1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/* Load the dependencies of a mapped object.
Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <dlfcn.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <elf/ldsodefs.h>
#include <assert.h>
/* Whether an shared object references one or more auxiliary objects
is signaled by the AUXTAG entry in l_info. */
#define AUXTAG (DT_NUM + DT_PROCNUM + DT_VERSIONTAGNUM \
+ DT_EXTRATAGIDX (DT_AUXILIARY))
/* Whether an shared object references one or more auxiliary objects
is signaled by the AUXTAG entry in l_info. */
#define FILTERTAG (DT_NUM + DT_PROCNUM + DT_VERSIONTAGNUM \
+ DT_EXTRATAGIDX (DT_FILTER))
/* When loading auxiliary objects we must ignore errors. It's ok if
an object is missing. */
struct openaux_args
{
/* The arguments to openaux. */
struct link_map *map;
int trace_mode;
const char *strtab;
const ElfW(Dyn) *d;
/* The return value of openaux. */
struct link_map *aux;
};
static void
openaux (void *a)
{
struct openaux_args *args = (struct openaux_args *) a;
args->aux = _dl_map_object (args->map, args->strtab + args->d->d_un.d_val, 0,
(args->map->l_type == lt_executable
? lt_library : args->map->l_type),
args->trace_mode);
}
/* We use a very special kind of list to track the two kinds paths
through the list of loaded shared objects. We have to
- produce a flat list with unique members of all involved objects
- produce a flat list of all shared objects.
*/
struct list
{
int done; /* Nonzero if this map was processed. */
struct link_map *map; /* The data. */
struct list *unique; /* Elements for normal list. */
struct list *dup; /* Elements in complete list. */
};
void
internal_function
_dl_map_object_deps (struct link_map *map,
struct link_map **preloads, unsigned int npreloads,
int trace_mode)
{
struct list known[1 + npreloads + 1];
struct list *runp, *utail, *dtail;
unsigned int nlist, nduplist, i;
inline void preload (struct link_map *map)
{
known[nlist].done = 0;
known[nlist].map = map;
known[nlist].unique = &known[nlist + 1];
known[nlist].dup = &known[nlist + 1];
++nlist;
/* We use `l_reserved' as a mark bit to detect objects we have
already put in the search list and avoid adding duplicate
elements later in the list. */
map->l_reserved = 1;
}
/* No loaded object so far. */
nlist = 0;
/* First load MAP itself. */
preload (map);
/* Add the preloaded items after MAP but before any of its dependencies. */
for (i = 0; i < npreloads; ++i)
preload (preloads[i]);
/* Terminate the lists. */
known[nlist - 1].unique = NULL;
known[nlist - 1].dup = NULL;
/* Pointer to last unique object. */
utail = &known[nlist - 1];
/* Pointer to last loaded object. */
dtail = &known[nlist - 1];
/* Until now we have the same number of libraries in the normal and
the list with duplicates. */
nduplist = nlist;
/* Process each element of the search list, loading each of its
auxiliary objects and immediate dependencies. Auxiliary objects
will be added in the list before the object itself and
dependencies will be appended to the list as we step through it.
This produces a flat, ordered list that represents a
breadth-first search of the dependency tree.
The whole process is complicated by the fact that we better
should use alloca for the temporary list elements. But using
alloca means we cannot use recursive function calls. */
for (runp = known; runp; )
{
struct link_map *l = runp->map;
if (l->l_info[DT_NEEDED] || l->l_info[AUXTAG] || l->l_info[FILTERTAG])
{
const char *strtab = ((void *) l->l_addr
+ l->l_info[DT_STRTAB]->d_un.d_ptr);
struct openaux_args args;
struct list *orig;
const ElfW(Dyn) *d;
/* Mark map as processed. */
runp->done = 1;
args.strtab = strtab;
args.map = l;
args.trace_mode = trace_mode;
orig = runp;
for (d = l->l_ld; d->d_tag != DT_NULL; ++d)
if (d->d_tag == DT_NEEDED)
{
/* Map in the needed object. */
struct link_map *dep
= _dl_map_object (l, strtab + d->d_un.d_val, 0,
l->l_type == lt_executable ? lt_library :
l->l_type, trace_mode);
/* Allocate new entry. */
struct list *newp = alloca (sizeof (struct list));
/* Add it in any case to the duplicate list. */
newp->map = dep;
newp->dup = NULL;
dtail->dup = newp;
dtail = newp;
++nduplist;
if (dep->l_reserved)
/* This object is already in the search list we are
building. Don't add a duplicate pointer.
Release the reference just added by
_dl_map_object. */
--dep->l_opencount;
else
{
/* Append DEP to the unique list. */
newp->done = 0;
newp->unique = NULL;
utail->unique = newp;
utail = newp;
++nlist;
/* Set the mark bit that says it's already in the list. */
dep->l_reserved = 1;
}
}
else if (d->d_tag == DT_AUXILIARY || d->d_tag == DT_FILTER)
{
char *errstring;
struct list *newp;
if (d->d_tag == DT_AUXILIARY)
{
/* Store the tag in the argument structure. */
args.d = d;
/* Say that we are about to load an auxiliary library. */
if (_dl_debug_libs)
_dl_debug_message (1, "load auxiliary object=",
strtab + d->d_un.d_val,
" requested by file=",
l->l_name[0]
? l->l_name : _dl_argv[0],
"\n", NULL);
/* We must be prepared that the addressed shared
object is not available. */
if (_dl_catch_error (&errstring, openaux, &args))
{
/* We are not interested in the error message. */
assert (errstring != NULL);
free (errstring);
/* Simply ignore this error and continue the work. */
continue;
}
}
else
{
/* Say that we are about to load an auxiliary library. */
if (_dl_debug_libs)
_dl_debug_message (1, "load filtered object=",
strtab + d->d_un.d_val,
" requested by file=",
l->l_name[0]
? l->l_name : _dl_argv[0],
"\n", NULL);
/* For filter objects the dependency must be available. */
args.aux = _dl_map_object (l, strtab + d->d_un.d_val, 0,
(l->l_type == lt_executable
? lt_library : l->l_type),
trace_mode);
}
/* The auxiliary object is actually available.
Incorporate the map in all the lists. */
/* Allocate new entry. This always has to be done. */
newp = alloca (sizeof (struct list));
/* Copy the content of the current entry over. */
orig->dup = memcpy (newp, orig, sizeof (*newp));
/* Initialize new entry. */
orig->done = 0;
orig->map = args.aux;
/* We must handle two situations here: the map is new,
so we must add it in all three lists. If the map
is already known, we have two further possibilities:
- if the object is before the current map in the
search list, we do nothing. It is already found
early
- if the object is after the current one, we must
move it just before the current map to make sure
the symbols are found early enough
*/
if (args.aux->l_reserved)
{
/* The object is already somewhere in the list.
Locate it first. */
struct list *late;
/* This object is already in the search list we
are building. Don't add a duplicate pointer.
Release the reference just added by
_dl_map_object. */
--args.aux->l_opencount;
for (late = orig; late->unique; late = late->unique)
if (late->unique->map == args.aux)
break;
if (late->unique)
{
/* The object is somewhere behind the current
position in the search path. We have to
move it to this earlier position. */
orig->unique = newp;
/* Now remove the later entry from the unique list. */
late->unique = late->unique->unique;
/* We must move the earlier in the chain. */
if (args.aux->l_prev)
args.aux->l_prev->l_next = args.aux->l_next;
if (args.aux->l_next)
args.aux->l_next->l_prev = args.aux->l_prev;
args.aux->l_prev = newp->map->l_prev;
newp->map->l_prev = args.aux;
if (args.aux->l_prev != NULL)
args.aux->l_prev->l_next = args.aux;
args.aux->l_next = newp->map;
}
else
{
/* The object must be somewhere earlier in the
list. That's good, we only have to insert
an entry for the duplicate list. */
orig->unique = NULL; /* Never used. */
/* Now we have a problem. The element
pointing to ORIG in the unique list must
point to NEWP now. This is the only place
where we need this backreference and this
situation is really not that frequent. So
we don't use a double-linked list but
instead search for the preceding element. */
late = known;
while (late->unique != orig)
late = late->unique;
late->unique = newp;
}
}
else
{
/* This is easy. We just add the symbol right here. */
orig->unique = newp;
++nlist;
/* Set the mark bit that says it's already in the list. */
args.aux->l_reserved = 1;
/* The only problem is that in the double linked
list of all objects we don't have this new
object at the correct place. Correct this here. */
if (args.aux->l_prev)
args.aux->l_prev->l_next = args.aux->l_next;
if (args.aux->l_next)
args.aux->l_next->l_prev = args.aux->l_prev;
args.aux->l_prev = newp->map->l_prev;
newp->map->l_prev = args.aux;
if (args.aux->l_prev != NULL)
args.aux->l_prev->l_next = args.aux;
args.aux->l_next = newp->map;
}
/* Move the tail pointers if necessary. */
if (orig == utail)
utail = newp;
if (orig == dtail)
dtail = newp;
/* Move on the insert point. */
orig = newp;
/* We always add an entry to the duplicate list. */
++nduplist;
}
}
else
/* Mark as processed. */
runp->done = 1;
/* If we have no auxiliary objects just go on to the next map. */
if (runp->done)
do
runp = runp->unique;
while (runp != NULL && runp->done);
}
/* Store the search list we built in the object. It will be used for
searches in the scope of this object. */
map->l_searchlist = malloc (nlist * sizeof (struct link_map *));
if (map->l_searchlist == NULL)
_dl_signal_error (ENOMEM, map->l_name,
"cannot allocate symbol search list");
map->l_nsearchlist = nlist;
for (nlist = 0, runp = known; runp; runp = runp->unique)
{
map->l_searchlist[nlist++] = runp->map;
/* Now clear all the mark bits we set in the objects on the search list
to avoid duplicates, so the next call starts fresh. */
runp->map->l_reserved = 0;
}
map->l_ndupsearchlist = nduplist;
if (nlist == nduplist)
map->l_dupsearchlist = map->l_searchlist;
else
{
map->l_dupsearchlist = malloc (nduplist * sizeof (struct link_map *));
if (map->l_dupsearchlist == NULL)
_dl_signal_error (ENOMEM, map->l_name,
"cannot allocate symbol search list");
for (nlist = 0, runp = known; runp; runp = runp->dup)
map->l_dupsearchlist[nlist++] = runp->map;
}
}
|