1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/* @(#)e_acos.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
for performance improvement on pipelined processors.
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_acos.c,v 1.9 1995/05/12 04:57:13 jtc Exp $";
#endif
/* __ieee754_acos(x)
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x|<=0.5
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
* For x>0.5
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
* = 2asin(sqrt((1-x)/2))
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
* = 2f + (2c + 2s*z*R(z))
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
* for f so that f+c ~ sqrt(z).
* For x<-0.5
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Function needed: __ieee754_sqrt
*/
#include "math.h"
#include "math_private.h"
#define one qS[0]
#ifdef __STDC__
static const double
#else
static double
#endif
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
-3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
-4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
qS[] ={1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
-6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_acos(double x)
#else
double __ieee754_acos(x)
double x;
#endif
{
double z,p,q,r,w,s,c,df,p1,p2,p3,q1,q2,q3,z2,z4,z6;
int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x3ff00000) { /* |x| >= 1 */
u_int32_t lx;
GET_LOW_WORD(lx,x);
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
if(hx>0) return 0.0; /* acos(1) = 0 */
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
}
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
}
if(ix<0x3fe00000) { /* |x| < 0.5 */
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
z = x*x;
#ifdef DO_NOT_USE_THIS
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
#else
p1 = z*pS[0]; z2=z*z;
p2 = pS[1]+z*pS[2]; z4=z2*z2;
p3 = pS[3]+z*pS[4]; z6=z4*z2;
q1 = one+z*qS[1];
q2 = qS[2]+z*qS[3];
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
q = q1 + z2*q2 + z4*qS[4];
#endif
r = p/q;
return pio2_hi - (x - (pio2_lo-x*r));
} else if (hx<0) { /* x < -0.5 */
z = (one+x)*0.5;
#ifdef DO_NOT_USE_THIS
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
#else
p1 = z*pS[0]; z2=z*z;
p2 = pS[1]+z*pS[2]; z4=z2*z2;
p3 = pS[3]+z*pS[4]; z6=z4*z2;
q1 = one+z*qS[1];
q2 = qS[2]+z*qS[3];
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
q = q1 + z2*q2 + z4*qS[4];
#endif
s = __ieee754_sqrt(z);
r = p/q;
w = r*s-pio2_lo;
return pi - 2.0*(s+w);
} else { /* x > 0.5 */
z = (one-x)*0.5;
s = __ieee754_sqrt(z);
df = s;
SET_LOW_WORD(df,0);
c = (z-df*df)/(s+df);
#ifdef DO_NOT_USE_THIS
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
#else
p1 = z*pS[0]; z2=z*z;
p2 = pS[1]+z*pS[2]; z4=z2*z2;
p3 = pS[3]+z*pS[4]; z6=z4*z2;
q1 = one+z*qS[1];
q2 = qS[2]+z*qS[3];
p = p1 + z2*p2 + z4*p3 + z6*pS[5];
q = q1 + z2*q2 + z4*qS[4];
#endif
r = p/q;
w = r*s+c;
return 2.0*(df+w);
}
}
|