1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/* Implementation of gamma function according to ISO C.
Copyright (C) 1997-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
approximation to gamma function. */
static const double gamma_coeff[] =
{
0x1.5555555555555p-4,
-0xb.60b60b60b60b8p-12,
0x3.4034034034034p-12,
-0x2.7027027027028p-12,
0x3.72a3c5631fe46p-12,
-0x7.daac36664f1f4p-12,
};
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
/* Return gamma (X), for positive X less than 184, in the form R *
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
avoid overflow or underflow in intermediate calculations. */
static double
gamma_positive (double x, int *exp2_adj)
{
int local_signgam;
if (x < 0.5)
{
*exp2_adj = 0;
return __ieee754_exp (__ieee754_lgamma_r (x + 1, &local_signgam)) / x;
}
else if (x <= 1.5)
{
*exp2_adj = 0;
return __ieee754_exp (__ieee754_lgamma_r (x, &local_signgam));
}
else if (x < 6.5)
{
/* Adjust into the range for using exp (lgamma). */
*exp2_adj = 0;
double n = __ceil (x - 1.5);
double x_adj = x - n;
double eps;
double prod = __gamma_product (x_adj, 0, n, &eps);
return (__ieee754_exp (__ieee754_lgamma_r (x_adj, &local_signgam))
* prod * (1.0 + eps));
}
else
{
double eps = 0;
double x_eps = 0;
double x_adj = x;
double prod = 1;
if (x < 12.0)
{
/* Adjust into the range for applying Stirling's
approximation. */
double n = __ceil (12.0 - x);
#if FLT_EVAL_METHOD != 0
volatile
#endif
double x_tmp = x + n;
x_adj = x_tmp;
x_eps = (x - (x_adj - n));
prod = __gamma_product (x_adj - n, x_eps, n, &eps);
}
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
factored out. */
double exp_adj = -eps;
double x_adj_int = __round (x_adj);
double x_adj_frac = x_adj - x_adj_int;
int x_adj_log2;
double x_adj_mant = __frexp (x_adj, &x_adj_log2);
if (x_adj_mant < M_SQRT1_2)
{
x_adj_log2--;
x_adj_mant *= 2.0;
}
*exp2_adj = x_adj_log2 * (int) x_adj_int;
double ret = (__ieee754_pow (x_adj_mant, x_adj)
* __ieee754_exp2 (x_adj_log2 * x_adj_frac)
* __ieee754_exp (-x_adj)
* __ieee754_sqrt (2 * M_PI / x_adj)
/ prod);
exp_adj += x_eps * __ieee754_log (x);
double bsum = gamma_coeff[NCOEFF - 1];
double x_adj2 = x_adj * x_adj;
for (size_t i = 1; i <= NCOEFF - 1; i++)
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
exp_adj += bsum / x_adj;
return ret + ret * __expm1 (exp_adj);
}
}
double
__ieee754_gamma_r (double x, int *signgamp)
{
int32_t hx;
u_int32_t lx;
EXTRACT_WORDS (hx, lx, x);
if (__builtin_expect (((hx & 0x7fffffff) | lx) == 0, 0))
{
/* Return value for x == 0 is Inf with divide by zero exception. */
*signgamp = 0;
return 1.0 / x;
}
if (__builtin_expect (hx < 0, 0)
&& (u_int32_t) hx < 0xfff00000 && __rint (x) == x)
{
/* Return value for integer x < 0 is NaN with invalid exception. */
*signgamp = 0;
return (x - x) / (x - x);
}
if (__builtin_expect ((unsigned int) hx == 0xfff00000 && lx == 0, 0))
{
/* x == -Inf. According to ISO this is NaN. */
*signgamp = 0;
return x - x;
}
if (__builtin_expect ((hx & 0x7ff00000) == 0x7ff00000, 0))
{
/* Positive infinity (return positive infinity) or NaN (return
NaN). */
*signgamp = 0;
return x + x;
}
if (x >= 172.0)
{
/* Overflow. */
*signgamp = 0;
return DBL_MAX * DBL_MAX;
}
else if (x > 0.0)
{
*signgamp = 0;
int exp2_adj;
double ret = gamma_positive (x, &exp2_adj);
return __scalbn (ret, exp2_adj);
}
else if (x >= -DBL_EPSILON / 4.0)
{
*signgamp = 0;
return 1.0 / x;
}
else
{
double tx = __trunc (x);
*signgamp = (tx == 2.0 * __trunc (tx / 2.0)) ? -1 : 1;
if (x <= -184.0)
/* Underflow. */
return DBL_MIN * DBL_MIN;
double frac = tx - x;
if (frac > 0.5)
frac = 1.0 - frac;
double sinpix = (frac <= 0.25
? __sin (M_PI * frac)
: __cos (M_PI * (0.5 - frac)));
int exp2_adj;
double ret = M_PI / (-x * sinpix * gamma_positive (-x, &exp2_adj));
return __scalbn (ret, -exp2_adj);
}
}
strong_alias (__ieee754_gamma_r, __gamma_r_finite)
|