1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2014 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************/
/* */
/* MODULE_NAME:ulog.c */
/* */
/* FUNCTION:ulog */
/* */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */
/* mpexp.c mplog.c mpa.c */
/* ulog.tbl */
/* */
/* An ultimate log routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of log(x). */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/*********************************************************************/
#include "endian.h"
#include <dla.h>
#include "mpa.h"
#include "MathLib.h"
#include <math_private.h>
#include <stap-probe.h>
#ifndef SECTION
# define SECTION
#endif
void __mplog (mp_no *, mp_no *, int);
/*********************************************************************/
/* An ultimate log routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of log(x). */
/*********************************************************************/
double
SECTION
__ieee754_log (double x)
{
#define M 4
static const int pr[M] = { 8, 10, 18, 32 };
int i, j, n, ux, dx, p;
double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj,
sij, ssij, ttij, A, B, B0, y, y1, y2, polI, polII, sa, sb,
t1, t2, t7, t8, t, ra, rb, ww,
a0, aa0, s1, s2, ss2, s3, ss3, a1, aa1, a, aa, b, bb, c;
#ifndef DLA_FMS
double t3, t4, t5, t6;
#endif
number num;
mp_no mpx, mpy, mpy1, mpy2, mperr;
#include "ulog.tbl"
#include "ulog.h"
/* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
num.d = x;
ux = num.i[HIGH_HALF];
dx = num.i[LOW_HALF];
n = 0;
if (__builtin_expect (ux < 0x00100000, 0))
{
if (__builtin_expect (((ux & 0x7fffffff) | dx) == 0, 0))
return MHALF / 0.0; /* return -INF */
if (__builtin_expect (ux < 0, 0))
return (x - x) / 0.0; /* return NaN */
n -= 54;
x *= two54.d; /* scale x */
num.d = x;
}
if (__builtin_expect (ux >= 0x7ff00000, 0))
return x + x; /* INF or NaN */
/* Regular values of x */
w = x - 1;
if (__builtin_expect (ABS (w) > U03, 1))
goto case_03;
/*--- Stage I, the case abs(x-1) < 0.03 */
t8 = MHALF * w;
EMULV (t8, w, a, aa, t1, t2, t3, t4, t5);
EADD (w, a, b, bb);
/* Evaluate polynomial II */
polII = b7.d + w * b8.d;
polII = b6.d + w * polII;
polII = b5.d + w * polII;
polII = b4.d + w * polII;
polII = b3.d + w * polII;
polII = b2.d + w * polII;
polII = b1.d + w * polII;
polII = b0.d + w * polII;
polII *= w * w * w;
c = (aa + bb) + polII;
/* End stage I, case abs(x-1) < 0.03 */
if ((y = b + (c + b * E2)) == b + (c - b * E2))
return y;
/*--- Stage II, the case abs(x-1) < 0.03 */
a = d19.d + w * d20.d;
a = d18.d + w * a;
a = d17.d + w * a;
a = d16.d + w * a;
a = d15.d + w * a;
a = d14.d + w * a;
a = d13.d + w * a;
a = d12.d + w * a;
a = d11.d + w * a;
EMULV (w, a, s2, ss2, t1, t2, t3, t4, t5);
ADD2 (d10.d, dd10.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (d9.d, dd9.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (d8.d, dd8.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (d7.d, dd7.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (d6.d, dd6.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (d5.d, dd5.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (d4.d, dd4.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (d3.d, dd3.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (d2.d, dd2.d, s2, ss2, s3, ss3, t1, t2);
MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (w, 0, s2, ss2, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (w, 0, s3, ss3, b, bb, t1, t2);
/* End stage II, case abs(x-1) < 0.03 */
if ((y = b + (bb + b * E4)) == b + (bb - b * E4))
return y;
goto stage_n;
/*--- Stage I, the case abs(x-1) > 0.03 */
case_03:
/* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
n += (num.i[HIGH_HALF] >> 20) - 1023;
num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
if (num.d > SQRT_2)
{
num.d *= HALF;
n++;
}
u = num.d;
dbl_n = (double) n;
/* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
num.d += h1.d;
i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
/* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
num.d = u * Iu[i].d + h2.d;
j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
/* Compute w=(u-ui*vj)/(ui*vj) */
p0 = (1 + (i - 75) * DEL_U) * (1 + (j - 180) * DEL_V);
q = u - p0;
r0 = Iu[i].d * Iv[j].d;
w = q * r0;
/* Evaluate polynomial I */
polI = w + (a2.d + a3.d * w) * w * w;
/* Add up everything */
nln2a = dbl_n * LN2A;
luai = Lu[i][0].d;
lubi = Lu[i][1].d;
lvaj = Lv[j][0].d;
lvbj = Lv[j][1].d;
EADD (luai, lvaj, sij, ssij);
EADD (nln2a, sij, A, ttij);
B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B;
B = polI + B0;
/* End stage I, case abs(x-1) >= 0.03 */
if ((y = A + (B + E1)) == A + (B - E1))
return y;
/*--- Stage II, the case abs(x-1) > 0.03 */
/* Improve the accuracy of r0 */
EMULV (p0, r0, sa, sb, t1, t2, t3, t4, t5);
t = r0 * ((1 - sa) - sb);
EADD (r0, t, ra, rb);
/* Compute w */
MUL2 (q, 0, ra, rb, w, ww, t1, t2, t3, t4, t5, t6, t7, t8);
EADD (A, B0, a0, aa0);
/* Evaluate polynomial III */
s1 = (c3.d + (c4.d + c5.d * w) * w) * w;
EADD (c2.d, s1, s2, ss2);
MUL2 (s2, ss2, w, ww, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (s3, ss3, w, ww, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (s2, ss2, w, ww, s3, ss3, t1, t2);
ADD2 (s3, ss3, a0, aa0, a1, aa1, t1, t2);
/* End stage II, case abs(x-1) >= 0.03 */
if ((y = a1 + (aa1 + E3)) == a1 + (aa1 - E3))
return y;
/* Final stages. Use multi-precision arithmetic. */
stage_n:
for (i = 0; i < M; i++)
{
p = pr[i];
__dbl_mp (x, &mpx, p);
__dbl_mp (y, &mpy, p);
__mplog (&mpx, &mpy, p);
__dbl_mp (e[i].d, &mperr, p);
__add (&mpy, &mperr, &mpy1, p);
__sub (&mpy, &mperr, &mpy2, p);
__mp_dbl (&mpy1, &y1, p);
__mp_dbl (&mpy2, &y2, p);
if (y1 == y2)
{
LIBC_PROBE (slowlog, 3, &p, &x, &y1);
return y1;
}
}
LIBC_PROBE (slowlog_inexact, 3, &p, &x, &y1);
return y1;
}
#ifndef __ieee754_log
strong_alias (__ieee754_log, __log_finite)
#endif
|