1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/* ix87 specific implementation of pow function.
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <machine/asm.h>
#ifdef __ELF__
.section .rodata
#else
.text
#endif
.align ALIGNARG(4)
ASM_TYPE_DIRECTIVE(infinity,@object)
inf_zero:
infinity:
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
ASM_SIZE_DIRECTIVE(infinity)
ASM_TYPE_DIRECTIVE(zero,@object)
zero: .double 0.0
ASM_SIZE_DIRECTIVE(zero)
ASM_TYPE_DIRECTIVE(minf_mzero,@object)
minf_mzero:
minfinity:
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
mzero:
.byte 0, 0, 0, 0, 0, 0, 0, 0x80
ASM_SIZE_DIRECTIVE(minf_mzero)
ASM_TYPE_DIRECTIVE(one,@object)
one: .double 1.0
ASM_SIZE_DIRECTIVE(one)
ASM_TYPE_DIRECTIVE(limit,@object)
limit: .double 0.29
ASM_SIZE_DIRECTIVE(limit)
#ifdef PIC
#define MO(op) op##@GOTOFF(%ecx)
#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
#else
#define MO(op) op
#define MOX(op,x,f) op(,x,f)
#endif
.text
ENTRY(__ieee754_pow)
fldl 12(%esp) // y
fxam
#ifdef PIC
call 1f
1: popl %ecx
addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
#endif
fnstsw
movb %ah, %dl
andb $0x45, %ah
cmpb $0x40, %ah // is y == 0 ?
je 11f
cmpb $0x05, %ah // is y == inf ?
je 12f
cmpb $0x01, %ah // is y == NaN ?
je 30f
fldl 4(%esp) // x : y
subl $8,%esp
fxam
fnstsw
movb %ah, %dh
andb $0x45, %ah
cmpb $0x40, %ah
je 20f // x is 0
cmpb $0x05, %ah
je 15f // x is inf
fxch // y : x
/* First see whether `y' is a natural number. In this case we
can use a more precise algorithm. */
fld %st // y : y : x
fistpll (%esp) // y : x
fildll (%esp) // int(y) : y : x
fucomp %st(1) // y : x
fnstsw
sahf
jne 2f
/* OK, we have an integer value for y. */
popl %eax
popl %edx
orl $0, %edx
fstp %st(0) // x
jns 4f // y >= 0, jump
fdivrl MO(one) // 1/x (now referred to as x)
negl %eax
adcl $0, %edx
negl %edx
4: fldl MO(one) // 1 : x
fxch
6: shrdl $1, %edx, %eax
jnc 5f
fxch
fmul %st(1) // x : ST*x
fxch
5: fmul %st(0), %st // x*x : ST*x
movl %eax, %ecx
orl %edx, %ecx
jnz 6b
fstp %st(0) // ST*x
30: ret
.align ALIGNARG(4)
2: /* y is a real number. */
fxch // x : y
fldl MO(one) // 1.0 : x : y
fld %st(1) // x : 1.0 : x : y
fsub %st(1) // x-1 : 1.0 : x : y
fabs // |x-1| : 1.0 : x : y
fcompl MO(limit) // 1.0 : x : y
fnstsw
fxch // x : 1.0 : y
sahf
ja 7f
fsub %st(1) // x-1 : 1.0 : y
fyl2xp1 // log2(x) : y
jmp 8f
7: fyl2x // log2(x) : y
8: fmul %st(1) // y*log2(x) : y
fst %st(1) // y*log2(x) : y*log2(x)
frndint // int(y*log2(x)) : y*log2(x)
fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
fxch // fract(y*log2(x)) : int(y*log2(x))
f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
addl $8, %esp
fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
ret
// pow(x,0) = 1
.align ALIGNARG(4)
11: fstp %st(0) // pop y
fldl MO(one)
ret
// y == inf
.align ALIGNARG(4)
12: fstp %st(0) // pop y
fldl 4(%esp) // x
fabs
fcompl MO(one) // < 1, == 1, or > 1
fnstsw
andb $0x45, %ah
cmpb $0x45, %ah
je 13f // jump if x is NaN
cmpb $0x40, %ah
je 14f // jump if |x| == 1
shlb $1, %ah
xorb %ah, %dl
andl $2, %edx
fldl MOX(inf_zero, %edx, 4)
ret
.align ALIGNARG(4)
14: fldl MO(infinity)
fmull MO(zero) // raise invalid exception
ret
.align ALIGNARG(4)
13: fldl 4(%esp) // load x == NaN
ret
.align ALIGNARG(4)
// x is inf
15: fstp %st(0) // y
testb $2, %dh
jz 16f // jump if x == +inf
// We must find out whether y is an odd integer.
fld %st // y : y
fistpll (%esp) // y
fildll (%esp) // int(y) : y
fucompp // <empty>
fnstsw
sahf
jne 17f
// OK, the value is an integer, but is the number of bits small
// enough so that all are coming from the mantissa?
popl %eax
popl %edx
andb $1, %al
jz 18f // jump if not odd
movl %edx, %eax
orl %edx, %edx
jns 155f
negl %eax
155: cmpl $0x00200000, %eax
ja 18f // does not fit in mantissa bits
// It's an odd integer.
shrl $31, %edx
fldl MOX(minf_mzero, %edx, 8)
ret
.align ALIGNARG(4)
16: fcompl MO(zero)
addl $8, %esp
fnstsw
shrl $5, %eax
andl $8, %eax
fldl MOX(inf_zero, %eax, 1)
ret
.align ALIGNARG(4)
17: shll $30, %edx // sign bit for y in right position
addl $8, %esp
18: shrl $31, %edx
fldl MOX(inf_zero, %edx, 8)
ret
.align ALIGNARG(4)
// x is 0
20: fstp %st(0) // y
testb $2, %dl
jz 21f // y > 0
// x is 0 and y is < 0. We must find out whether y is an odd integer.
testb $2, %dh
jz 25f
fld %st // y : y
fistpll (%esp) // y
fildll (%esp) // int(y) : y
fucompp // <empty>
fnstsw
sahf
jne 26f
// OK, the value is an integer, but is the number of bits small
// enough so that all are coming from the mantissa?
popl %eax
popl %edx
andb $1, %al
jz 27f // jump if not odd
cmpl $0xffe00000, %edx
jbe 27f // does not fit in mantissa bits
// It's an odd integer.
// Raise divide-by-zero exception and get minus infinity value.
fldl MO(one)
fdivl MO(zero)
fchs
ret
25: fstp %st(0)
26: popl %eax
popl %edx
27: // Raise divide-by-zero exception and get infinity value.
fldl MO(one)
fdivl MO(zero)
ret
.align ALIGNARG(4)
// x is 0 and y is > 0. We must find out whether y is an odd integer.
21: testb $2, %dh
jz 22f
fld %st // y : y
fistpll (%esp) // y
fildll (%esp) // int(y) : y
fucompp // <empty>
fnstsw
sahf
jne 23f
// OK, the value is an integer, but is the number of bits small
// enough so that all are coming from the mantissa?
popl %eax
popl %edx
andb $1, %al
jz 24f // jump if not odd
cmpl $0xffe00000, %edx
jae 24f // does not fit in mantissa bits
// It's an odd integer.
fldl MO(mzero)
ret
22: fstp %st(0)
23: popl %eax
popl %edx
24: fldl MO(zero)
ret
END(__ieee754_pow)
|