }
      else
        g_variant_type_info_ref (info);

      g_rec_mutex_unlock (&g_variant_type_info_lock);
      g_variant_type_info_check (info, 0);
      g_free (type_string);

      return info;
    }
  else
    {
      const GVariantTypeInfo *info;
      int index;

      index = type_char - 'b';
      g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table) == 24);
      g_assert_cmpint (0, <=, index);
      g_assert_cmpint (index, <, 24);

      info = g_variant_type_info_basic_table + index;
      g_variant_type_info_check (info, 0);

      return (GVariantTypeInfo *) info;
    }
}

/* < private >
 * g_variant_type_info_ref:
 * @info: a #GVariantTypeInfo
 *
 * Adds a reference to @info.
 */
GVariantTypeInfo *
g_variant_type_info_ref (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, 0);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      g_assert_cmpint (container->ref_count, >, 0);
      g_atomic_int_inc (&container->ref_count);
    }

  return info;
}

/* < private >
 * g_variant_type_info_unref:
 * @info: a #GVariantTypeInfo
 *
 * Releases a reference held on @info.  This may result in @info being
 * freed.
 */
void
g_variant_type_info_unref (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, 0);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      g_rec_mutex_lock (&g_variant_type_info_lock);
      if (g_atomic_int_dec_and_test (&container->ref_count))
        {
          g_hash_table_remove (g_variant_type_info_table,
                               container->type_string);
          if (g_hash_table_size (g_variant_type_info_table) == 0)
            {
              g_hash_table_unref (g_variant_type_info_table);
              g_variant_type_info_table = NULL;
            }
          g_rec_mutex_unlock (&g_variant_type_info_lock);

          g_free (container->type_string);

          if (info->container_class == GV_ARRAY_INFO_CLASS)
            array_info_free (info);

          else if (info->container_class == GV_TUPLE_INFO_CLASS)
            tuple_info_free (info);

          else
            g_assert_not_reached ();
        }
      else
        g_rec_mutex_unlock (&g_variant_type_info_lock);
    }
}

void
g_variant_type_info_assert_no_infos (void)
{
  g_assert (g_variant_type_info_table == NULL);
}