1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
|
/* gchecksum.h - data hashing functions
*
* Copyright (C) 2007 Emmanuele Bassi <ebassi@gnome.org>
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <string.h>
#include "gchecksum.h"
#include "gslice.h"
#include "gmem.h"
#include "gstrfuncs.h"
#include "gtestutils.h"
#include "gtypes.h"
#include "glibintl.h"
/**
* GChecksum:
*
* GLib provides a generic API for computing checksums (or ‘digests’)
* for a sequence of arbitrary bytes, using various hashing algorithms
* like MD5, SHA-1 and SHA-256. Checksums are commonly used in various
* environments and specifications.
*
* To create a new `GChecksum`, use [ctor@GLib.Checksum.new]. To free
* a `GChecksum`, use [method@GLib.Checksum.free].
*
* GLib supports incremental checksums using the `GChecksum` data
* structure, by calling [method@GLib.Checksum.update] as long as there’s data
* available and then using [method@GLib.Checksum.get_string] or
* [method@GLib.Checksum.get_digest] to compute the checksum and return it
* either as a string in hexadecimal form, or as a raw sequence of bytes. To
* compute the checksum for binary blobs and nul-terminated strings in
* one go, use the convenience functions [func@GLib.compute_checksum_for_data]
* and [func@GLib.compute_checksum_for_string], respectively.
*
* Since: 2.16
**/
#define IS_VALID_TYPE(type) ((type) >= G_CHECKSUM_MD5 && (type) <= G_CHECKSUM_SHA384)
/* The fact that these are lower case characters is part of the ABI */
static const gchar hex_digits[] = "0123456789abcdef";
#define MD5_DATASIZE 64
#define MD5_DIGEST_LEN 16
typedef struct
{
guint32 buf[4];
guint32 bits[2];
union {
guchar data[MD5_DATASIZE];
guint32 data32[MD5_DATASIZE / 4];
} u;
guchar digest[MD5_DIGEST_LEN];
} Md5sum;
#define SHA1_DATASIZE 64
#define SHA1_DIGEST_LEN 20
typedef struct
{
guint32 buf[5];
guint32 bits[2];
/* we pack 64 unsigned chars into 16 32-bit unsigned integers */
guint32 data[16];
guchar digest[SHA1_DIGEST_LEN];
} Sha1sum;
#define SHA256_DATASIZE 64
#define SHA256_DIGEST_LEN 32
typedef struct
{
guint32 buf[8];
guint32 bits[2];
guint8 data[SHA256_DATASIZE];
guchar digest[SHA256_DIGEST_LEN];
} Sha256sum;
/* SHA2 is common thing for SHA-384, SHA-512, SHA-512/224 and SHA-512/256 */
#define SHA2_BLOCK_LEN 128 /* 1024 bits message block */
#define SHA384_DIGEST_LEN 48
#define SHA512_DIGEST_LEN 64
typedef struct
{
guint64 H[8];
guint8 block[SHA2_BLOCK_LEN];
guint8 block_len;
guint64 data_len[2];
guchar digest[SHA512_DIGEST_LEN];
} Sha512sum;
struct _GChecksum
{
GChecksumType type;
gchar *digest_str;
union {
Md5sum md5;
Sha1sum sha1;
Sha256sum sha256;
Sha512sum sha512;
} sum;
};
/* we need different byte swapping functions because MD5 expects buffers
* to be little-endian, while SHA1 and SHA256 expect them in big-endian
* form.
*/
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
#define md5_byte_reverse(buffer,length)
#else
/* assume that the passed buffer is integer aligned */
static inline void
md5_byte_reverse (guchar *buffer,
gulong length)
{
guint32 bit;
do
{
bit = (guint32) ((unsigned) buffer[3] << 8 | buffer[2]) << 16 |
((unsigned) buffer[1] << 8 | buffer[0]);
* (guint32 *) buffer = bit;
buffer += 4;
}
while (--length);
}
#endif /* G_BYTE_ORDER == G_LITTLE_ENDIAN */
#if G_BYTE_ORDER == G_BIG_ENDIAN
#define sha_byte_reverse(buffer,length)
#else
static inline void
sha_byte_reverse (guint32 *buffer,
size_t length)
{
length /= sizeof (guint32);
while (length--)
{
*buffer = GUINT32_SWAP_LE_BE (*buffer);
++buffer;
}
}
#endif /* G_BYTE_ORDER == G_BIG_ENDIAN */
static gchar *
digest_to_string (guint8 *digest,
gsize digest_len)
{
gsize i, len = digest_len * 2;
gchar *retval;
retval = g_new (gchar, len + 1);
for (i = 0; i < digest_len; i++)
{
guint8 byte = digest[i];
retval[2 * i] = hex_digits[byte >> 4];
retval[2 * i + 1] = hex_digits[byte & 0xf];
}
retval[len] = 0;
return retval;
}
/*
* MD5 Checksum
*/
/* This MD5 digest computation is based on the equivalent code
* written by Colin Plumb. It came with this notice:
*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*/
static void
md5_sum_init (Md5sum *md5)
{
/* arbitrary constants */
md5->buf[0] = 0x67452301;
md5->buf[1] = 0xefcdab89;
md5->buf[2] = 0x98badcfe;
md5->buf[3] = 0x10325476;
md5->bits[0] = md5->bits[1] = 0;
}
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. md5_sum_update()
* blocks the data and converts bytes into longwords for this routine.
*/
static void
md5_transform (guint32 buf[4],
guint32 const in[16])
{
guint32 a, b, c, d;
/* The four core functions - F1 is optimized somewhat */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1 (z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define md5_step(f, w, x, y, z, data, s) \
( w += f (x, y, z) + data, w = w << s | w >> (32 - s), w += x )
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
md5_step (F1, a, b, c, d, in[0] + 0xd76aa478, 7);
md5_step (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
md5_step (F1, c, d, a, b, in[2] + 0x242070db, 17);
md5_step (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
md5_step (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
md5_step (F1, d, a, b, c, in[5] + 0x4787c62a, 12);
md5_step (F1, c, d, a, b, in[6] + 0xa8304613, 17);
md5_step (F1, b, c, d, a, in[7] + 0xfd469501, 22);
md5_step (F1, a, b, c, d, in[8] + 0x698098d8, 7);
md5_step (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
md5_step (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
md5_step (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
md5_step (F1, a, b, c, d, in[12] + 0x6b901122, 7);
md5_step (F1, d, a, b, c, in[13] + 0xfd987193, 12);
md5_step (F1, c, d, a, b, in[14] + 0xa679438e, 17);
md5_step (F1, b, c, d, a, in[15] + 0x49b40821, 22);
md5_step (F2, a, b, c, d, in[1] + 0xf61e2562, 5);
md5_step (F2, d, a, b, c, in[6] + 0xc040b340, 9);
md5_step (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
md5_step (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
md5_step (F2, a, b, c, d, in[5] + 0xd62f105d, 5);
md5_step (F2, d, a, b, c, in[10] + 0x02441453, 9);
md5_step (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
md5_step (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
md5_step (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
md5_step (F2, d, a, b, c, in[14] + 0xc33707d6, 9);
md5_step (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
md5_step (F2, b, c, d, a, in[8] + 0x455a14ed, 20);
md5_step (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
md5_step (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
md5_step (F2, c, d, a, b, in[7] + 0x676f02d9, 14);
md5_step (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
md5_step (F3, a, b, c, d, in[5] + 0xfffa3942, 4);
md5_step (F3, d, a, b, c, in[8] + 0x8771f681, 11);
md5_step (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
md5_step (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
md5_step (F3, a, b, c, d, in[1] + 0xa4beea44, 4);
md5_step (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
md5_step (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
md5_step (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
md5_step (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
md5_step (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
md5_step (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
md5_step (F3, b, c, d, a, in[6] + 0x04881d05, 23);
md5_step (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
md5_step (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
md5_step (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
md5_step (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
md5_step (F4, a, b, c, d, in[0] + 0xf4292244, 6);
md5_step (F4, d, a, b, c, in[7] + 0x432aff97, 10);
md5_step (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
md5_step (F4, b, c, d, a, in[5] + 0xfc93a039, 21);
md5_step (F4, a, b, c, d, in[12] + 0x655b59c3, 6);
md5_step (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
md5_step (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
md5_step (F4, b, c, d, a, in[1] + 0x85845dd1, 21);
md5_step (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
md5_step (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
md5_step (F4, c, d, a, b, in[6] + 0xa3014314, 15);
md5_step (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
md5_step (F4, a, b, c, d, in[4] + 0xf7537e82, 6);
md5_step (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
md5_step (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
md5_step (F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
#undef F1
#undef F2
#undef F3
#undef F4
#undef md5_step
}
static void
md5_sum_update (Md5sum *md5,
const guchar *data,
gsize length)
{
guint32 bit;
bit = md5->bits[0];
md5->bits[0] = bit + ((guint32) length << 3);
/* carry from low to high */
if (md5->bits[0] < bit)
md5->bits[1] += 1;
md5->bits[1] += length >> 29;
/* bytes already in Md5sum->u.data */
bit = (bit >> 3) & 0x3f;
/* handle any leading odd-sized chunks */
if (bit)
{
guchar *p = md5->u.data + bit;
bit = MD5_DATASIZE - bit;
if (length < bit)
{
memcpy (p, data, length);
return;
}
memcpy (p, data, bit);
md5_byte_reverse (md5->u.data, 16);
md5_transform (md5->buf, md5->u.data32);
data += bit;
length -= bit;
}
/* process data in 64-byte chunks */
while (length >= MD5_DATASIZE)
{
memcpy (md5->u.data, data, MD5_DATASIZE);
md5_byte_reverse (md5->u.data, 16);
md5_transform (md5->buf, md5->u.data32);
data += MD5_DATASIZE;
length -= MD5_DATASIZE;
}
/* handle any remaining bytes of data */
memcpy (md5->u.data, data, length);
}
/* closes a checksum */
static void
md5_sum_close (Md5sum *md5)
{
guint count;
guchar *p;
/* Compute number of bytes mod 64 */
count = (md5->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80.
* This is safe since there is always at least one byte free
*/
p = md5->u.data + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = MD5_DATASIZE - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8)
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset (p, 0, count);
md5_byte_reverse (md5->u.data, 16);
md5_transform (md5->buf, md5->u.data32);
/* Now fill the next block with 56 bytes */
memset (md5->u.data, 0, MD5_DATASIZE - 8);
}
else
{
/* Pad block to 56 bytes */
memset (p, 0, count - 8);
}
md5_byte_reverse (md5->u.data, 14);
/* Append length in bits and transform */
md5->u.data32[14] = md5->bits[0];
md5->u.data32[15] = md5->bits[1];
md5_transform (md5->buf, md5->u.data32);
md5_byte_reverse ((guchar *) md5->buf, 4);
memcpy (md5->digest, md5->buf, 16);
/* Reset buffers in case they contain sensitive data */
memset (md5->buf, 0, sizeof (md5->buf));
memset (md5->u.data, 0, sizeof (md5->u.data));
}
static gchar *
md5_sum_to_string (Md5sum *md5)
{
return digest_to_string (md5->digest, MD5_DIGEST_LEN);
}
static void
md5_sum_digest (Md5sum *md5,
guint8 *digest)
{
gint i;
for (i = 0; i < MD5_DIGEST_LEN; i++)
digest[i] = md5->digest[i];
}
/*
* SHA-1 Checksum
*/
/* The following implementation comes from D-Bus dbus-sha.c. I've changed
* it to use GLib types and to work more like the MD5 implementation above.
* I left the comments to have a history of this code.
* -- Emmanuele Bassi, ebassi@gnome.org
*/
/* The following comments have the history of where this code
* comes from. I actually copied it from GNet in GNOME CVS.
* - hp@redhat.com
*/
/*
* sha.h : Implementation of the Secure Hash Algorithm
*
* Part of the Python Cryptography Toolkit, version 1.0.0
*
* Copyright (C) 1995, A.M. Kuchling
*
* Distribute and use freely; there are no restrictions on further
* dissemination and usage except those imposed by the laws of your
* country of residence.
*
*/
/* SHA: NIST's Secure Hash Algorithm */
/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
Modified to test for endianness on creation of SHA objects by AMK.
Also, the original specification of SHA was found to have a weakness
by NSA/NIST. This code implements the fixed version of SHA.
*/
/* Here's the first paragraph of Peter Gutmann's posting:
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
what's changed in the new version. The fix is a simple change which involves
adding a single rotate in the initial expansion function. It is unknown
whether this is an optimal solution to the problem which was discovered in the
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
effort (for example the reengineering of a great many Capstone chips).
*/
static void
sha1_sum_init (Sha1sum *sha1)
{
/* initialize constants */
sha1->buf[0] = 0x67452301L;
sha1->buf[1] = 0xEFCDAB89L;
sha1->buf[2] = 0x98BADCFEL;
sha1->buf[3] = 0x10325476L;
sha1->buf[4] = 0xC3D2E1F0L;
/* initialize bits */
sha1->bits[0] = sha1->bits[1] = 0;
}
/* The SHA f()-functions. */
#define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */
#define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */
#define f3(x,y,z) (( x & y) | (z & (x | y))) /* Rounds 40-59 */
#define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */
/* The SHA Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* 32-bit rotate left - kludged with shifts */
#define ROTL(n,X) (((X) << n ) | ((X) >> (32 - n)))
/* The initial expanding function. The hash function is defined over an
80-word expanded input array W, where the first 16 are copies of the input
data, and the remaining 64 are defined by
W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
This implementation generates these values on the fly in a circular
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
optimization.
The updated SHA changes the expanding function by adding a rotate of 1
bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
for this information */
#define expand(W,i) (W[ i & 15 ] = ROTL (1, (W[ i & 15] ^ \
W[(i - 14) & 15] ^ \
W[(i - 8) & 15] ^ \
W[(i - 3) & 15])))
/* The prototype SHA sub-round. The fundamental sub-round is:
a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
b' = a;
c' = ROTL( 30, b );
d' = c;
e' = d;
but this is implemented by unrolling the loop 5 times and renaming the
variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
This code is then replicated 20 times for each of the 4 functions, using
the next 20 values from the W[] array each time */
#define subRound(a, b, c, d, e, f, k, data) \
(e += ROTL (5, a) + f(b, c, d) + k + data, b = ROTL (30, b))
static void
sha1_transform (guint32 buf[5],
guint32 in[16])
{
guint32 A, B, C, D, E;
A = buf[0];
B = buf[1];
C = buf[2];
D = buf[3];
E = buf[4];
/* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
subRound (A, B, C, D, E, f1, K1, in[0]);
subRound (E, A, B, C, D, f1, K1, in[1]);
subRound (D, E, A, B, C, f1, K1, in[2]);
subRound (C, D, E, A, B, f1, K1, in[3]);
subRound (B, C, D, E, A, f1, K1, in[4]);
subRound (A, B, C, D, E, f1, K1, in[5]);
subRound (E, A, B, C, D, f1, K1, in[6]);
subRound (D, E, A, B, C, f1, K1, in[7]);
subRound (C, D, E, A, B, f1, K1, in[8]);
subRound (B, C, D, E, A, f1, K1, in[9]);
subRound (A, B, C, D, E, f1, K1, in[10]);
subRound (E, A, B, C, D, f1, K1, in[11]);
subRound (D, E, A, B, C, f1, K1, in[12]);
subRound (C, D, E, A, B, f1, K1, in[13]);
subRound (B, C, D, E, A, f1, K1, in[14]);
subRound (A, B, C, D, E, f1, K1, in[15]);
subRound (E, A, B, C, D, f1, K1, expand (in, 16));
subRound (D, E, A, B, C, f1, K1, expand (in, 17));
subRound (C, D, E, A, B, f1, K1, expand (in, 18));
subRound (B, C, D, E, A, f1, K1, expand (in, 19));
subRound (A, B, C, D, E, f2, K2, expand (in, 20));
subRound (E, A, B, C, D, f2, K2, expand (in, 21));
subRound (D, E, A, B, C, f2, K2, expand (in, 22));
subRound (C, D, E, A, B, f2, K2, expand (in, 23));
subRound (B, C, D, E, A, f2, K2, expand (in, 24));
subRound (A, B, C, D, E, f2, K2, expand (in, 25));
subRound (E, A, B, C, D, f2, K2, expand (in, 26));
subRound (D, E, A, B, C, f2, K2, expand (in, 27));
subRound (C, D, E, A, B, f2, K2, expand (in, 28));
subRound (B, C, D, E, A, f2, K2, expand (in, 29));
subRound (A, B, C, D, E, f2, K2, expand (in, 30));
subRound (E, A, B, C, D, f2, K2, expand (in, 31));
subRound (D, E, A, B, C, f2, K2, expand (in, 32));
subRound (C, D, E, A, B, f2, K2, expand (in, 33));
subRound (B, C, D, E, A, f2, K2, expand (in, 34));
subRound (A, B, C, D, E, f2, K2, expand (in, 35));
subRound (E, A, B, C, D, f2, K2, expand (in, 36));
subRound (D, E, A, B, C, f2, K2, expand (in, 37));
subRound (C, D, E, A, B, f2, K2, expand (in, 38));
subRound (B, C, D, E, A, f2, K2, expand (in, 39));
subRound (A, B, C, D, E, f3, K3, expand (in, 40));
subRound (E, A, B, C, D, f3, K3, expand (in, 41));
subRound (D, E, A, B, C, f3, K3, expand (in, 42));
subRound (C, D, E, A, B, f3, K3, expand (in, 43));
subRound (B, C, D, E, A, f3, K3, expand (in, 44));
subRound (A, B, C, D, E, f3, K3, expand (in, 45));
subRound (E, A, B, C, D, f3, K3, expand (in, 46));
subRound (D, E, A, B, C, f3, K3, expand (in, 47));
subRound (C, D, E, A, B, f3, K3, expand (in, 48));
subRound (B, C, D, E, A, f3, K3, expand (in, 49));
subRound (A, B, C, D, E, f3, K3, expand (in, 50));
subRound (E, A, B, C, D, f3, K3, expand (in, 51));
subRound (D, E, A, B, C, f3, K3, expand (in, 52));
subRound (C, D, E, A, B, f3, K3, expand (in, 53));
subRound (B, C, D, E, A, f3, K3, expand (in, 54));
subRound (A, B, C, D, E, f3, K3, expand (in, 55));
subRound (E, A, B, C, D, f3, K3, expand (in, 56));
subRound (D, E, A, B, C, f3, K3, expand (in, 57));
subRound (C, D, E, A, B, f3, K3, expand (in, 58));
subRound (B, C, D, E, A, f3, K3, expand (in, 59));
subRound (A, B, C, D, E, f4, K4, expand (in, 60));
subRound (E, A, B, C, D, f4, K4, expand (in, 61));
subRound (D, E, A, B, C, f4, K4, expand (in, 62));
subRound (C, D, E, A, B, f4, K4, expand (in, 63));
subRound (B, C, D, E, A, f4, K4, expand (in, 64));
subRound (A, B, C, D, E, f4, K4, expand (in, 65));
subRound (E, A, B, C, D, f4, K4, expand (in, 66));
subRound (D, E, A, B, C, f4, K4, expand (in, 67));
subRound (C, D, E, A, B, f4, K4, expand (in, 68));
subRound (B, C, D, E, A, f4, K4, expand (in, 69));
subRound (A, B, C, D, E, f4, K4, expand (in, 70));
subRound (E, A, B, C, D, f4, K4, expand (in, 71));
subRound (D, E, A, B, C, f4, K4, expand (in, 72));
subRound (C, D, E, A, B, f4, K4, expand (in, 73));
subRound (B, C, D, E, A, f4, K4, expand (in, 74));
subRound (A, B, C, D, E, f4, K4, expand (in, 75));
subRound (E, A, B, C, D, f4, K4, expand (in, 76));
subRound (D, E, A, B, C, f4, K4, expand (in, 77));
subRound (C, D, E, A, B, f4, K4, expand (in, 78));
subRound (B, C, D, E, A, f4, K4, expand (in, 79));
/* Build message digest */
buf[0] += A;
buf[1] += B;
buf[2] += C;
buf[3] += D;
buf[4] += E;
}
#undef K1
#undef K2
#undef K3
#undef K4
#undef f1
#undef f2
#undef f3
#undef f4
#undef ROTL
#undef expand
#undef subRound
static void
sha1_sum_update (Sha1sum *sha1,
const guchar *buffer,
gsize count)
{
guint32 tmp;
guint dataCount;
/* Update bitcount */
tmp = sha1->bits[0];
if ((sha1->bits[0] = tmp + ((guint32) count << 3) ) < tmp)
sha1->bits[1] += 1; /* Carry from low to high */
sha1->bits[1] += count >> 29;
/* Get count of bytes already in data */
dataCount = (guint) (tmp >> 3) & 0x3F;
/* Handle any leading odd-sized chunks */
if (dataCount)
{
guchar *p = (guchar *) sha1->data + dataCount;
dataCount = SHA1_DATASIZE - dataCount;
if (count < dataCount)
{
memcpy (p, buffer, count);
return;
}
memcpy (p, buffer, dataCount);
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
sha1_transform (sha1->buf, sha1->data);
buffer += dataCount;
count -= dataCount;
}
/* Process data in SHA1_DATASIZE chunks */
while (count >= SHA1_DATASIZE)
{
memcpy (sha1->data, buffer, SHA1_DATASIZE);
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
sha1_transform (sha1->buf, sha1->data);
buffer += SHA1_DATASIZE;
count -= SHA1_DATASIZE;
}
/* Handle any remaining bytes of data. */
memcpy (sha1->data, buffer, count);
}
/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
1 0* (64-bit count of bits processed, MSB-first) */
static void
sha1_sum_close (Sha1sum *sha1)
{
size_t count;
guchar *data_p;
/* Compute number of bytes mod 64 */
count = (sha1->bits[0] >> 3) & 0x3f;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
data_p = (guchar *) sha1->data + count;
*data_p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = SHA1_DATASIZE - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8)
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset (data_p, 0, count);
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
sha1_transform (sha1->buf, sha1->data);
/* Now fill the next block with 56 bytes */
memset (sha1->data, 0, SHA1_DATASIZE - 8);
}
else
{
/* Pad block to 56 bytes */
memset (data_p, 0, count - 8);
}
/* Append length in bits and transform */
sha1->data[14] = sha1->bits[1];
sha1->data[15] = sha1->bits[0];
sha_byte_reverse (sha1->data, SHA1_DATASIZE - 8);
sha1_transform (sha1->buf, sha1->data);
sha_byte_reverse (sha1->buf, SHA1_DIGEST_LEN);
memcpy (sha1->digest, sha1->buf, SHA1_DIGEST_LEN);
/* Reset buffers in case they contain sensitive data */
memset (sha1->buf, 0, sizeof (sha1->buf));
memset (sha1->data, 0, sizeof (sha1->data));
}
static gchar *
sha1_sum_to_string (Sha1sum *sha1)
{
return digest_to_string (sha1->digest, SHA1_DIGEST_LEN);
}
static void
sha1_sum_digest (Sha1sum *sha1,
guint8 *digest)
{
size_t i;
for (i = 0; i < SHA1_DIGEST_LEN; i++)
digest[i] = sha1->digest[i];
}
/*
* SHA-256 Checksum
*/
/* adapted from the SHA256 implementation in gsk/src/hash/gskhash.c.
*
* Copyright (C) 2006 Dave Benson
* Released under the terms of the GNU Lesser General Public License
*/
static void
sha256_sum_init (Sha256sum *sha256)
{
sha256->buf[0] = 0x6a09e667;
sha256->buf[1] = 0xbb67ae85;
sha256->buf[2] = 0x3c6ef372;
sha256->buf[3] = 0xa54ff53a;
sha256->buf[4] = 0x510e527f;
sha256->buf[5] = 0x9b05688c;
sha256->buf[6] = 0x1f83d9ab;
sha256->buf[7] = 0x5be0cd19;
sha256->bits[0] = sha256->bits[1] = 0;
}
#define GET_UINT32(n,b,i) G_STMT_START{ \
(n) = ((guint32) (b)[(i) ] << 24) \
| ((guint32) (b)[(i) + 1] << 16) \
| ((guint32) (b)[(i) + 2] << 8) \
| ((guint32) (b)[(i) + 3] ); } G_STMT_END
#define PUT_UINT32(n,b,i) G_STMT_START{ \
(b)[(i) ] = (guint8) ((n) >> 24); \
(b)[(i) + 1] = (guint8) ((n) >> 16); \
(b)[(i) + 2] = (guint8) ((n) >> 8); \
(b)[(i) + 3] = (guint8) ((n) ); } G_STMT_END
static void
sha256_transform (guint32 buf[8],
guint8 const data[64])
{
guint32 temp1, temp2, W[64];
guint32 A, B, C, D, E, F, G, H;
GET_UINT32 (W[0], data, 0);
GET_UINT32 (W[1], data, 4);
GET_UINT32 (W[2], data, 8);
GET_UINT32 (W[3], data, 12);
GET_UINT32 (W[4], data, 16);
GET_UINT32 (W[5], data, 20);
GET_UINT32 (W[6], data, 24);
GET_UINT32 (W[7], data, 28);
GET_UINT32 (W[8], data, 32);
GET_UINT32 (W[9], data, 36);
GET_UINT32 (W[10], data, 40);
GET_UINT32 (W[11], data, 44);
GET_UINT32 (W[12], data, 48);
GET_UINT32 (W[13], data, 52);
GET_UINT32 (W[14], data, 56);
GET_UINT32 (W[15], data, 60);
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
#define ROTR(x,n) (SHR (x,n) | (x << (32 - n)))
#define S0(x) (ROTR (x, 7) ^ ROTR (x,18) ^ SHR (x, 3))
#define S1(x) (ROTR (x,17) ^ ROTR (x,19) ^ SHR (x,10))
#define S2(x) (ROTR (x, 2) ^ ROTR (x,13) ^ ROTR (x,22))
#define S3(x) (ROTR (x, 6) ^ ROTR (x,11) ^ ROTR (x,25))
#define F0(x,y,z) ((x & y) | (z & (x | y)))
#define F1(x,y,z) (z ^ (x & (y ^ z)))
#define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + \
S0(W[t - 15]) + W[t - 16])
#define P(a,b,c,d,e,f,g,h,x,K) G_STMT_START { \
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
temp2 = S2(a) + F0(a,b,c); \
d += temp1; h = temp1 + temp2; } G_STMT_END
A = buf[0];
B = buf[1];
C = buf[2];
D = buf[3];
E = buf[4];
F = buf[5];
G = buf[6];
H = buf[7];
P (A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98);
P (H, A, B, C, D, E, F, G, W[ 1], 0x71374491);
P (G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF);
P (F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5);
P (E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B);
P (D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1);
P (C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4);
P (B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5);
P (A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98);
P (H, A, B, C, D, E, F, G, W[ 9], 0x12835B01);
P (G, H, A, B, C, D, E, F, W[10], 0x243185BE);
P (F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
P (E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
P (D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
P (C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
P (B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
P (A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
P (H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
P (G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
P (F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
P (E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
P (D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
P (C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
P (B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
P (A, B, C, D, E, F, G, H, R(24), 0x983E5152);
P (H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
P (G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
P (F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
P (E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
P (D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
P (C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
P (B, C, D, E, F, G, H, A, R(31), 0x14292967);
P (A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
P (H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
P (G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
P (F, G, H, A, B, C, D, E, R(35), 0x53380D13);
P (E, F, G, H, A, B, C, D, R(36), 0x650A7354);
P (D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
P (C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
P (B, C, D, E, F, G, H, A, R(39), 0x92722C85);
P (A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
P (H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
P (G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
P (F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
P (E, F, G, H, A, B, C, D, R(44), 0xD192E819);
P (D, E, F, G, H, A, B, C, R(45), 0xD6990624);
P (C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
P (B, C, D, E, F, G, H, A, R(47), 0x106AA070);
P (A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
P (H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
P (G, H, A, B, C, D, E, F, R(50), 0x2748774C);
P (F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
P (E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
P (D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
P (C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
P (B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
P (A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
P (H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
P (G, H, A, B, C, D, E, F, R(58), 0x84C87814);
P (F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
P (E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
P (D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
P (C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
P (B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
#undef SHR
#undef ROTR
#undef S0
#undef S1
#undef S2
#undef S3
#undef F0
#undef F1
#undef R
#undef P
buf[0] += A;
buf[1] += B;
buf[2] += C;
buf[3] += D;
buf[4] += E;
buf[5] += F;
buf[6] += G;
buf[7] += H;
}
static void
sha256_sum_update (Sha256sum *sha256,
const guchar *buffer,
gsize length)
{
guint32 left, fill;
const guint8 *input = buffer;
if (length == 0)
return;
left = sha256->bits[0] & 0x3F;
fill = 64 - left;
sha256->bits[0] += length;
sha256->bits[0] &= 0xFFFFFFFF;
if (sha256->bits[0] < length)
sha256->bits[1]++;
if (left > 0 && length >= fill)
{
memcpy ((sha256->data + left), input, fill);
sha256_transform (sha256->buf, sha256->data);
length -= fill;
input += fill;
left = 0;
}
while (length >= SHA256_DATASIZE)
{
sha256_transform (sha256->buf, input);
length -= 64;
input += 64;
}
if (length)
memcpy (sha256->data + left, input, length);
}
static guint8 sha256_padding[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static void
sha256_sum_close (Sha256sum *sha256)
{
guint32 last, padn;
guint32 high, low;
guint8 msglen[8];
high = (sha256->bits[0] >> 29)
| (sha256->bits[1] << 3);
low = (sha256->bits[0] << 3);
PUT_UINT32 (high, msglen, 0);
PUT_UINT32 (low, msglen, 4);
last = sha256->bits[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
sha256_sum_update (sha256, sha256_padding, padn);
sha256_sum_update (sha256, msglen, 8);
PUT_UINT32 (sha256->buf[0], sha256->digest, 0);
PUT_UINT32 (sha256->buf[1], sha256->digest, 4);
PUT_UINT32 (sha256->buf[2], sha256->digest, 8);
PUT_UINT32 (sha256->buf[3], sha256->digest, 12);
PUT_UINT32 (sha256->buf[4], sha256->digest, 16);
PUT_UINT32 (sha256->buf[5], sha256->digest, 20);
PUT_UINT32 (sha256->buf[6], sha256->digest, 24);
PUT_UINT32 (sha256->buf[7], sha256->digest, 28);
}
#undef PUT_UINT32
#undef GET_UINT32
static gchar *
sha256_sum_to_string (Sha256sum *sha256)
{
return digest_to_string (sha256->digest, SHA256_DIGEST_LEN);
}
static void
sha256_sum_digest (Sha256sum *sha256,
guint8 *digest)
{
gint i;
for (i = 0; i < SHA256_DIGEST_LEN; i++)
digest[i] = sha256->digest[i];
}
/*
* SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Checksums
*
* Implemented following FIPS-180-4 standard at
* http://csrc.nist.gov/publications/fips/fips180-4/fips180-4.pdf.
* References in the form [§x.y.z] map to sections in that document.
*
* Author(s): Eduardo Lima Mitev <elima@igalia.com>
* Igor Gnatenko <ignatenko@src.gnome.org>
*/
/* SHA-384, SHA-512, SHA-512/224 and SHA-512/256 functions [§4.1.3] */
#define Ch(x,y,z) ((x & y) ^ (~x & z))
#define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
#define SHR(n,x) (x >> n)
#define ROTR(n,x) (SHR (n, x) | (x << (64 - n)))
#define SIGMA0(x) (ROTR (28, x) ^ ROTR (34, x) ^ ROTR (39, x))
#define SIGMA1(x) (ROTR (14, x) ^ ROTR (18, x) ^ ROTR (41, x))
#define sigma0(x) (ROTR ( 1, x) ^ ROTR ( 8, x) ^ SHR ( 7, x))
#define sigma1(x) (ROTR (19, x) ^ ROTR (61, x) ^ SHR ( 6, x))
#define PUT_UINT64(n,b,i) G_STMT_START{ \
(b)[(i) ] = (guint8) (n >> 56); \
(b)[(i) + 1] = (guint8) (n >> 48); \
(b)[(i) + 2] = (guint8) (n >> 40); \
(b)[(i) + 3] = (guint8) (n >> 32); \
(b)[(i) + 4] = (guint8) (n >> 24); \
(b)[(i) + 5] = (guint8) (n >> 16); \
(b)[(i) + 6] = (guint8) (n >> 8); \
(b)[(i) + 7] = (guint8) (n ); } G_STMT_END
/* SHA-384 and SHA-512 constants [§4.2.3] */
static const guint64 SHA2_K[80] = {
G_GUINT64_CONSTANT (0x428a2f98d728ae22), G_GUINT64_CONSTANT (0x7137449123ef65cd),
G_GUINT64_CONSTANT (0xb5c0fbcfec4d3b2f), G_GUINT64_CONSTANT (0xe9b5dba58189dbbc),
G_GUINT64_CONSTANT (0x3956c25bf348b538), G_GUINT64_CONSTANT (0x59f111f1b605d019),
G_GUINT64_CONSTANT (0x923f82a4af194f9b), G_GUINT64_CONSTANT (0xab1c5ed5da6d8118),
G_GUINT64_CONSTANT (0xd807aa98a3030242), G_GUINT64_CONSTANT (0x12835b0145706fbe),
G_GUINT64_CONSTANT (0x243185be4ee4b28c), G_GUINT64_CONSTANT (0x550c7dc3d5ffb4e2),
G_GUINT64_CONSTANT (0x72be5d74f27b896f), G_GUINT64_CONSTANT (0x80deb1fe3b1696b1),
G_GUINT64_CONSTANT (0x9bdc06a725c71235), G_GUINT64_CONSTANT (0xc19bf174cf692694),
G_GUINT64_CONSTANT (0xe49b69c19ef14ad2), G_GUINT64_CONSTANT (0xefbe4786384f25e3),
G_GUINT64_CONSTANT (0x0fc19dc68b8cd5b5), G_GUINT64_CONSTANT (0x240ca1cc77ac9c65),
G_GUINT64_CONSTANT (0x2de92c6f592b0275), G_GUINT64_CONSTANT (0x4a7484aa6ea6e483),
G_GUINT64_CONSTANT (0x5cb0a9dcbd41fbd4), G_GUINT64_CONSTANT (0x76f988da831153b5),
G_GUINT64_CONSTANT (0x983e5152ee66dfab), G_GUINT64_CONSTANT (0xa831c66d2db43210),
G_GUINT64_CONSTANT (0xb00327c898fb213f), G_GUINT64_CONSTANT (0xbf597fc7beef0ee4),
G_GUINT64_CONSTANT (0xc6e00bf33da88fc2), G_GUINT64_CONSTANT (0xd5a79147930aa725),
G_GUINT64_CONSTANT (0x06ca6351e003826f), G_GUINT64_CONSTANT (0x142929670a0e6e70),
G_GUINT64_CONSTANT (0x27b70a8546d22ffc), G_GUINT64_CONSTANT (0x2e1b21385c26c926),
G_GUINT64_CONSTANT (0x4d2c6dfc5ac42aed), G_GUINT64_CONSTANT (0x53380d139d95b3df),
G_GUINT64_CONSTANT (0x650a73548baf63de), G_GUINT64_CONSTANT (0x766a0abb3c77b2a8),
G_GUINT64_CONSTANT (0x81c2c92e47edaee6), G_GUINT64_CONSTANT (0x92722c851482353b),
G_GUINT64_CONSTANT (0xa2bfe8a14cf10364), G_GUINT64_CONSTANT (0xa81a664bbc423001),
G_GUINT64_CONSTANT (0xc24b8b70d0f89791), G_GUINT64_CONSTANT (0xc76c51a30654be30),
G_GUINT64_CONSTANT (0xd192e819d6ef5218), G_GUINT64_CONSTANT (0xd69906245565a910),
G_GUINT64_CONSTANT (0xf40e35855771202a), G_GUINT64_CONSTANT (0x106aa07032bbd1b8),
G_GUINT64_CONSTANT (0x19a4c116b8d2d0c8), G_GUINT64_CONSTANT (0x1e376c085141ab53),
G_GUINT64_CONSTANT (0x2748774cdf8eeb99), G_GUINT64_CONSTANT (0x34b0bcb5e19b48a8),
G_GUINT64_CONSTANT (0x391c0cb3c5c95a63), G_GUINT64_CONSTANT (0x4ed8aa4ae3418acb),
G_GUINT64_CONSTANT (0x5b9cca4f7763e373), G_GUINT64_CONSTANT (0x682e6ff3d6b2b8a3),
G_GUINT64_CONSTANT (0x748f82ee5defb2fc), G_GUINT64_CONSTANT (0x78a5636f43172f60),
G_GUINT64_CONSTANT (0x84c87814a1f0ab72), G_GUINT64_CONSTANT (0x8cc702081a6439ec),
G_GUINT64_CONSTANT (0x90befffa23631e28), G_GUINT64_CONSTANT (0xa4506cebde82bde9),
G_GUINT64_CONSTANT (0xbef9a3f7b2c67915), G_GUINT64_CONSTANT (0xc67178f2e372532b),
G_GUINT64_CONSTANT (0xca273eceea26619c), G_GUINT64_CONSTANT (0xd186b8c721c0c207),
G_GUINT64_CONSTANT (0xeada7dd6cde0eb1e), G_GUINT64_CONSTANT (0xf57d4f7fee6ed178),
G_GUINT64_CONSTANT (0x06f067aa72176fba), G_GUINT64_CONSTANT (0x0a637dc5a2c898a6),
G_GUINT64_CONSTANT (0x113f9804bef90dae), G_GUINT64_CONSTANT (0x1b710b35131c471b),
G_GUINT64_CONSTANT (0x28db77f523047d84), G_GUINT64_CONSTANT (0x32caab7b40c72493),
G_GUINT64_CONSTANT (0x3c9ebe0a15c9bebc), G_GUINT64_CONSTANT (0x431d67c49c100d4c),
G_GUINT64_CONSTANT (0x4cc5d4becb3e42b6), G_GUINT64_CONSTANT (0x597f299cfc657e2a),
G_GUINT64_CONSTANT (0x5fcb6fab3ad6faec), G_GUINT64_CONSTANT (0x6c44198c4a475817)
};
static void
sha384_sum_init (Sha512sum *sha512)
{
/* Initial Hash Value [§5.3.4] */
sha512->H[0] = G_GUINT64_CONSTANT (0xcbbb9d5dc1059ed8);
sha512->H[1] = G_GUINT64_CONSTANT (0x629a292a367cd507);
sha512->H[2] = G_GUINT64_CONSTANT (0x9159015a3070dd17);
sha512->H[3] = G_GUINT64_CONSTANT (0x152fecd8f70e5939);
sha512->H[4] = G_GUINT64_CONSTANT (0x67332667ffc00b31);
sha512->H[5] = G_GUINT64_CONSTANT (0x8eb44a8768581511);
sha512->H[6] = G_GUINT64_CONSTANT (0xdb0c2e0d64f98fa7);
sha512->H[7] = G_GUINT64_CONSTANT (0x47b5481dbefa4fa4);
sha512->block_len = 0;
sha512->data_len[0] = 0;
sha512->data_len[1] = 0;
}
static void
sha512_sum_init (Sha512sum *sha512)
{
/* Initial Hash Value [§5.3.5] */
sha512->H[0] = G_GUINT64_CONSTANT (0x6a09e667f3bcc908);
sha512->H[1] = G_GUINT64_CONSTANT (0xbb67ae8584caa73b);
sha512->H[2] = G_GUINT64_CONSTANT (0x3c6ef372fe94f82b);
sha512->H[3] = G_GUINT64_CONSTANT (0xa54ff53a5f1d36f1);
sha512->H[4] = G_GUINT64_CONSTANT (0x510e527fade682d1);
sha512->H[5] = G_GUINT64_CONSTANT (0x9b05688c2b3e6c1f);
sha512->H[6] = G_GUINT64_CONSTANT (0x1f83d9abfb41bd6b);
sha512->H[7] = G_GUINT64_CONSTANT (0x5be0cd19137e2179);
sha512->block_len = 0;
sha512->data_len[0] = 0;
sha512->data_len[1] = 0;
}
static void
sha512_transform (guint64 H[8],
guint8 const data[SHA2_BLOCK_LEN])
{
gint i;
gint t;
guint64 a, b, c, d, e, f, g, h;
guint64 M[16];
guint64 W[80];
/* SHA-512 hash computation [§6.4.2] */
/* prepare the message schedule */
for (i = 0; i < 16; i++)
{
gint p = i * 8;
M[i] =
((guint64) data[p + 0] << 56) |
((guint64) data[p + 1] << 48) |
((guint64) data[p + 2] << 40) |
((guint64) data[p + 3] << 32) |
((guint64) data[p + 4] << 24) |
((guint64) data[p + 5] << 16) |
((guint64) data[p + 6] << 8) |
((guint64) data[p + 7] );
}
for (t = 0; t < 80; t++)
if (t < 16)
W[t] = M[t];
else
W[t] = sigma1 (W[t - 2]) + W[t - 7] + sigma0 (W[t - 15]) + W[t - 16];
/* initialize the eight working variables */
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
f = H[5];
g = H[6];
h = H[7];
for (t = 0; t < 80; t++)
{
guint64 T1, T2;
T1 = h + SIGMA1 (e) + Ch (e, f, g) + SHA2_K[t] + W[t];
T2 = SIGMA0 (a) + Maj (a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
/* Compute the intermediate hash value H */
H[0] += a;
H[1] += b;
H[2] += c;
H[3] += d;
H[4] += e;
H[5] += f;
H[6] += g;
H[7] += h;
}
static void
sha512_sum_update (Sha512sum *sha512,
const guchar *buffer,
gsize length)
{
gsize block_left, offset = 0;
if (length == 0)
return;
sha512->data_len[0] += length * 8;
if (sha512->data_len[0] < length)
sha512->data_len[1]++;
/* try to fill current block */
block_left = SHA2_BLOCK_LEN - sha512->block_len;
if (block_left > 0)
{
gsize fill_len;
fill_len = MIN (block_left, length);
memcpy (sha512->block + sha512->block_len, buffer, fill_len);
sha512->block_len += fill_len;
length -= fill_len;
offset += fill_len;
if (sha512->block_len == SHA2_BLOCK_LEN)
{
sha512_transform (sha512->H, sha512->block);
sha512->block_len = 0;
}
}
/* process complete blocks */
while (length >= SHA2_BLOCK_LEN)
{
memcpy (sha512->block, buffer + offset, SHA2_BLOCK_LEN);
sha512_transform (sha512->H, sha512->block);
length -= SHA2_BLOCK_LEN;
offset += SHA2_BLOCK_LEN;
}
/* keep remaining data for next block */
if (length > 0)
{
memcpy (sha512->block, buffer + offset, length);
sha512->block_len = length;
}
}
static void
sha512_sum_close (Sha512sum *sha512)
{
guint l;
size_t zeros;
guint8 pad[SHA2_BLOCK_LEN * 2] = { 0, };
size_t pad_len = 0;
size_t i;
/* apply padding [§5.1.2] */
l = sha512->block_len * 8;
if (896 < l + 1)
zeros = 896 - (l + 1) + 128 * 8;
else
zeros = 896 - (l + 1);
pad[0] = 0x80; /* 1000 0000 */
zeros -= 7;
pad_len++;
memset (pad + pad_len, 0x00, zeros / 8);
pad_len += zeros / 8;
zeros = zeros % 8;
(void) zeros; /* don’t care about the dead store */
/* put message bit length at the end of padding */
PUT_UINT64 (sha512->data_len[1], pad, pad_len);
pad_len += 8;
PUT_UINT64 (sha512->data_len[0], pad, pad_len);
pad_len += 8;
/* update checksum with the padded block */
sha512_sum_update (sha512, pad, pad_len);
/* copy resulting 64-bit words into digest */
for (i = 0; i < 8; i++)
PUT_UINT64 (sha512->H[i], sha512->digest, i * 8);
}
static gchar *
sha384_sum_to_string (Sha512sum *sha512)
{
return digest_to_string (sha512->digest, SHA384_DIGEST_LEN);
}
static gchar *
sha512_sum_to_string (Sha512sum *sha512)
{
return digest_to_string (sha512->digest, SHA512_DIGEST_LEN);
}
static void
sha384_sum_digest (Sha512sum *sha512,
guint8 *digest)
{
memcpy (digest, sha512->digest, SHA384_DIGEST_LEN);
}
static void
sha512_sum_digest (Sha512sum *sha512,
guint8 *digest)
{
memcpy (digest, sha512->digest, SHA512_DIGEST_LEN);
}
#undef Ch
#undef Maj
#undef SHR
#undef ROTR
#undef SIGMA0
#undef SIGMA1
#undef sigma0
#undef sigma1
#undef PUT_UINT64
/*
* Public API
*/
/**
* g_checksum_type_get_length:
* @checksum_type: a #GChecksumType
*
* Gets the length in bytes of digests of type @checksum_type
*
* Returns: the checksum length, or -1 if @checksum_type is
* not supported.
*
* Since: 2.16
*/
gssize
g_checksum_type_get_length (GChecksumType checksum_type)
{
gssize len = -1;
switch (checksum_type)
{
case G_CHECKSUM_MD5:
len = MD5_DIGEST_LEN;
break;
case G_CHECKSUM_SHA1:
len = SHA1_DIGEST_LEN;
break;
case G_CHECKSUM_SHA256:
len = SHA256_DIGEST_LEN;
break;
case G_CHECKSUM_SHA384:
len = SHA384_DIGEST_LEN;
break;
case G_CHECKSUM_SHA512:
len = SHA512_DIGEST_LEN;
break;
default:
len = -1;
break;
}
return len;
}
/**
* g_checksum_new:
* @checksum_type: the desired type of checksum
*
* Creates a new #GChecksum, using the checksum algorithm @checksum_type.
* If the @checksum_type is not known, %NULL is returned.
* A #GChecksum can be used to compute the checksum, or digest, of an
* arbitrary binary blob, using different hashing algorithms.
*
* A #GChecksum works by feeding a binary blob through g_checksum_update()
* until there is data to be checked; the digest can then be extracted
* using g_checksum_get_string(), which will return the checksum as a
* hexadecimal string; or g_checksum_get_digest(), which will return a
* vector of raw bytes. Once either g_checksum_get_string() or
* g_checksum_get_digest() have been called on a #GChecksum, the checksum
* will be closed and it won't be possible to call g_checksum_update()
* on it anymore.
*
* Returns: (transfer full) (nullable): the newly created #GChecksum, or %NULL.
* Use g_checksum_free() to free the memory allocated by it.
*
* Since: 2.16
*/
GChecksum *
g_checksum_new (GChecksumType checksum_type)
{
GChecksum *checksum;
if (! IS_VALID_TYPE (checksum_type))
return NULL;
checksum = g_slice_new0 (GChecksum);
checksum->type = checksum_type;
g_checksum_reset (checksum);
return checksum;
}
/**
* g_checksum_reset:
* @checksum: the #GChecksum to reset
*
* Resets the state of the @checksum back to its initial state.
*
* Since: 2.18
**/
void
g_checksum_reset (GChecksum *checksum)
{
g_return_if_fail (checksum != NULL);
g_free (checksum->digest_str);
checksum->digest_str = NULL;
switch (checksum->type)
{
case G_CHECKSUM_MD5:
md5_sum_init (&(checksum->sum.md5));
break;
case G_CHECKSUM_SHA1:
sha1_sum_init (&(checksum->sum.sha1));
break;
case G_CHECKSUM_SHA256:
sha256_sum_init (&(checksum->sum.sha256));
break;
case G_CHECKSUM_SHA384:
sha384_sum_init (&(checksum->sum.sha512));
break;
case G_CHECKSUM_SHA512:
sha512_sum_init (&(checksum->sum.sha512));
break;
default:
g_assert_not_reached ();
break;
}
}
/**
* g_checksum_copy:
* @checksum: the #GChecksum to copy
*
* Copies a #GChecksum. If @checksum has been closed, by calling
* g_checksum_get_string() or g_checksum_get_digest(), the copied
* checksum will be closed as well.
*
* Returns: (transfer full): the copy of the passed #GChecksum. Use
* g_checksum_free() when finished using it.
*
* Since: 2.16
*/
GChecksum *
g_checksum_copy (const GChecksum *checksum)
{
GChecksum *copy;
g_return_val_if_fail (checksum != NULL, NULL);
copy = g_slice_new (GChecksum);
*copy = *checksum;
copy->digest_str = g_strdup (checksum->digest_str);
return copy;
}
/**
* g_checksum_free:
* @checksum: a #GChecksum
*
* Frees the memory allocated for @checksum.
*
* Since: 2.16
*/
void
g_checksum_free (GChecksum *checksum)
{
if (G_LIKELY (checksum))
{
g_free (checksum->digest_str);
g_slice_free (GChecksum, checksum);
}
}
/* Internal variant of g_checksum_update() which takes an explicit length and
* doesn’t use strlen() internally. */
static void
checksum_update_internal (GChecksum *checksum,
const guchar *data,
size_t length)
{
g_return_if_fail (checksum != NULL);
g_return_if_fail (length == 0 || data != NULL);
if (checksum->digest_str)
{
g_warning ("The checksum '%s' has been closed and cannot be updated "
"any more.",
checksum->digest_str);
return;
}
switch (checksum->type)
{
case G_CHECKSUM_MD5:
md5_sum_update (&(checksum->sum.md5), data, length);
break;
case G_CHECKSUM_SHA1:
sha1_sum_update (&(checksum->sum.sha1), data, length);
break;
case G_CHECKSUM_SHA256:
sha256_sum_update (&(checksum->sum.sha256), data, length);
break;
case G_CHECKSUM_SHA384:
case G_CHECKSUM_SHA512:
sha512_sum_update (&(checksum->sum.sha512), data, length);
break;
default:
g_assert_not_reached ();
break;
}
}
/**
* g_checksum_update:
* @checksum: a #GChecksum
* @data: (array length=length) (element-type guint8): buffer used to compute the checksum
* @length: size of the buffer, or -1 if it is a null-terminated string.
*
* Feeds @data into an existing #GChecksum. The checksum must still be
* open, that is g_checksum_get_string() or g_checksum_get_digest() must
* not have been called on @checksum.
*
* Since: 2.16
*/
void
g_checksum_update (GChecksum *checksum,
const guchar *data,
gssize length)
{
size_t unsigned_length;
g_return_if_fail (checksum != NULL);
g_return_if_fail (length == 0 || data != NULL);
if (length < 0)
unsigned_length = strlen ((const gchar *) data);
else
unsigned_length = (size_t) length;
checksum_update_internal (checksum, data, unsigned_length);
}
/**
* g_checksum_get_string:
* @checksum: a #GChecksum
*
* Gets the digest as a hexadecimal string.
*
* Once this function has been called the #GChecksum can no longer be
* updated with g_checksum_update().
*
* The hexadecimal characters will be lower case.
*
* Returns: the hexadecimal representation of the checksum. The
* returned string is owned by the checksum and should not be modified
* or freed.
*
* Since: 2.16
*/
const gchar *
g_checksum_get_string (GChecksum *checksum)
{
gchar *str = NULL;
g_return_val_if_fail (checksum != NULL, NULL);
if (checksum->digest_str)
return checksum->digest_str;
switch (checksum->type)
{
case G_CHECKSUM_MD5:
md5_sum_close (&(checksum->sum.md5));
str = md5_sum_to_string (&(checksum->sum.md5));
break;
case G_CHECKSUM_SHA1:
sha1_sum_close (&(checksum->sum.sha1));
str = sha1_sum_to_string (&(checksum->sum.sha1));
break;
case G_CHECKSUM_SHA256:
sha256_sum_close (&(checksum->sum.sha256));
str = sha256_sum_to_string (&(checksum->sum.sha256));
break;
case G_CHECKSUM_SHA384:
sha512_sum_close (&(checksum->sum.sha512));
str = sha384_sum_to_string (&(checksum->sum.sha512));
break;
case G_CHECKSUM_SHA512:
sha512_sum_close (&(checksum->sum.sha512));
str = sha512_sum_to_string (&(checksum->sum.sha512));
break;
default:
g_assert_not_reached ();
break;
}
checksum->digest_str = str;
return checksum->digest_str;
}
/**
* g_checksum_get_digest: (skip)
* @checksum: a #GChecksum
* @buffer: (array length=digest_len): output buffer
* @digest_len: (inout): an inout parameter. The caller initializes it to the size of @buffer.
* After the call it contains the length of the digest.
*
* Gets the digest from @checksum as a raw binary vector and places it
* into @buffer. The size of the digest depends on the type of checksum.
*
* Once this function has been called, the #GChecksum is closed and can
* no longer be updated with g_checksum_update().
*
* Since: 2.16
*/
void
g_checksum_get_digest (GChecksum *checksum,
guint8 *buffer,
gsize *digest_len)
{
gboolean checksum_open = FALSE;
gchar *str = NULL;
gssize signed_len;
gsize len;
g_return_if_fail (checksum != NULL);
signed_len = g_checksum_type_get_length (checksum->type);
g_assert (signed_len >= 0); /* @checksum should be internally consistent */
len = (size_t) signed_len;
g_return_if_fail (*digest_len >= len);
checksum_open = !!(checksum->digest_str == NULL);
switch (checksum->type)
{
case G_CHECKSUM_MD5:
if (checksum_open)
{
md5_sum_close (&(checksum->sum.md5));
str = md5_sum_to_string (&(checksum->sum.md5));
}
md5_sum_digest (&(checksum->sum.md5), buffer);
break;
case G_CHECKSUM_SHA1:
if (checksum_open)
{
sha1_sum_close (&(checksum->sum.sha1));
str = sha1_sum_to_string (&(checksum->sum.sha1));
}
sha1_sum_digest (&(checksum->sum.sha1), buffer);
break;
case G_CHECKSUM_SHA256:
if (checksum_open)
{
sha256_sum_close (&(checksum->sum.sha256));
str = sha256_sum_to_string (&(checksum->sum.sha256));
}
sha256_sum_digest (&(checksum->sum.sha256), buffer);
break;
case G_CHECKSUM_SHA384:
if (checksum_open)
{
sha512_sum_close (&(checksum->sum.sha512));
str = sha384_sum_to_string (&(checksum->sum.sha512));
}
sha384_sum_digest (&(checksum->sum.sha512), buffer);
break;
case G_CHECKSUM_SHA512:
if (checksum_open)
{
sha512_sum_close (&(checksum->sum.sha512));
str = sha512_sum_to_string (&(checksum->sum.sha512));
}
sha512_sum_digest (&(checksum->sum.sha512), buffer);
break;
default:
g_assert_not_reached ();
break;
}
if (str)
checksum->digest_str = str;
*digest_len = len;
}
/**
* g_compute_checksum_for_data:
* @checksum_type: a #GChecksumType
* @data: (array length=length) (element-type guint8): binary blob to compute the digest of
* @length: length of @data
*
* Computes the checksum for a binary @data of @length. This is a
* convenience wrapper for g_checksum_new(), g_checksum_get_string()
* and g_checksum_free().
*
* The hexadecimal string returned will be in lower case.
*
* Returns: (transfer full) (nullable): the digest of the binary data as a
* string in hexadecimal, or %NULL if g_checksum_new() fails for
* @checksum_type. The returned string should be freed with g_free() when
* done using it.
*
* Since: 2.16
*/
gchar *
g_compute_checksum_for_data (GChecksumType checksum_type,
const guchar *data,
gsize length)
{
GChecksum *checksum;
gchar *retval;
g_return_val_if_fail (length == 0 || data != NULL, NULL);
checksum = g_checksum_new (checksum_type);
if (!checksum)
return NULL;
checksum_update_internal (checksum, data, length);
retval = g_strdup (g_checksum_get_string (checksum));
g_checksum_free (checksum);
return retval;
}
/**
* g_compute_checksum_for_string:
* @checksum_type: a #GChecksumType
* @str: the string to compute the checksum of
* @length: the length of the string, or -1 if the string is null-terminated.
*
* Computes the checksum of a string.
*
* The hexadecimal string returned will be in lower case.
*
* Returns: (transfer full) (nullable): the checksum as a hexadecimal string,
* or %NULL if g_checksum_new() fails for @checksum_type. The returned string
* should be freed with g_free() when done using it.
*
* Since: 2.16
*/
gchar *
g_compute_checksum_for_string (GChecksumType checksum_type,
const gchar *str,
gssize length)
{
size_t unsigned_length;
g_return_val_if_fail (length == 0 || str != NULL, NULL);
if (length < 0)
unsigned_length = strlen (str);
else
unsigned_length = (size_t) length;
return g_compute_checksum_for_data (checksum_type, (const guchar *) str, unsigned_length);
}
/**
* g_compute_checksum_for_bytes:
* @checksum_type: a #GChecksumType
* @data: binary blob to compute the digest of
*
* Computes the checksum for a binary @data. This is a
* convenience wrapper for g_checksum_new(), g_checksum_get_string()
* and g_checksum_free().
*
* The hexadecimal string returned will be in lower case.
*
* Returns: (transfer full) (nullable): the digest of the binary data as a
* string in hexadecimal, or %NULL if g_checksum_new() fails for
* @checksum_type. The returned string should be freed with g_free() when
* done using it.
*
* Since: 2.34
*/
gchar *
g_compute_checksum_for_bytes (GChecksumType checksum_type,
GBytes *data)
{
gconstpointer byte_data;
gsize length;
g_return_val_if_fail (data != NULL, NULL);
byte_data = g_bytes_get_data (data, &length);
return g_compute_checksum_for_data (checksum_type, byte_data, length);
}
|