1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
|
/* Floating point output for `printf'.
Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* The gmp headers need some configuration frobs. */
#define HAVE_ALLOCA 1
#ifdef USE_IN_LIBIO
# include <libioP.h>
#else
# include <stdio.h>
#endif
#include <alloca.h>
#include <ctype.h>
#include <float.h>
#include <gmp-mparam.h>
#include <stdlib/gmp.h>
#include <stdlib/gmp-impl.h>
#include <stdlib/longlong.h>
#include <stdlib/fpioconst.h>
#include <locale/localeinfo.h>
#include <limits.h>
#include <math.h>
#include <printf.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#ifndef NDEBUG
# define NDEBUG /* Undefine this for debugging assertions. */
#endif
#include <assert.h>
/* This defines make it possible to use the same code for GNU C library and
the GNU I/O library. */
#ifdef USE_IN_LIBIO
# define PUT(f, s, n) _IO_sputn (f, s, n)
# define PAD(f, c, n) _IO_padn (f, c, n)
/* We use this file GNU C library and GNU I/O library. So make
names equal. */
# undef putc
# define putc(c, f) _IO_putc_unlocked (c, f)
# define size_t _IO_size_t
# define FILE _IO_FILE
#else /* ! USE_IN_LIBIO */
# define PUT(f, s, n) fwrite (s, 1, n, f)
# define PAD(f, c, n) __printf_pad (f, c, n)
ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
#endif /* USE_IN_LIBIO */
/* Macros for doing the actual output. */
#define outchar(ch) \
do \
{ \
register const int outc = (ch); \
if (putc (outc, fp) == EOF) \
return -1; \
++done; \
} while (0)
#define PRINT(ptr, len) \
do \
{ \
register size_t outlen = (len); \
if (len > 20) \
{ \
if (PUT (fp, ptr, outlen) != outlen) \
return -1; \
ptr += outlen; \
done += outlen; \
} \
else \
{ \
while (outlen-- > 0) \
outchar (*ptr++); \
} \
} while (0)
#define PADN(ch, len) \
do \
{ \
if (PAD (fp, ch, len) != len) \
return -1; \
done += len; \
} \
while (0)
/* We use the GNU MP library to handle large numbers.
An MP variable occupies a varying number of entries in its array. We keep
track of this number for efficiency reasons. Otherwise we would always
have to process the whole array. */
#define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
#define MPN_ASSIGN(dst,src) \
memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
#define MPN_GE(u,v) \
(u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
extern int __isinfl (long double), __isnanl (long double);
extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
int *expt, int *is_neg,
double value);
extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
int *expt, int *is_neg,
long double value);
extern unsigned int __guess_grouping (unsigned int intdig_max,
const char *grouping, wchar_t sepchar);
static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
const char *grouping, wchar_t thousands_sep)
internal_function;
int
__printf_fp (FILE *fp,
const struct printf_info *info,
const void *const *args)
{
/* The floating-point value to output. */
union
{
double dbl;
__long_double_t ldbl;
}
fpnum;
/* Locale-dependent representation of decimal point. */
wchar_t decimal;
/* Locale-dependent thousands separator and grouping specification. */
wchar_t thousands_sep;
const char *grouping;
/* "NaN" or "Inf" for the special cases. */
const char *special = NULL;
/* We need just a few limbs for the input before shifting to the right
position. */
mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
/* We need to shift the contents of fp_input by this amount of bits. */
int to_shift = 0;
/* The fraction of the floting-point value in question */
MPN_VAR(frac);
/* and the exponent. */
int exponent;
/* Sign of the exponent. */
int expsign = 0;
/* Sign of float number. */
int is_neg = 0;
/* Scaling factor. */
MPN_VAR(scale);
/* Temporary bignum value. */
MPN_VAR(tmp);
/* Digit which is result of last hack_digit() call. */
int digit;
/* The type of output format that will be used: 'e'/'E' or 'f'. */
int type;
/* Counter for number of written characters. */
int done = 0;
/* General helper (carry limb). */
mp_limb_t cy;
char hack_digit (void)
{
mp_limb_t hi;
if (expsign != 0 && type == 'f' && exponent-- > 0)
hi = 0;
else if (scalesize == 0)
{
hi = frac[fracsize - 1];
cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
frac[fracsize - 1] = cy;
}
else
{
if (fracsize < scalesize)
hi = 0;
else
{
hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
tmp[fracsize - scalesize] = hi;
hi = tmp[0];
fracsize = scalesize;
while (fracsize != 0 && frac[fracsize - 1] == 0)
--fracsize;
if (fracsize == 0)
{
/* We're not prepared for an mpn variable with zero
limbs. */
fracsize = 1;
return '0' + hi;
}
}
cy = __mpn_mul_1 (frac, frac, fracsize, 10);
if (cy != 0)
frac[fracsize++] = cy;
}
return '0' + hi;
}
/* Figure out the decimal point character. */
if (info->extra == 0)
{
if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
}
else
{
if (mbtowc (&decimal, _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT),
strlen (_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT))) <= 0)
decimal = (wchar_t) *_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
}
/* Give default value. */
if (decimal == L'\0')
decimal = L'.';
if (info->group)
{
if (info->extra == 0)
grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
else
grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
if (*grouping <= 0 || *grouping == CHAR_MAX)
grouping = NULL;
else
{
/* Figure out the thousands separator character. */
if (info->extra == 0)
{
if (mbtowc (&thousands_sep, _NL_CURRENT (LC_NUMERIC,
THOUSANDS_SEP),
strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP)))
<= 0)
thousands_sep = (wchar_t) *_NL_CURRENT (LC_NUMERIC,
THOUSANDS_SEP);
}
else
{
if (mbtowc (&thousands_sep, _NL_CURRENT (LC_MONETARY,
MON_THOUSANDS_SEP),
strlen (_NL_CURRENT (LC_MONETARY,
MON_THOUSANDS_SEP))) <= 0)
thousands_sep = (wchar_t) *_NL_CURRENT (LC_MONETARY,
MON_THOUSANDS_SEP);
}
if (thousands_sep == L'\0')
grouping = NULL;
}
}
else
grouping = NULL;
/* Fetch the argument value. */
if (info->is_long_double && sizeof (long double) > sizeof (double))
{
fpnum.ldbl = *(const long double *) args[0];
/* Check for special values: not a number or infinity. */
if (__isnanl (fpnum.ldbl))
{
special = isupper (info->spec) ? "NAN" : "nan";
is_neg = 0;
}
else if (__isinfl (fpnum.ldbl))
{
special = isupper (info->spec) ? "INF" : "inf";
is_neg = fpnum.ldbl < 0;
}
else
{
fracsize = __mpn_extract_long_double (fp_input,
(sizeof (fp_input) /
sizeof (fp_input[0])),
&exponent, &is_neg,
fpnum.ldbl);
to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
}
}
else
{
fpnum.dbl = *(const double *) args[0];
/* Check for special values: not a number or infinity. */
if (__isnan (fpnum.dbl))
{
special = isupper (info->spec) ? "NAN" : "nan";
is_neg = 0;
}
else if (__isinf (fpnum.dbl))
{
special = isupper (info->spec) ? "INF" : "inf";
is_neg = fpnum.dbl < 0;
}
else
{
fracsize = __mpn_extract_double (fp_input,
(sizeof (fp_input)
/ sizeof (fp_input[0])),
&exponent, &is_neg, fpnum.dbl);
to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
}
}
if (special)
{
int width = info->width;
if (is_neg || info->showsign || info->space)
--width;
width -= 3;
if (!info->left && width > 0)
PADN (' ', width);
if (is_neg)
outchar ('-');
else if (info->showsign)
outchar ('+');
else if (info->space)
outchar (' ');
PRINT (special, 3);
if (info->left && width > 0)
PADN (' ', width);
return done;
}
/* We need three multiprecision variables. Now that we have the exponent
of the number we can allocate the needed memory. It would be more
efficient to use variables of the fixed maximum size but because this
would be really big it could lead to memory problems. */
{
mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
/ BITS_PER_MP_LIMB + 4) * sizeof (mp_limb_t);
frac = (mp_limb_t *) alloca (bignum_size);
tmp = (mp_limb_t *) alloca (bignum_size);
scale = (mp_limb_t *) alloca (bignum_size);
}
/* We now have to distinguish between numbers with positive and negative
exponents because the method used for the one is not applicable/efficient
for the other. */
scalesize = 0;
if (exponent > 2)
{
/* |FP| >= 8.0. */
int scaleexpo = 0;
int explog = LDBL_MAX_10_EXP_LOG;
int exp10 = 0;
const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
int cnt_h, cnt_l, i;
if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
{
MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
fp_input, fracsize);
fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
}
else
{
cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
fp_input, fracsize,
(exponent + to_shift) % BITS_PER_MP_LIMB);
fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
if (cy)
frac[fracsize++] = cy;
}
MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
assert (tens > &_fpioconst_pow10[0]);
do
{
--tens;
/* The number of the product of two binary numbers with n and m
bits respectively has m+n or m+n-1 bits. */
if (exponent >= scaleexpo + tens->p_expo - 1)
{
if (scalesize == 0)
MPN_ASSIGN (tmp, tens->array);
else
{
cy = __mpn_mul (tmp, scale, scalesize,
&tens->array[_FPIO_CONST_OFFSET],
tens->arraysize - _FPIO_CONST_OFFSET);
tmpsize = scalesize + tens->arraysize - _FPIO_CONST_OFFSET;
if (cy == 0)
--tmpsize;
}
if (MPN_GE (frac, tmp))
{
int cnt;
MPN_ASSIGN (scale, tmp);
count_leading_zeros (cnt, scale[scalesize - 1]);
scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
exp10 |= 1 << explog;
}
}
--explog;
}
while (tens > &_fpioconst_pow10[0]);
exponent = exp10;
/* Optimize number representations. We want to represent the numbers
with the lowest number of bytes possible without losing any
bytes. Also the highest bit in the scaling factor has to be set
(this is a requirement of the MPN division routines). */
if (scalesize > 0)
{
/* Determine minimum number of zero bits at the end of
both numbers. */
for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
;
/* Determine number of bits the scaling factor is misplaced. */
count_leading_zeros (cnt_h, scale[scalesize - 1]);
if (cnt_h == 0)
{
/* The highest bit of the scaling factor is already set. So
we only have to remove the trailing empty limbs. */
if (i > 0)
{
MPN_COPY_INCR (scale, scale + i, scalesize - i);
scalesize -= i;
MPN_COPY_INCR (frac, frac + i, fracsize - i);
fracsize -= i;
}
}
else
{
if (scale[i] != 0)
{
count_trailing_zeros (cnt_l, scale[i]);
if (frac[i] != 0)
{
int cnt_l2;
count_trailing_zeros (cnt_l2, frac[i]);
if (cnt_l2 < cnt_l)
cnt_l = cnt_l2;
}
}
else
count_trailing_zeros (cnt_l, frac[i]);
/* Now shift the numbers to their optimal position. */
if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
{
/* We cannot save any memory. So just roll both numbers
so that the scaling factor has its highest bit set. */
(void) __mpn_lshift (scale, scale, scalesize, cnt_h);
cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
if (cy != 0)
frac[fracsize++] = cy;
}
else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
{
/* We can save memory by removing the trailing zero limbs
and by packing the non-zero limbs which gain another
free one. */
(void) __mpn_rshift (scale, scale + i, scalesize - i,
BITS_PER_MP_LIMB - cnt_h);
scalesize -= i + 1;
(void) __mpn_rshift (frac, frac + i, fracsize - i,
BITS_PER_MP_LIMB - cnt_h);
fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
}
else
{
/* We can only save the memory of the limbs which are zero.
The non-zero parts occupy the same number of limbs. */
(void) __mpn_rshift (scale, scale + (i - 1),
scalesize - (i - 1),
BITS_PER_MP_LIMB - cnt_h);
scalesize -= i;
(void) __mpn_rshift (frac, frac + (i - 1),
fracsize - (i - 1),
BITS_PER_MP_LIMB - cnt_h);
fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
}
}
}
}
else if (exponent < 0)
{
/* |FP| < 1.0. */
int exp10 = 0;
int explog = LDBL_MAX_10_EXP_LOG;
const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
mp_size_t used_limbs = fracsize - 1;
/* Now shift the input value to its right place. */
cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
frac[fracsize++] = cy;
assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
expsign = 1;
exponent = -exponent;
assert (tens != &_fpioconst_pow10[0]);
do
{
--tens;
if (exponent >= tens->m_expo)
{
int i, incr, cnt_h, cnt_l;
mp_limb_t topval[2];
/* The __mpn_mul function expects the first argument to be
bigger than the second. */
if (fracsize < tens->arraysize - _FPIO_CONST_OFFSET)
cy = __mpn_mul (tmp, &tens->array[_FPIO_CONST_OFFSET],
tens->arraysize - _FPIO_CONST_OFFSET,
frac, fracsize);
else
cy = __mpn_mul (tmp, frac, fracsize,
&tens->array[_FPIO_CONST_OFFSET],
tens->arraysize - _FPIO_CONST_OFFSET);
tmpsize = fracsize + tens->arraysize - _FPIO_CONST_OFFSET;
if (cy == 0)
--tmpsize;
count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
+ BITS_PER_MP_LIMB - 1 - cnt_h;
assert (incr <= tens->p_expo);
/* If we increased the exponent by exactly 3 we have to test
for overflow. This is done by comparing with 10 shifted
to the right position. */
if (incr == exponent + 3)
if (cnt_h <= BITS_PER_MP_LIMB - 4)
{
topval[0] = 0;
topval[1]
= ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
}
else
{
topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
topval[1] = 0;
(void) __mpn_lshift (topval, topval, 2,
BITS_PER_MP_LIMB - cnt_h);
}
/* We have to be careful when multiplying the last factor.
If the result is greater than 1.0 be have to test it
against 10.0. If it is greater or equal to 10.0 the
multiplication was not valid. This is because we cannot
determine the number of bits in the result in advance. */
if (incr < exponent + 3
|| (incr == exponent + 3 &&
(tmp[tmpsize - 1] < topval[1]
|| (tmp[tmpsize - 1] == topval[1]
&& tmp[tmpsize - 2] < topval[0]))))
{
/* The factor is right. Adapt binary and decimal
exponents. */
exponent -= incr;
exp10 |= 1 << explog;
/* If this factor yields a number greater or equal to
1.0, we must not shift the non-fractional digits down. */
if (exponent < 0)
cnt_h += -exponent;
/* Now we optimize the number representation. */
for (i = 0; tmp[i] == 0; ++i);
if (cnt_h == BITS_PER_MP_LIMB - 1)
{
MPN_COPY (frac, tmp + i, tmpsize - i);
fracsize = tmpsize - i;
}
else
{
count_trailing_zeros (cnt_l, tmp[i]);
/* Now shift the numbers to their optimal position. */
if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
{
/* We cannot save any memory. Just roll the
number so that the leading digit is in a
separate limb. */
cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
fracsize = tmpsize + 1;
frac[fracsize - 1] = cy;
}
else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
{
(void) __mpn_rshift (frac, tmp + i, tmpsize - i,
BITS_PER_MP_LIMB - 1 - cnt_h);
fracsize = tmpsize - i;
}
else
{
/* We can only save the memory of the limbs which
are zero. The non-zero parts occupy the same
number of limbs. */
(void) __mpn_rshift (frac, tmp + (i - 1),
tmpsize - (i - 1),
BITS_PER_MP_LIMB - 1 - cnt_h);
fracsize = tmpsize - (i - 1);
}
}
used_limbs = fracsize - 1;
}
}
--explog;
}
while (tens != &_fpioconst_pow10[1] && exponent > 0);
/* All factors but 10^-1 are tested now. */
if (exponent > 0)
{
int cnt_l;
cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
tmpsize = fracsize;
assert (cy == 0 || tmp[tmpsize - 1] < 20);
count_trailing_zeros (cnt_l, tmp[0]);
if (cnt_l < MIN (4, exponent))
{
cy = __mpn_lshift (frac, tmp, tmpsize,
BITS_PER_MP_LIMB - MIN (4, exponent));
if (cy != 0)
frac[tmpsize++] = cy;
}
else
(void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
fracsize = tmpsize;
exp10 |= 1;
assert (frac[fracsize - 1] < 10);
}
exponent = exp10;
}
else
{
/* This is a special case. We don't need a factor because the
numbers are in the range of 0.0 <= fp < 8.0. We simply
shift it to the right place and divide it by 1.0 to get the
leading digit. (Of course this division is not really made.) */
assert (0 <= exponent && exponent < 3 &&
exponent + to_shift < BITS_PER_MP_LIMB);
/* Now shift the input value to its right place. */
cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
frac[fracsize++] = cy;
exponent = 0;
}
{
int width = info->width;
char *buffer, *startp, *cp;
int chars_needed;
int expscale;
int intdig_max, intdig_no = 0;
int fracdig_min, fracdig_max, fracdig_no = 0;
int dig_max;
int significant;
if (tolower (info->spec) == 'e')
{
type = info->spec;
intdig_max = 1;
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
/* d . ddd e +- ddd */
dig_max = INT_MAX; /* Unlimited. */
significant = 1; /* Does not matter here. */
}
else if (info->spec == 'f')
{
type = 'f';
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
if (expsign == 0)
{
intdig_max = exponent + 1;
/* This can be really big! */ /* XXX Maybe malloc if too big? */
chars_needed = exponent + 1 + 1 + fracdig_max;
}
else
{
intdig_max = 1;
chars_needed = 1 + 1 + fracdig_max;
}
dig_max = INT_MAX; /* Unlimited. */
significant = 1; /* Does not matter here. */
}
else
{
dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
if ((expsign == 0 && exponent >= dig_max)
|| (expsign != 0 && exponent > 4))
{
type = isupper (info->spec) ? 'E' : 'e';
fracdig_max = dig_max - 1;
intdig_max = 1;
chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
}
else
{
type = 'f';
intdig_max = expsign == 0 ? exponent + 1 : 0;
fracdig_max = dig_max - intdig_max;
/* We need space for the significant digits and perhaps for
leading zeros when < 1.0. Pessimistic guess: dig_max. */
chars_needed = dig_max + dig_max + 1;
}
fracdig_min = info->alt ? fracdig_max : 0;
significant = 0; /* We count significant digits. */
}
if (grouping)
/* Guess the number of groups we will make, and thus how
many spaces we need for separator characters. */
chars_needed += __guess_grouping (intdig_max, grouping, thousands_sep);
/* Allocate buffer for output. We need two more because while rounding
it is possible that we need two more characters in front of all the
other output. */
buffer = alloca (2 + chars_needed);
cp = startp = buffer + 2; /* Let room for rounding. */
/* Do the real work: put digits in allocated buffer. */
if (expsign == 0 || type != 'f')
{
assert (expsign == 0 || intdig_max == 1);
while (intdig_no < intdig_max)
{
++intdig_no;
*cp++ = hack_digit ();
}
significant = 1;
if (info->alt
|| fracdig_min > 0
|| (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
*cp++ = decimal;
}
else
{
/* |fp| < 1.0 and the selected type is 'f', so put "0."
in the buffer. */
*cp++ = '0';
--exponent;
*cp++ = decimal;
}
/* Generate the needed number of fractional digits. */
while (fracdig_no < fracdig_min
|| (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
{
++fracdig_no;
*cp = hack_digit ();
if (*cp != '0')
significant = 1;
else if (significant == 0)
{
++fracdig_max;
if (fracdig_min > 0)
++fracdig_min;
}
++cp;
}
/* Do rounding. */
digit = hack_digit ();
if (digit > '4')
{
char *tp = cp;
if (digit == '5' && (*(cp - 1) & 1) == 0)
/* This is the critical case. */
if (fracsize == 1 && frac[0] == 0)
/* Rest of the number is zero -> round to even.
(IEEE 754-1985 4.1 says this is the default rounding.) */
goto do_expo;
else if (scalesize == 0)
{
/* Here we have to see whether all limbs are zero since no
normalization happened. */
size_t lcnt = fracsize;
while (lcnt >= 1 && frac[lcnt - 1] == 0)
--lcnt;
if (lcnt == 0)
/* Rest of the number is zero -> round to even.
(IEEE 754-1985 4.1 says this is the default rounding.) */
goto do_expo;
}
if (fracdig_no > 0)
{
/* Process fractional digits. Terminate if not rounded or
radix character is reached. */
while (*--tp != decimal && *tp == '9')
*tp = '0';
if (*tp != decimal)
/* Round up. */
(*tp)++;
}
if (fracdig_no == 0 || *tp == decimal)
{
/* Round the integer digits. */
if (*(tp - 1) == decimal)
--tp;
while (--tp >= startp && *tp == '9')
*tp = '0';
if (tp >= startp)
/* Round up. */
(*tp)++;
else
/* It is more critical. All digits were 9's. */
{
if (type != 'f')
{
*startp = '1';
exponent += expsign == 0 ? 1 : -1;
}
else if (intdig_no == dig_max)
{
/* This is the case where for type %g the number fits
really in the range for %f output but after rounding
the number of digits is too big. */
*--startp = decimal;
*--startp = '1';
if (info->alt || fracdig_no > 0)
{
/* Overwrite the old radix character. */
startp[intdig_no + 2] = '0';
++fracdig_no;
}
fracdig_no += intdig_no;
intdig_no = 1;
fracdig_max = intdig_max - intdig_no;
++exponent;
/* Now we must print the exponent. */
type = isupper (info->spec) ? 'E' : 'e';
}
else
{
/* We can simply add another another digit before the
radix. */
*--startp = '1';
++intdig_no;
}
/* While rounding the number of digits can change.
If the number now exceeds the limits remove some
fractional digits. */
if (intdig_no + fracdig_no > dig_max)
{
cp -= intdig_no + fracdig_no - dig_max;
fracdig_no -= intdig_no + fracdig_no - dig_max;
}
}
}
}
do_expo:
/* Now remove unnecessary '0' at the end of the string. */
while (fracdig_no > fracdig_min && *(cp - 1) == '0')
{
--cp;
--fracdig_no;
}
/* If we eliminate all fractional digits we perhaps also can remove
the radix character. */
if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
--cp;
if (grouping)
/* Add in separator characters, overwriting the same buffer. */
cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
/* Write the exponent if it is needed. */
if (type != 'f')
{
*cp++ = type;
*cp++ = expsign ? '-' : '+';
/* Find the magnitude of the exponent. */
expscale = 10;
while (expscale <= exponent)
expscale *= 10;
if (exponent < 10)
/* Exponent always has at least two digits. */
*cp++ = '0';
else
do
{
expscale /= 10;
*cp++ = '0' + (exponent / expscale);
exponent %= expscale;
}
while (expscale > 10);
*cp++ = '0' + exponent;
}
/* Compute number of characters which must be filled with the padding
character. */
if (is_neg || info->showsign || info->space)
--width;
width -= cp - startp;
if (!info->left && info->pad != '0' && width > 0)
PADN (info->pad, width);
if (is_neg)
outchar ('-');
else if (info->showsign)
outchar ('+');
else if (info->space)
outchar (' ');
if (!info->left && info->pad == '0' && width > 0)
PADN ('0', width);
PRINT (startp, cp - startp);
if (info->left && width > 0)
PADN (info->pad, width);
}
return done;
}
/* Return the number of extra grouping characters that will be inserted
into a number with INTDIG_MAX integer digits. */
unsigned int
__guess_grouping (unsigned int intdig_max, const char *grouping,
wchar_t sepchar)
{
unsigned int groups;
/* We treat all negative values like CHAR_MAX. */
if (*grouping == CHAR_MAX || *grouping <= 0)
/* No grouping should be done. */
return 0;
groups = 0;
while (intdig_max > (unsigned int) *grouping)
{
++groups;
intdig_max -= *grouping++;
if (*grouping == CHAR_MAX
#if CHAR_MIN < 0
|| *grouping < 0
#endif
)
/* No more grouping should be done. */
break;
else if (*grouping == 0)
{
/* Same grouping repeats. */
groups += (intdig_max - 1) / grouping[-1];
break;
}
}
return groups;
}
/* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
There is guaranteed enough space past BUFEND to extend it.
Return the new end of buffer. */
static char *
internal_function
group_number (char *buf, char *bufend, unsigned int intdig_no,
const char *grouping, wchar_t thousands_sep)
{
unsigned int groups = __guess_grouping (intdig_no, grouping, thousands_sep);
char *p;
if (groups == 0)
return bufend;
/* Move the fractional part down. */
memmove (buf + intdig_no + groups, buf + intdig_no,
bufend - (buf + intdig_no));
p = buf + intdig_no + groups - 1;
do
{
unsigned int len = *grouping++;
do
*p-- = buf[--intdig_no];
while (--len > 0);
*p-- = thousands_sep;
if (*grouping == CHAR_MAX
#if CHAR_MIN < 0
|| *grouping < 0
#endif
)
/* No more grouping should be done. */
break;
else if (*grouping == 0)
/* Same grouping repeats. */
--grouping;
} while (intdig_no > (unsigned int) *grouping);
/* Copy the remaining ungrouped digits. */
do
*p-- = buf[--intdig_no];
while (p > buf);
return bufend + groups;
}
|