1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2014 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/************************************************************************/
/* */
/* MODULE_NAME:halfulp.c */
/* */
/* FUNCTIONS:halfulp */
/* FILES NEEDED: mydefs.h dla.h endian.h */
/* uroot.c */
/* */
/*Routine halfulp(double x, double y) computes x^y where result does */
/*not need rounding. If the result is closer to 0 than can be */
/*represented it returns 0. */
/* In the following cases the function does not compute anything */
/*and returns a negative number: */
/*1. if the result needs rounding, */
/*2. if y is outside the interval [0, 2^20-1], */
/*3. if x can be represented by x=2**n for some integer n. */
/************************************************************************/
#include "endian.h"
#include "mydefs.h"
#include <dla.h>
#include <math_private.h>
#ifndef SECTION
# define SECTION
#endif
static const int4 tab54[32] = {
262143, 11585, 1782, 511, 210, 107, 63, 42,
30, 22, 17, 14, 12, 10, 9, 7,
7, 6, 5, 5, 5, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3
};
double
SECTION
__halfulp (double x, double y)
{
mynumber v;
double z, u, uu;
#ifndef DLA_FMS
double j1, j2, j3, j4, j5;
#endif
int4 k, l, m, n;
if (y <= 0) /*if power is negative or zero */
{
v.x = y;
if (v.i[LOW_HALF] != 0)
return -10.0;
v.x = x;
if (v.i[LOW_HALF] != 0)
return -10.0;
if ((v.i[HIGH_HALF] & 0x000fffff) != 0)
return -10; /* if x =2 ^ n */
k = ((v.i[HIGH_HALF] & 0x7fffffff) >> 20) - 1023; /* find this n */
z = (double) k;
return (z * y == -1075.0) ? 0 : -10.0;
}
/* if y > 0 */
v.x = y;
if (v.i[LOW_HALF] != 0)
return -10.0;
v.x = x;
/* case where x = 2**n for some integer n */
if (((v.i[HIGH_HALF] & 0x000fffff) | v.i[LOW_HALF]) == 0)
{
k = (v.i[HIGH_HALF] >> 20) - 1023;
return (((double) k) * y == -1075.0) ? 0 : -10.0;
}
v.x = y;
k = v.i[HIGH_HALF];
m = k << 12;
l = 0;
while (m)
{
m = m << 1; l++;
}
n = (k & 0x000fffff) | 0x00100000;
n = n >> (20 - l); /* n is the odd integer of y */
k = ((k >> 20) - 1023) - l; /* y = n*2**k */
if (k > 5)
return -10.0;
if (k > 0)
for (; k > 0; k--)
n *= 2;
if (n > 34)
return -10.0;
k = -k;
if (k > 5)
return -10.0;
/* now treat x */
while (k > 0)
{
z = __ieee754_sqrt (x);
EMULV (z, z, u, uu, j1, j2, j3, j4, j5);
if (((u - x) + uu) != 0)
break;
x = z;
k--;
}
if (k)
return -10.0;
/* it is impossible that n == 2, so the mantissa of x must be short */
v.x = x;
if (v.i[LOW_HALF])
return -10.0;
k = v.i[HIGH_HALF];
m = k << 12;
l = 0;
while (m)
{
m = m << 1; l++;
}
m = (k & 0x000fffff) | 0x00100000;
m = m >> (20 - l); /* m is the odd integer of x */
/* now check whether the length of m**n is at most 54 bits */
if (m > tab54[n - 3])
return -10.0;
/* yes, it is - now compute x**n by simple multiplications */
u = x;
for (k = 1; k < n; k++)
u = u * x;
return u;
}
|