1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2014 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/***************************************************************************/
/* MODULE_NAME:uexp.c */
/* */
/* FUNCTION:uexp */
/* exp1 */
/* */
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */
/* mpa.c mpexp.x slowexp.c */
/* */
/* An ultimate exp routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of e^x */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/***************************************************************************/
#include "endian.h"
#include "uexp.h"
#include "mydefs.h"
#include "MathLib.h"
#include "uexp.tbl"
#include <math_private.h>
#include <fenv.h>
#include <float.h>
#ifndef SECTION
# define SECTION
#endif
double __slowexp (double);
/* An ultimate exp routine. Given an IEEE double machine number x it computes
the correctly rounded (to nearest) value of e^x. */
double
SECTION
__ieee754_exp (double x)
{
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
mynumber junk1, junk2, binexp = {{0, 0}};
int4 i, j, m, n, ex;
double retval;
SET_RESTORE_ROUND (FE_TONEAREST);
junk1.x = x;
m = junk1.i[HIGH_HALF];
n = m & hugeint;
if (n > smallint && n < bigint)
{
y = x * log2e.x + three51.x;
bexp = y - three51.x; /* multiply the result by 2**bexp */
junk1.x = y;
eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
t = x - bexp * ln_two1.x;
y = t + three33.x;
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
junk2.x = y;
del = (t - base) - eps; /* x = bexp*ln(2) + base + del */
eps = del + del * del * (p3.x * del + p2.x);
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
j = (junk2.i[LOW_HALF] & 511) << 1;
al = coar.x[i] * fine.x[j];
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
+ coar.x[i + 1] * fine.x[j + 1]);
rem = (bet + bet * eps) + al * eps;
res = al + rem;
cor = (al - res) + rem;
if (res == (res + cor * err_0))
{
retval = res * binexp.x;
goto ret;
}
else
{
retval = __slowexp (x);
goto ret;
} /*if error is over bound */
}
if (n <= smallint)
{
retval = 1.0;
goto ret;
}
if (n >= badint)
{
if (n > infint)
{
retval = x + x;
goto ret;
} /* x is NaN */
if (n < infint)
{
retval = (x > 0) ? (hhuge * hhuge) : (tiny * tiny);
goto ret;
}
/* x is finite, cause either overflow or underflow */
if (junk1.i[LOW_HALF] != 0)
{
retval = x + x;
goto ret;
} /* x is NaN */
retval = (x > 0) ? inf.x : zero; /* |x| = inf; return either inf or 0 */
goto ret;
}
y = x * log2e.x + three51.x;
bexp = y - three51.x;
junk1.x = y;
eps = bexp * ln_two2.x;
t = x - bexp * ln_two1.x;
y = t + three33.x;
base = y - three33.x;
junk2.x = y;
del = (t - base) - eps;
eps = del + del * del * (p3.x * del + p2.x);
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
j = (junk2.i[LOW_HALF] & 511) << 1;
al = coar.x[i] * fine.x[j];
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
+ coar.x[i + 1] * fine.x[j + 1]);
rem = (bet + bet * eps) + al * eps;
res = al + rem;
cor = (al - res) + rem;
if (m >> 31)
{
ex = junk1.i[LOW_HALF];
if (res < 1.0)
{
res += res;
cor += cor;
ex -= 1;
}
if (ex >= -1022)
{
binexp.i[HIGH_HALF] = (1023 + ex) << 20;
if (res == (res + cor * err_0))
{
retval = res * binexp.x;
goto ret;
}
else
{
retval = __slowexp (x);
goto check_uflow_ret;
} /*if error is over bound */
}
ex = -(1022 + ex);
binexp.i[HIGH_HALF] = (1023 - ex) << 20;
res *= binexp.x;
cor *= binexp.x;
eps = 1.0000000001 + err_0 * binexp.x;
t = 1.0 + res;
y = ((1.0 - t) + res) + cor;
res = t + y;
cor = (t - res) + y;
if (res == (res + eps * cor))
{
binexp.i[HIGH_HALF] = 0x00100000;
retval = (res - 1.0) * binexp.x;
goto check_uflow_ret;
}
else
{
retval = __slowexp (x);
goto check_uflow_ret;
} /* if error is over bound */
check_uflow_ret:
if (retval < DBL_MIN)
{
#if FLT_EVAL_METHOD != 0
volatile
#endif
double force_underflow = tiny * tiny;
math_force_eval (force_underflow);
}
goto ret;
}
else
{
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
if (res == (res + cor * err_0))
{
retval = res * binexp.x * t256.x;
goto ret;
}
else
{
retval = __slowexp (x);
goto ret;
}
}
ret:
return retval;
}
#ifndef __ieee754_exp
strong_alias (__ieee754_exp, __exp_finite)
#endif
/* Compute e^(x+xx). The routine also receives bound of error of previous
calculation. If after computing exp the error exceeds the allowed bounds,
the routine returns a non-positive number. Otherwise it returns the
computed result, which is always positive. */
double
SECTION
__exp1 (double x, double xx, double error)
{
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
mynumber junk1, junk2, binexp = {{0, 0}};
int4 i, j, m, n, ex;
junk1.x = x;
m = junk1.i[HIGH_HALF];
n = m & hugeint; /* no sign */
if (n > smallint && n < bigint)
{
y = x * log2e.x + three51.x;
bexp = y - three51.x; /* multiply the result by 2**bexp */
junk1.x = y;
eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
t = x - bexp * ln_two1.x;
y = t + three33.x;
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
junk2.x = y;
del = (t - base) + (xx - eps); /* x = bexp*ln(2) + base + del */
eps = del + del * del * (p3.x * del + p2.x);
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
j = (junk2.i[LOW_HALF] & 511) << 1;
al = coar.x[i] * fine.x[j];
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
+ coar.x[i + 1] * fine.x[j + 1]);
rem = (bet + bet * eps) + al * eps;
res = al + rem;
cor = (al - res) + rem;
if (res == (res + cor * (1.0 + error + err_1)))
return res * binexp.x;
else
return -10.0;
}
if (n <= smallint)
return 1.0; /* if x->0 e^x=1 */
if (n >= badint)
{
if (n > infint)
return (zero / zero); /* x is NaN, return invalid */
if (n < infint)
return ((x > 0) ? (hhuge * hhuge) : (tiny * tiny));
/* x is finite, cause either overflow or underflow */
if (junk1.i[LOW_HALF] != 0)
return (zero / zero); /* x is NaN */
return ((x > 0) ? inf.x : zero); /* |x| = inf; return either inf or 0 */
}
y = x * log2e.x + three51.x;
bexp = y - three51.x;
junk1.x = y;
eps = bexp * ln_two2.x;
t = x - bexp * ln_two1.x;
y = t + three33.x;
base = y - three33.x;
junk2.x = y;
del = (t - base) + (xx - eps);
eps = del + del * del * (p3.x * del + p2.x);
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
j = (junk2.i[LOW_HALF] & 511) << 1;
al = coar.x[i] * fine.x[j];
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
+ coar.x[i + 1] * fine.x[j + 1]);
rem = (bet + bet * eps) + al * eps;
res = al + rem;
cor = (al - res) + rem;
if (m >> 31)
{
ex = junk1.i[LOW_HALF];
if (res < 1.0)
{
res += res;
cor += cor;
ex -= 1;
}
if (ex >= -1022)
{
binexp.i[HIGH_HALF] = (1023 + ex) << 20;
if (res == (res + cor * (1.0 + error + err_1)))
return res * binexp.x;
else
return -10.0;
}
ex = -(1022 + ex);
binexp.i[HIGH_HALF] = (1023 - ex) << 20;
res *= binexp.x;
cor *= binexp.x;
eps = 1.00000000001 + (error + err_1) * binexp.x;
t = 1.0 + res;
y = ((1.0 - t) + res) + cor;
res = t + y;
cor = (t - res) + y;
if (res == (res + eps * cor))
{
binexp.i[HIGH_HALF] = 0x00100000;
return (res - 1.0) * binexp.x;
}
else
return -10.0;
}
else
{
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
if (res == (res + cor * (1.0 + error + err_1)))
return res * binexp.x * t256.x;
else
return -10.0;
}
}
|