1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/* Return from signal handler in GNU C library for Hurd. Alpha version.
Copyright (C) 1994, 1995, 1997 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <hurd.h>
#include <hurd/signal.h>
#include <hurd/threadvar.h>
#include <hurd/msg.h>
#include <stdlib.h>
#include <string.h>
#include <mach/machine/alpha_instruction.h>
int
__sigreturn (struct sigcontext *scp)
{
struct hurd_sigstate *ss;
mach_port_t *reply_port;
if (scp == NULL || (scp->sc_mask & _SIG_CANT_MASK))
{
errno = EINVAL;
return -1;
}
ss = _hurd_self_sigstate ();
__spin_lock (&ss->lock);
/* Restore the set of blocked signals, and the intr_port slot. */
ss->blocked = scp->sc_mask;
ss->intr_port = scp->sc_intr_port;
/* Check for pending signals that were blocked by the old set. */
if (ss->pending & ~ss->blocked)
{
/* There are pending signals that just became unblocked. Wake up the
signal thread to deliver them. But first, squirrel away SCP where
the signal thread will notice it if it runs another handler, and
arrange to have us called over again in the new reality. */
ss->context = scp;
/* Clear the intr_port slot, since we are not in fact doing
an interruptible RPC right now. If SS->intr_port is not null,
the SCP context is doing an interruptible RPC, but the signal
thread will examine us while we are blocked in the sig_post RPC. */
ss->intr_port = MACH_PORT_NULL;
__spin_unlock (&ss->lock);
__msg_sig_post (_hurd_msgport, 0, __mach_task_self ());
/* If a pending signal was handled, sig_post never returned. */
__spin_lock (&ss->lock);
}
if (scp->sc_onstack)
{
ss->sigaltstack.ss_flags &= ~SA_ONSTACK; /* XXX threadvars */
/* XXX cannot unlock until off sigstack */
abort ();
}
else
__spin_unlock (&ss->lock);
/* Destroy the MiG reply port used by the signal handler, and restore the
reply port in use by the thread when interrupted. */
reply_port =
(mach_port_t *) __hurd_threadvar_location (_HURD_THREADVAR_MIG_REPLY);
if (*reply_port)
__mach_port_destroy (__mach_task_self (), *reply_port);
*reply_port = scp->sc_reply_port;
if (scp->sc_used_fpa)
{
/* Restore FPU state. */
/* Restore the floating-point control/status register.
We must do this first because the compiler will need
a temporary FP register for the load. */
asm volatile ("mt_fpcr %0" : : "f" (scp->sc_fpcsr));
/* Restore floating-point registers. */
#define restore_fpr(n) \
asm volatile ("ldt $f" #n ",%0" : : "m" (scp->sc_fpregs[n]))
restore_fpr (0);
restore_fpr (1);
restore_fpr (2);
restore_fpr (3);
restore_fpr (4);
restore_fpr (5);
restore_fpr (6);
restore_fpr (7);
restore_fpr (8);
restore_fpr (9);
restore_fpr (10);
restore_fpr (11);
restore_fpr (12);
restore_fpr (13);
restore_fpr (14);
restore_fpr (15);
restore_fpr (16);
restore_fpr (17);
restore_fpr (18);
restore_fpr (19);
restore_fpr (20);
restore_fpr (21);
restore_fpr (22);
restore_fpr (23);
restore_fpr (24);
restore_fpr (25);
restore_fpr (26);
restore_fpr (27);
restore_fpr (28);
restore_fpr (29);
restore_fpr (30);
}
/* Load all the registers from the sigcontext. */
#define restore_gpr(n) \
asm volatile ("ldq $" #n ",%0" : : "m" (scpreg->sc_regs[n]))
{
/* The `rei' PAL pseudo-instruction restores registers $2..$7, the PC
and processor status. So we can use these few registers for our
working variables. Unfortunately, it finds its data on the stack
and merely pops the SP ($30) over the words of state restored,
allowing no other option for the new SP value. So we must push the
registers and PSW it will to restore, onto the user's stack and let
it pop them from there. */
register const struct sigcontext *const scpreg asm ("$2") = scp;
register integer_t *usp asm ("$3") = (integer_t *) scpreg->sc_regs[30];
register integer_t usp_align asm ("$4");
/* Push an 8-word "trap frame" onto the user stack for `rei':
registers $2..$7, the PC, and the PSW. */
register struct rei_frame
{
integer_t regs[5], pc, ps;
} *rei_frame asm ("$5");
usp -= 8;
/* `rei' demands that the stack be aligned to a 64 byte (8 word)
boundary; bits 61..56 of the PSW are OR'd back into the SP value
after popping the 8-word trap frame, so we store (sp % 64)
there and this restores the original user SP. */
usp_align = (integer_t) usp & 63L;
rei_frame = (void *) ((integer_t) usp & ~63L);
/* Copy the registers and PC from the sigcontext. */
memcpy (rei_frame->regs, &scpreg->sc_regs[2], sizeof rei_frame->regs);
rei_frame->pc = scpreg->sc_pc;
/* Compute the new PS value to be restored. `rei' adds the value at
bits 61..56 to the SP to compensate for the alignment above that
cleared the low 6 bits; bits 5..3 are the new mode/privilege level
(must be >= current mode; 3 == user mode); bits 2..0 are "software",
unused by the processor or kernel (XXX should trampoline save these?
How?); in user mode, `rei' demands that all other bits be zero. */
rei_frame->ps = (usp_align << 56) | (3 << 3); /* XXX low 3 bits??? */
/* Restore the other general registers: everything except $2..$7, which
are in the `rei' trap frame we set up above, and $30, which is the
SP which is popped by `rei'. */
restore_gpr (1);
restore_gpr (8);
restore_gpr (9);
restore_gpr (10);
restore_gpr (11);
restore_gpr (12);
restore_gpr (13);
restore_gpr (14);
restore_gpr (15);
restore_gpr (16);
restore_gpr (17);
restore_gpr (18);
restore_gpr (19);
restore_gpr (20);
restore_gpr (21);
restore_gpr (22);
restore_gpr (23);
restore_gpr (24);
restore_gpr (25);
restore_gpr (26);
restore_gpr (27);
restore_gpr (28);
restore_gpr (29);
/* Switch the stack pointer to the trap frame set up on
the user stack and do the magical `rei' PAL call. */
asm volatile ("mov %0, $30\n"
"call_pal %1"
: : "r" (rei_frame), "i" (op_rei));
/* Firewall. */
asm volatile ("call_pal %0" : : "i" (op_halt));
}
/* NOTREACHED */
return -1;
}
weak_alias (__sigreturn, sigreturn)
|