1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
* Copyright (C) 2001-2014 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/***********************************************************************/
/*MODULE_NAME: dla.h */
/* */
/* This file holds C language macros for 'Double Length Floating Point */
/* Arithmetic'. The macros are based on the paper: */
/* T.J.Dekker, "A floating-point Technique for extending the */
/* Available Precision", Number. Math. 18, 224-242 (1971). */
/* A Double-Length number is defined by a pair (r,s), of IEEE double */
/* precision floating point numbers that satisfy, */
/* */
/* abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)). */
/* */
/* The computer arithmetic assumed is IEEE double precision in */
/* round to nearest mode. All variables in the macros must be of type */
/* IEEE double. */
/***********************************************************************/
/* CN = 1+2**27 = '41a0000002000000' IEEE double format. Use it to split a
double for better accuracy. */
#define CN 134217729.0
/* Exact addition of two single-length floating point numbers, Dekker. */
/* The macro produces a double-length number (z,zz) that satisfies */
/* z+zz = x+y exactly. */
#define EADD(x,y,z,zz) \
z=(x)+(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
/* Exact subtraction of two single-length floating point numbers, Dekker. */
/* The macro produces a double-length number (z,zz) that satisfies */
/* z+zz = x-y exactly. */
#define ESUB(x,y,z,zz) \
z=(x)-(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
/* Exact multiplication of two single-length floating point numbers, */
/* Veltkamp. The macro produces a double-length number (z,zz) that */
/* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
/* storage variables of type double. */
#ifdef DLA_FMS
# define EMULV(x, y, z, zz, p, hx, tx, hy, ty) \
z = x * y; zz = DLA_FMS (x, y, z);
#else
# define EMULV(x, y, z, zz, p, hx, tx, hy, ty) \
p = CN * (x); hx = ((x) - p) + p; tx = (x) - hx; \
p = CN * (y); hy = ((y) - p) + p; ty = (y) - hy; \
z = (x) * (y); zz = (((hx * hy - z) + hx * ty) + tx * hy) + tx * ty;
#endif
/* Exact multiplication of two single-length floating point numbers, Dekker. */
/* The macro produces a nearly double-length number (z,zz) (see Dekker) */
/* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
/* storage variables of type double. */
#ifdef DLA_FMS
# define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
EMULV(x,y,z,zz,p,hx,tx,hy,ty)
#else
# define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
#endif
/* Double-length addition, Dekker. The macro produces a double-length */
/* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
/* are assumed to be double-length numbers. r,s are temporary */
/* storage variables of type double. */
#define ADD2(x, xx, y, yy, z, zz, r, s) \
r = (x) + (y); s = (ABS (x) > ABS (y)) ? \
(((((x) - r) + (y)) + (yy)) + (xx)) : \
(((((y) - r) + (x)) + (xx)) + (yy)); \
z = r + s; zz = (r - z) + s;
/* Double-length subtraction, Dekker. The macro produces a double-length */
/* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
/* are assumed to be double-length numbers. r,s are temporary */
/* storage variables of type double. */
#define SUB2(x, xx, y, yy, z, zz, r, s) \
r = (x) - (y); s = (ABS (x) > ABS (y)) ? \
(((((x) - r) - (y)) - (yy)) + (xx)) : \
((((x) - ((y) + r)) + (xx)) - (yy)); \
z = r + s; zz = (r - z) + s;
/* Double-length multiplication, Dekker. The macro produces a double-length */
/* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
/* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
/* temporary storage variables of type double. */
#define MUL2(x, xx, y, yy, z, zz, p, hx, tx, hy, ty, q, c, cc) \
MUL12 (x, y, c, cc, p, hx, tx, hy, ty, q) \
cc = ((x) * (yy) + (xx) * (y)) + cc; z = c + cc; zz = (c - z) + cc;
/* Double-length division, Dekker. The macro produces a double-length */
/* number (z,zz) which satisfies approximately z+zz = (x+xx)/(y+yy). */
/* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy) */
/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu */
/* are temporary storage variables of type double. */
#define DIV2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc,u,uu) \
c=(x)/(y); MUL12(c,y,u,uu,p,hx,tx,hy,ty,q) \
cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y); z=c+cc; zz=(c-z)+cc;
/* Double-length addition, slower but more accurate than ADD2. */
/* The macro produces a double-length */
/* number (z,zz) which satisfies approximately z+zz = (x+xx)+(y+yy). */
/* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy) */
/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
/* are temporary storage variables of type double. */
#define ADD2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \
r = (x) + (y); \
if (ABS (x) > ABS (y)) { rr = ((x) - r) + (y); s = (rr + (yy)) + (xx); } \
else { rr = ((y) - r) + (x); s = (rr + (xx)) + (yy); } \
if (rr != 0.0) { \
z = r + s; zz = (r - z) + s; } \
else { \
ss = (ABS (xx) > ABS (yy)) ? (((xx) - s) + (yy)) : (((yy) - s) + (xx));\
u = r + s; \
uu = (ABS (r) > ABS (s)) ? ((r - u) + s) : ((s - u) + r); \
w = uu + ss; z = u + w; \
zz = (ABS (u) > ABS (w)) ? ((u - z) + w) : ((w - z) + u); }
/* Double-length subtraction, slower but more accurate than SUB2. */
/* The macro produces a double-length */
/* number (z,zz) which satisfies approximately z+zz = (x+xx)-(y+yy). */
/* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy) */
/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
/* are temporary storage variables of type double. */
#define SUB2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \
r = (x) - (y); \
if (ABS (x) > ABS (y)) { rr = ((x) - r) - (y); s = (rr - (yy)) + (xx); } \
else { rr = (x) - ((y) + r); s = (rr + (xx)) - (yy); } \
if (rr != 0.0) { \
z = r + s; zz = (r - z) + s; } \
else { \
ss = (ABS (xx) > ABS (yy)) ? (((xx) - s) - (yy)) : ((xx) - ((yy) + s)); \
u = r + s; \
uu = (ABS (r) > ABS (s)) ? ((r - u) + s) : ((s - u) + r); \
w = uu + ss; z = u + w; \
zz = (ABS (u) > ABS (w)) ? ((u - z) + w) : ((w - z) + u); }
|