File: memchunks.c

package info (click to toggle)
glib2.0 2.58.3-2
  • links: PTS, VCS
  • area: main
  • in suites: buster, buster-proposed-updates
  • size: 48,744 kB
  • sloc: ansic: 452,196; xml: 16,781; python: 6,149; makefile: 3,776; sh: 1,499; perl: 1,140; cpp: 9
file content (603 lines) | stat: -rw-r--r-- 17,308 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
 * file for a list of people on the GLib Team.  See the ChangeLog
 * files for a list of changes.  These files are distributed with
 * GLib at ftp://ftp.gtk.org/pub/gtk/. 
 */

/* 
 * MT safe
 */

#include "config.h"

#include <stdlib.h>
#include <string.h>
#include <signal.h>

#include "glib.h"

/* notes on macros:
 * if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped.
 */

#define MEM_PROFILE_TABLE_SIZE 4096

#define MEM_AREA_SIZE 4L

static guint mem_chunk_recursion = 0;
#  define MEM_CHUNK_ROUTINE_COUNT()	(mem_chunk_recursion)
#  define ENTER_MEM_CHUNK_ROUTINE()	(mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () + 1)
#  define LEAVE_MEM_CHUNK_ROUTINE()	(mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () - 1)

/* --- old memchunk prototypes --- */
GMemChunk*      old_mem_chunk_new       (const gchar  *name,
                                         gint          atom_size,
                                         gulong        area_size,
                                         gint          type);
void            old_mem_chunk_destroy   (GMemChunk *mem_chunk);
gpointer        old_mem_chunk_alloc     (GMemChunk *mem_chunk);
gpointer        old_mem_chunk_alloc0    (GMemChunk *mem_chunk);
void            old_mem_chunk_free      (GMemChunk *mem_chunk,
                                         gpointer   mem);
void            old_mem_chunk_clean     (GMemChunk *mem_chunk);
void            old_mem_chunk_reset     (GMemChunk *mem_chunk);
void            old_mem_chunk_print     (GMemChunk *mem_chunk);
void            old_mem_chunk_info      (void);


/* --- MemChunks --- */
#ifndef G_ALLOC_AND_FREE
typedef struct _GAllocator GAllocator;
typedef struct _GMemChunk  GMemChunk;
#define G_ALLOC_ONLY	  1
#define G_ALLOC_AND_FREE  2
#endif

typedef struct _GFreeAtom      GFreeAtom;
typedef struct _GMemArea       GMemArea;

struct _GFreeAtom
{
  GFreeAtom *next;
};

struct _GMemArea
{
  GMemArea *next;            /* the next mem area */
  GMemArea *prev;            /* the previous mem area */
  gulong index;              /* the current index into the "mem" array */
  gulong free;               /* the number of free bytes in this mem area */
  gulong allocated;          /* the number of atoms allocated from this area */
  gulong mark;               /* is this mem area marked for deletion */
  gchar mem[MEM_AREA_SIZE];  /* the mem array from which atoms get allocated
			      * the actual size of this array is determined by
			      *  the mem chunk "area_size". ANSI says that it
			      *  must be declared to be the maximum size it
			      *  can possibly be (even though the actual size
			      *  may be less).
			      */
};

struct _GMemChunk
{
  const gchar *name;         /* name of this MemChunk...used for debugging output */
  gint type;                 /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */
  gint num_mem_areas;        /* the number of memory areas */
  gint num_marked_areas;     /* the number of areas marked for deletion */
  guint atom_size;           /* the size of an atom */
  gulong area_size;          /* the size of a memory area */
  GMemArea *mem_area;        /* the current memory area */
  GMemArea *mem_areas;       /* a list of all the mem areas owned by this chunk */
  GMemArea *free_mem_area;   /* the free area...which is about to be destroyed */
  GFreeAtom *free_atoms;     /* the free atoms list */
  GTree *mem_tree;           /* tree of mem areas sorted by memory address */
  GMemChunk *next;           /* pointer to the next chunk */
  GMemChunk *prev;           /* pointer to the previous chunk */
};


static gulong old_mem_chunk_compute_size (gulong    size,
                                          gulong    min_size) G_GNUC_CONST;
static gint   old_mem_chunk_area_compare (GMemArea *a,
                                          GMemArea *b);
static gint   old_mem_chunk_area_search  (GMemArea *a,
                                          gchar    *addr);

/* here we can't use StaticMutexes, as they depend upon a working
 * g_malloc, the same holds true for StaticPrivate
 */
static GMutex         mem_chunks_lock;
static GMemChunk     *mem_chunks = NULL;

GMemChunk*
old_mem_chunk_new (const gchar  *name,
                   gint          atom_size,
                   gulong        area_size,
                   gint          type)
{
  GMemChunk *mem_chunk;
  gulong rarea_size;
  
  g_return_val_if_fail (atom_size > 0, NULL);
  g_return_val_if_fail (area_size >= atom_size, NULL);
  
  ENTER_MEM_CHUNK_ROUTINE ();
  
  area_size = (area_size + atom_size - 1) / atom_size;
  area_size *= atom_size;
  
  mem_chunk = g_new (GMemChunk, 1);
  mem_chunk->name = name;
  mem_chunk->type = type;
  mem_chunk->num_mem_areas = 0;
  mem_chunk->num_marked_areas = 0;
  mem_chunk->mem_area = NULL;
  mem_chunk->free_mem_area = NULL;
  mem_chunk->free_atoms = NULL;
  mem_chunk->mem_tree = NULL;
  mem_chunk->mem_areas = NULL;
  mem_chunk->atom_size = atom_size;
  
  if (mem_chunk->type == G_ALLOC_AND_FREE)
    mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
  
  if (mem_chunk->atom_size % G_MEM_ALIGN)
    mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN);
  
  rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE;
  rarea_size = old_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE);
  mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE);
  
  g_mutex_lock (&mem_chunks_lock);
  mem_chunk->next = mem_chunks;
  mem_chunk->prev = NULL;
  if (mem_chunks)
    mem_chunks->prev = mem_chunk;
  mem_chunks = mem_chunk;
  g_mutex_unlock (&mem_chunks_lock);
  
  LEAVE_MEM_CHUNK_ROUTINE ();
  
  return mem_chunk;
}

void
old_mem_chunk_destroy (GMemChunk *mem_chunk)
{
  GMemArea *mem_areas;
  GMemArea *temp_area;
  
  g_return_if_fail (mem_chunk != NULL);
  
  ENTER_MEM_CHUNK_ROUTINE ();
  
  mem_areas = mem_chunk->mem_areas;
  while (mem_areas)
    {
      temp_area = mem_areas;
      mem_areas = mem_areas->next;
      g_free (temp_area);
    }
  
  g_mutex_lock (&mem_chunks_lock);
  if (mem_chunk->next)
    mem_chunk->next->prev = mem_chunk->prev;
  if (mem_chunk->prev)
    mem_chunk->prev->next = mem_chunk->next;
  
  if (mem_chunk == mem_chunks)
    mem_chunks = mem_chunks->next;
  g_mutex_unlock (&mem_chunks_lock);
  
  if (mem_chunk->type == G_ALLOC_AND_FREE)
    g_tree_destroy (mem_chunk->mem_tree);  
  
  g_free (mem_chunk);
  
  LEAVE_MEM_CHUNK_ROUTINE ();
}

gpointer
old_mem_chunk_alloc (GMemChunk *mem_chunk)
{
  GMemArea *temp_area;
  gpointer mem;
  
  ENTER_MEM_CHUNK_ROUTINE ();
  
  g_return_val_if_fail (mem_chunk != NULL, NULL);
  
  while (mem_chunk->free_atoms)
    {
      /* Get the first piece of memory on the "free_atoms" list.
       * We can go ahead and destroy the list node we used to keep
       *  track of it with and to update the "free_atoms" list to
       *  point to its next element.
       */
      mem = mem_chunk->free_atoms;
      mem_chunk->free_atoms = mem_chunk->free_atoms->next;
      
      /* Determine which area this piece of memory is allocated from */
      temp_area = g_tree_search (mem_chunk->mem_tree,
				 (GCompareFunc) old_mem_chunk_area_search,
				 mem);
      
      /* If the area has been marked, then it is being destroyed.
       *  (ie marked to be destroyed).
       * We check to see if all of the segments on the free list that
       *  reference this area have been removed. This occurs when
       *  the amount of free memory is less than the allocatable size.
       * If the chunk should be freed, then we place it in the "free_mem_area".
       * This is so we make sure not to free the mem area here and then
       *  allocate it again a few lines down.
       * If we don't allocate a chunk a few lines down then the "free_mem_area"
       *  will be freed.
       * If there is already a "free_mem_area" then we'll just free this mem area.
       */
      if (temp_area->mark)
        {
          /* Update the "free" memory available in that area */
          temp_area->free += mem_chunk->atom_size;
	  
          if (temp_area->free == mem_chunk->area_size)
            {
              if (temp_area == mem_chunk->mem_area)
                mem_chunk->mem_area = NULL;
	      
              if (mem_chunk->free_mem_area)
                {
                  mem_chunk->num_mem_areas -= 1;
		  
                  if (temp_area->next)
                    temp_area->next->prev = temp_area->prev;
                  if (temp_area->prev)
                    temp_area->prev->next = temp_area->next;
                  if (temp_area == mem_chunk->mem_areas)
                    mem_chunk->mem_areas = mem_chunk->mem_areas->next;
		  
		  if (mem_chunk->type == G_ALLOC_AND_FREE)
		    g_tree_remove (mem_chunk->mem_tree, temp_area);
                  g_free (temp_area);
                }
              else
                mem_chunk->free_mem_area = temp_area;
	      
	      mem_chunk->num_marked_areas -= 1;
	    }
	}
      else
        {
          /* Update the number of allocated atoms count.
	   */
          temp_area->allocated += 1;
	  
          /* The area wasn't marked...return the memory
	   */
	  goto outa_here;
        }
    }
  
  /* If there isn't a current mem area or the current mem area is out of space
   *  then allocate a new mem area. We'll first check and see if we can use
   *  the "free_mem_area". Otherwise we'll just malloc the mem area.
   */
  if ((!mem_chunk->mem_area) ||
      ((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size))
    {
      if (mem_chunk->free_mem_area)
        {
          mem_chunk->mem_area = mem_chunk->free_mem_area;
	  mem_chunk->free_mem_area = NULL;
        }
      else
        {
#ifdef ENABLE_GC_FRIENDLY
	  mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) -
						       MEM_AREA_SIZE +
						       mem_chunk->area_size); 
#else /* !ENABLE_GC_FRIENDLY */
	  mem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) -
						      MEM_AREA_SIZE +
						      mem_chunk->area_size);
#endif /* ENABLE_GC_FRIENDLY */
	  
	  mem_chunk->num_mem_areas += 1;
	  mem_chunk->mem_area->next = mem_chunk->mem_areas;
	  mem_chunk->mem_area->prev = NULL;
	  
	  if (mem_chunk->mem_areas)
	    mem_chunk->mem_areas->prev = mem_chunk->mem_area;
	  mem_chunk->mem_areas = mem_chunk->mem_area;
	  
	  if (mem_chunk->type == G_ALLOC_AND_FREE)
	    g_tree_insert (mem_chunk->mem_tree, mem_chunk->mem_area, mem_chunk->mem_area);
        }
      
      mem_chunk->mem_area->index = 0;
      mem_chunk->mem_area->free = mem_chunk->area_size;
      mem_chunk->mem_area->allocated = 0;
      mem_chunk->mem_area->mark = 0;
    }
  
  /* Get the memory and modify the state variables appropriately.
   */
  mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index];
  mem_chunk->mem_area->index += mem_chunk->atom_size;
  mem_chunk->mem_area->free -= mem_chunk->atom_size;
  mem_chunk->mem_area->allocated += 1;
  
 outa_here:
  
  LEAVE_MEM_CHUNK_ROUTINE ();
  
  return mem;
}

gpointer
old_mem_chunk_alloc0 (GMemChunk *mem_chunk)
{
  gpointer mem;
  
  mem = old_mem_chunk_alloc (mem_chunk);
  if (mem)
    {
      memset (mem, 0, mem_chunk->atom_size);
    }
  
  return mem;
}

void
old_mem_chunk_free (GMemChunk *mem_chunk,
                    gpointer   mem)
{
  GMemArea *temp_area;
  GFreeAtom *free_atom;
  
  g_return_if_fail (mem_chunk != NULL);
  g_return_if_fail (mem != NULL);
  
  ENTER_MEM_CHUNK_ROUTINE ();
  
#ifdef ENABLE_GC_FRIENDLY
  memset (mem, 0, mem_chunk->atom_size);
#endif /* ENABLE_GC_FRIENDLY */
  
  /* Don't do anything if this is an ALLOC_ONLY chunk
   */
  if (mem_chunk->type == G_ALLOC_AND_FREE)
    {
      /* Place the memory on the "free_atoms" list
       */
      free_atom = (GFreeAtom*) mem;
      free_atom->next = mem_chunk->free_atoms;
      mem_chunk->free_atoms = free_atom;
      
      temp_area = g_tree_search (mem_chunk->mem_tree,
				 (GCompareFunc) old_mem_chunk_area_search,
				 mem);
      
      temp_area->allocated -= 1;
      
      if (temp_area->allocated == 0)
	{
	  temp_area->mark = 1;
	  mem_chunk->num_marked_areas += 1;
	}
    }
  
  LEAVE_MEM_CHUNK_ROUTINE ();
}

/* This doesn't free the free_area if there is one */
void
old_mem_chunk_clean (GMemChunk *mem_chunk)
{
  GMemArea *mem_area;
  GFreeAtom *prev_free_atom;
  GFreeAtom *temp_free_atom;
  gpointer mem;
  
  g_return_if_fail (mem_chunk != NULL);
  
  ENTER_MEM_CHUNK_ROUTINE ();
  
  if (mem_chunk->type == G_ALLOC_AND_FREE)
    {
      prev_free_atom = NULL;
      temp_free_atom = mem_chunk->free_atoms;
      
      while (temp_free_atom)
	{
	  mem = (gpointer) temp_free_atom;
	  
	  mem_area = g_tree_search (mem_chunk->mem_tree,
				    (GCompareFunc) old_mem_chunk_area_search,
				    mem);
	  
          /* If this mem area is marked for destruction then delete the
	   *  area and list node and decrement the free mem.
           */
	  if (mem_area->mark)
	    {
	      if (prev_free_atom)
		prev_free_atom->next = temp_free_atom->next;
	      else
		mem_chunk->free_atoms = temp_free_atom->next;
	      temp_free_atom = temp_free_atom->next;
	      
	      mem_area->free += mem_chunk->atom_size;
	      if (mem_area->free == mem_chunk->area_size)
		{
		  mem_chunk->num_mem_areas -= 1;
		  mem_chunk->num_marked_areas -= 1;
		  
		  if (mem_area->next)
		    mem_area->next->prev = mem_area->prev;
		  if (mem_area->prev)
		    mem_area->prev->next = mem_area->next;
		  if (mem_area == mem_chunk->mem_areas)
		    mem_chunk->mem_areas = mem_chunk->mem_areas->next;
		  if (mem_area == mem_chunk->mem_area)
		    mem_chunk->mem_area = NULL;
		  
		  if (mem_chunk->type == G_ALLOC_AND_FREE)
		    g_tree_remove (mem_chunk->mem_tree, mem_area);
		  g_free (mem_area);
		}
	    }
	  else
	    {
	      prev_free_atom = temp_free_atom;
	      temp_free_atom = temp_free_atom->next;
	    }
	}
    }
  LEAVE_MEM_CHUNK_ROUTINE ();
}

void
old_mem_chunk_reset (GMemChunk *mem_chunk)
{
  GMemArea *mem_areas;
  GMemArea *temp_area;
  
  g_return_if_fail (mem_chunk != NULL);
  
  ENTER_MEM_CHUNK_ROUTINE ();
  
  mem_areas = mem_chunk->mem_areas;
  mem_chunk->num_mem_areas = 0;
  mem_chunk->mem_areas = NULL;
  mem_chunk->mem_area = NULL;
  
  while (mem_areas)
    {
      temp_area = mem_areas;
      mem_areas = mem_areas->next;
      g_free (temp_area);
    }
  
  mem_chunk->free_atoms = NULL;
  
  if (mem_chunk->mem_tree)
    {
      g_tree_destroy (mem_chunk->mem_tree);
      mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
    }
  
  LEAVE_MEM_CHUNK_ROUTINE ();
}

void
old_mem_chunk_print (GMemChunk *mem_chunk)
{
  GMemArea *mem_areas;
  gulong mem;
  
  g_return_if_fail (mem_chunk != NULL);
  
  mem_areas = mem_chunk->mem_areas;
  mem = 0;
  
  while (mem_areas)
    {
      mem += mem_chunk->area_size - mem_areas->free;
      mem_areas = mem_areas->next;
    }
  
  g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO,
	 "%s: %ld bytes using %d mem areas",
	 mem_chunk->name, mem, mem_chunk->num_mem_areas);
}

void
old_mem_chunk_info (void)
{
  GMemChunk *mem_chunk;
  gint count;
  
  count = 0;
  g_mutex_lock (&mem_chunks_lock);
  mem_chunk = mem_chunks;
  while (mem_chunk)
    {
      count += 1;
      mem_chunk = mem_chunk->next;
    }
  g_mutex_unlock (&mem_chunks_lock);
  
  g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%d mem chunks", count);
  
  g_mutex_lock (&mem_chunks_lock);
  mem_chunk = mem_chunks;
  g_mutex_unlock (&mem_chunks_lock);
  
  while (mem_chunk)
    {
      old_mem_chunk_print ((GMemChunk*) mem_chunk);
      mem_chunk = mem_chunk->next;
    }  
}

static gulong
old_mem_chunk_compute_size (gulong size,
                            gulong min_size)
{
  gulong power_of_2;
  gulong lower, upper;
  
  power_of_2 = 16;
  while (power_of_2 < size)
    power_of_2 <<= 1;
  
  lower = power_of_2 >> 1;
  upper = power_of_2;
  
  if (size - lower < upper - size && lower >= min_size)
    return lower;
  else
    return upper;
}

static gint
old_mem_chunk_area_compare (GMemArea *a,
                            GMemArea *b)
{
  if (a->mem > b->mem)
    return 1;
  else if (a->mem < b->mem)
    return -1;
  return 0;
}

static gint
old_mem_chunk_area_search (GMemArea *a,
                           gchar    *addr)
{
  if (a->mem <= addr)
    {
      if (addr < &a->mem[a->index])
	return 0;
      return 1;
    }
  return -1;
}