1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/* Single-precision floating point e^x.
Copyright (C) 1997, 1998 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* How this works:
The input value, x, is written as
x = n * ln(2) + t/512 + delta[t] + x;
where:
- n is an integer, 127 >= n >= -150;
- t is an integer, 177 >= t >= -177
- delta is based on a table entry, delta[t] < 2^-28
- x is whatever is left, |x| < 2^-10
Then e^x is approximated as
e^x = 2^n ( e^(t/512 + delta[t])
+ ( e^(t/512 + delta[t])
* ( p(x + delta[t] + n * ln(2)) - delta ) ) )
where
- p(x) is a polynomial approximating e(x)-1;
- e^(t/512 + delta[t]) is obtained from a table.
The table used is the same one as for the double precision version;
since we have the table, we might as well use it.
It turns out to be faster to do calculations in double precision than
to perform an 'accurate table method' expf, because of the range reduction
overhead (compare exp2f).
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <float.h>
#include <ieee754.h>
#include <math.h>
#include <fenv.h>
#include <inttypes.h>
#include <math_private.h>
extern const float __exp_deltatable[178];
extern const double __exp_atable[355] /* __attribute__((mode(DF))) */;
static const volatile float TWOM100 = 7.88860905e-31;
static const volatile float TWO127 = 1.7014118346e+38;
float
__ieee754_expf (float x)
{
static const float himark = 88.72283935546875;
static const float lomark = -103.972084045410;
/* Check for usual case. */
if (isless (x, himark) && isgreater (x, lomark))
{
static const float TWO43 = 8796093022208.0;
static const float TWO23 = 8388608.0;
/* 1/ln(2). */
#undef M_1_LN2
static const float M_1_LN2 = 1.44269502163f;
/* ln(2) */
#undef M_LN2
static const double M_LN2 = .6931471805599452862;
int tval;
double x22, t, result, dx;
float n, delta;
union ieee754_double ex2_u;
fenv_t oldenv;
feholdexcept (&oldenv);
fesetround (FE_TONEAREST);
/* Calculate n. */
if (x >= 0)
{
n = x * M_1_LN2 + TWO23;
n -= TWO23;
}
else
{
n = x * M_1_LN2 - TWO23;
n += TWO23;
}
dx = x - n*M_LN2;
if (dx >= 0)
{
/* Calculate t/512. */
t = dx + TWO43;
t -= TWO43;
dx -= t;
/* Compute tval = t. */
tval = (int) (t * 512.0);
delta = - __exp_deltatable[tval];
}
else
{
/* As above, but x is negative. */
t = dx - TWO43;
t += TWO43;
dx -= t;
tval = (int) (t * 512.0);
delta = __exp_deltatable[-tval];
}
/* Compute ex2 = 2^n e^(t/512+delta[t]). */
ex2_u.d = __exp_atable[tval+177];
ex2_u.ieee.exponent += (int) n;
/* Approximate e^(dx+delta) - 1, using a second-degree polynomial,
with maximum error in [-2^-10-2^-28,2^-10+2^-28]
less than 5e-11. */
x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta;
/* Return result. */
fesetenv (&oldenv);
result = x22 * ex2_u.d + ex2_u.d;
return (float) result;
}
/* Exceptional cases: */
else if (isless (x, himark))
{
if (__isinff (x))
/* e^-inf == 0, with no error. */
return 0;
else
/* Underflow */
return TWOM100 * TWOM100;
}
else
/* Return x, if x is a NaN or Inf; or overflow, otherwise. */
return TWO127*x;
}
|