1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  
     | 
    
      /* Copyright (C) 2001-2014 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@redhat.com>, 2001.
   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.
   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */
#include <errno.h>
#include <netdb.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <gai_misc.h>
/* We need this special structure to handle asynchronous I/O.  */
struct async_waitlist
  {
    int counter;
    struct sigevent sigev;
    struct waitlist list[0];
  };
int
getaddrinfo_a (int mode, struct gaicb *list[], int ent, struct sigevent *sig)
{
  struct sigevent defsigev;
  struct requestlist *requests[ent];
  int cnt;
  volatile int total = 0;
  int result = 0;
  /* Check arguments.  */
  if (mode != GAI_WAIT && mode != GAI_NOWAIT)
    {
      __set_errno (EINVAL);
      return EAI_SYSTEM;
    }
  if (sig == NULL)
    {
      defsigev.sigev_notify = SIGEV_NONE;
      sig = &defsigev;
    }
  /* Request the mutex.  */
  pthread_mutex_lock (&__gai_requests_mutex);
  /* Now we can enqueue all requests.  Since we already acquired the
     mutex the enqueue function need not do this.  */
  for (cnt = 0; cnt < ent; ++cnt)
    if (list[cnt] != NULL)
      {
	requests[cnt] = __gai_enqueue_request (list[cnt]);
	if (requests[cnt] != NULL)
	  /* Successfully enqueued.  */
	  ++total;
	else
	  /* Signal that we've seen an error.  `errno' and the error code
	     of the gaicb will tell more.  */
	  result = EAI_SYSTEM;
      }
    else
      requests[cnt] = NULL;
  if (total == 0)
    {
      /* We don't have anything to do except signalling if we work
	 asynchronously.  */
      /* Release the mutex.  We do this before raising a signal since the
	 signal handler might do a `siglongjmp' and then the mutex is
	 locked forever.  */
      pthread_mutex_unlock (&__gai_requests_mutex);
      if (mode == GAI_NOWAIT)
	__gai_notify_only (sig,
			   sig->sigev_notify == SIGEV_SIGNAL ? getpid () : 0);
      return result;
    }
  else if (mode == GAI_WAIT)
    {
#ifndef DONT_NEED_GAI_MISC_COND
      pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
#endif
      struct waitlist waitlist[ent];
      int oldstate;
      total = 0;
      for (cnt = 0; cnt < ent; ++cnt)
	if (requests[cnt] != NULL)
	  {
#ifndef DONT_NEED_GAI_MISC_COND
	    waitlist[cnt].cond = &cond;
#endif
	    waitlist[cnt].next = requests[cnt]->waiting;
	    waitlist[cnt].counterp = &total;
	    waitlist[cnt].sigevp = NULL;
	    waitlist[cnt].caller_pid = 0;	/* Not needed.  */
	    requests[cnt]->waiting = &waitlist[cnt];
	    ++total;
	  }
      /* Since `pthread_cond_wait'/`pthread_cond_timedwait' are cancelation
	 points we must be careful.  We added entries to the waiting lists
	 which we must remove.  So defer cancelation for now.  */
      pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &oldstate);
      while (total > 0)
	{
#ifdef DONT_NEED_GAI_MISC_COND
	  int not_used __attribute__ ((unused));
	  GAI_MISC_WAIT (not_used, total, NULL, 1);
#else
	  pthread_cond_wait (&cond, &__gai_requests_mutex);
#endif
	}
      /* Now it's time to restore the cancelation state.  */
      pthread_setcancelstate (oldstate, NULL);
#ifndef DONT_NEED_GAI_MISC_COND
      /* Release the conditional variable.  */
      if (pthread_cond_destroy (&cond) != 0)
	/* This must never happen.  */
	abort ();
#endif
    }
  else
    {
      struct async_waitlist *waitlist;
      waitlist = (struct async_waitlist *)
	malloc (sizeof (struct async_waitlist)
		+ (ent * sizeof (struct waitlist)));
      if (waitlist == NULL)
	result = EAI_AGAIN;
      else
	{
	  pid_t caller_pid = sig->sigev_notify == SIGEV_SIGNAL ? getpid () : 0;
	  total = 0;
	  for (cnt = 0; cnt < ent; ++cnt)
	    if (requests[cnt] != NULL)
	      {
#ifndef DONT_NEED_GAI_MISC_COND
		waitlist->list[cnt].cond = NULL;
#endif
		waitlist->list[cnt].next = requests[cnt]->waiting;
		waitlist->list[cnt].counterp = &waitlist->counter;
		waitlist->list[cnt].sigevp = &waitlist->sigev;
		waitlist->list[cnt].caller_pid = caller_pid;
		requests[cnt]->waiting = &waitlist->list[cnt];
		++total;
	      }
	  waitlist->counter = total;
	  waitlist->sigev = *sig;
	}
    }
  /* Release the mutex.  */
  pthread_mutex_unlock (&__gai_requests_mutex);
  return result;
}
 
     |