File: dl-machine.h

package info (click to toggle)
glibc 2.19-18%2Bdeb8u7
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 204,748 kB
  • sloc: ansic: 970,427; asm: 241,207; sh: 10,069; makefile: 8,476; cpp: 3,595; perl: 2,077; pascal: 1,839; awk: 1,704; yacc: 317; sed: 73
file content (762 lines) | stat: -rw-r--r-- 24,316 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/* Machine-dependent ELF dynamic relocation inline functions.  i386 version.
   Copyright (C) 1995-2014 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#ifndef dl_machine_h
#define dl_machine_h

#define ELF_MACHINE_NAME "i386"

#include <sys/param.h>
#include <sysdep.h>
#include <tls.h>
#include <dl-tlsdesc.h>

/* Return nonzero iff ELF header is compatible with the running host.  */
static inline int __attribute__ ((unused))
elf_machine_matches_host (const Elf32_Ehdr *ehdr)
{
  return ehdr->e_machine == EM_386;
}


#ifdef PI_STATIC_AND_HIDDEN

/* Return the link-time address of _DYNAMIC.  Conveniently, this is the
   first element of the GOT, a special entry that is never relocated.  */
static inline Elf32_Addr __attribute__ ((unused, const))
elf_machine_dynamic (void)
{
  /* This produces a GOTOFF reloc that resolves to zero at link time, so in
     fact just loads from the GOT register directly.  By doing it without
     an asm we can let the compiler choose any register.  */
  extern const Elf32_Addr _GLOBAL_OFFSET_TABLE_[] attribute_hidden;
  return _GLOBAL_OFFSET_TABLE_[0];
}

/* Return the run-time load address of the shared object.  */
static inline Elf32_Addr __attribute__ ((unused))
elf_machine_load_address (void)
{
  /* Compute the difference between the runtime address of _DYNAMIC as seen
     by a GOTOFF reference, and the link-time address found in the special
     unrelocated first GOT entry.  */
  extern Elf32_Dyn bygotoff[] asm ("_DYNAMIC") attribute_hidden;
  return (Elf32_Addr) &bygotoff - elf_machine_dynamic ();
}

#else  /* Without .hidden support, we can't compile the code above.  */

/* Return the link-time address of _DYNAMIC.  Conveniently, this is the
   first element of the GOT.  This must be inlined in a function which
   uses global data.  */
static inline Elf32_Addr __attribute__ ((unused))
elf_machine_dynamic (void)
{
  register Elf32_Addr *got asm ("%ebx");
  return *got;
}


/* Return the run-time load address of the shared object.  */
static inline Elf32_Addr __attribute__ ((unused))
elf_machine_load_address (void)
{
  /* It doesn't matter what variable this is, the reference never makes
     it to assembly.  We need a dummy reference to some global variable
     via the GOT to make sure the compiler initialized %ebx in time.  */
  extern int _dl_argc;
  Elf32_Addr addr;
  asm ("leal _dl_start@GOTOFF(%%ebx), %0\n"
       "subl _dl_start@GOT(%%ebx), %0"
       : "=r" (addr) : "m" (_dl_argc) : "cc");
  return addr;
}

#endif


/* Set up the loaded object described by L so its unrelocated PLT
   entries will jump to the on-demand fixup code in dl-runtime.c.  */

static inline int __attribute__ ((unused, always_inline))
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
{
  Elf32_Addr *got;
  extern void _dl_runtime_resolve (Elf32_Word) attribute_hidden;
  extern void _dl_runtime_profile (Elf32_Word) attribute_hidden;

  if (l->l_info[DT_JMPREL] && lazy)
    {
      /* The GOT entries for functions in the PLT have not yet been filled
	 in.  Their initial contents will arrange when called to push an
	 offset into the .rel.plt section, push _GLOBAL_OFFSET_TABLE_[1],
	 and then jump to _GLOBAL_OFFSET_TABLE[2].  */
      got = (Elf32_Addr *) D_PTR (l, l_info[DT_PLTGOT]);
      /* If a library is prelinked but we have to relocate anyway,
	 we have to be able to undo the prelinking of .got.plt.
	 The prelinker saved us here address of .plt + 0x16.  */
      if (got[1])
	{
	  l->l_mach.plt = got[1] + l->l_addr;
	  l->l_mach.gotplt = (Elf32_Addr) &got[3];
	}
      got[1] = (Elf32_Addr) l;	/* Identify this shared object.  */

      /* The got[2] entry contains the address of a function which gets
	 called to get the address of a so far unresolved function and
	 jump to it.  The profiling extension of the dynamic linker allows
	 to intercept the calls to collect information.  In this case we
	 don't store the address in the GOT so that all future calls also
	 end in this function.  */
      if (__builtin_expect (profile, 0))
	{
	  got[2] = (Elf32_Addr) &_dl_runtime_profile;

	  if (GLRO(dl_profile) != NULL
	      && _dl_name_match_p (GLRO(dl_profile), l))
	    /* This is the object we are looking for.  Say that we really
	       want profiling and the timers are started.  */
	    GL(dl_profile_map) = l;
	}
      else
	/* This function will get called to fix up the GOT entry indicated by
	   the offset on the stack, and then jump to the resolved address.  */
	got[2] = (Elf32_Addr) &_dl_runtime_resolve;
    }

  return lazy;
}

#ifdef IN_DL_RUNTIME

# ifndef PROF
/* We add a declaration of this function here so that in dl-runtime.c
   the ELF_MACHINE_RUNTIME_TRAMPOLINE macro really can pass the parameters
   in registers.

   We cannot use this scheme for profiling because the _mcount call
   destroys the passed register information.  */
#define ARCH_FIXUP_ATTRIBUTE __attribute__ ((regparm (3), stdcall, unused))

extern ElfW(Addr) _dl_fixup (struct link_map *l,
			     ElfW(Word) reloc_offset)
     ARCH_FIXUP_ATTRIBUTE;
extern ElfW(Addr) _dl_profile_fixup (struct link_map *l,
				     ElfW(Word) reloc_offset,
				     ElfW(Addr) retaddr, void *regs,
				     long int *framesizep)
     ARCH_FIXUP_ATTRIBUTE;
# endif

#endif

/* Mask identifying addresses reserved for the user program,
   where the dynamic linker should not map anything.  */
#define ELF_MACHINE_USER_ADDRESS_MASK	0xf8000000UL

/* Initial entry point code for the dynamic linker.
   The C function `_dl_start' is the real entry point;
   its return value is the user program's entry point.  */

#define RTLD_START asm ("\n\
	.text\n\
	.align 16\n\
0:	movl (%esp), %ebx\n\
	ret\n\
	.align 16\n\
.globl _start\n\
.globl _dl_start_user\n\
_start:\n\
	# Note that _dl_start gets the parameter in %eax.\n\
	movl %esp, %eax\n\
	call _dl_start\n\
_dl_start_user:\n\
	# Save the user entry point address in %edi.\n\
	movl %eax, %edi\n\
	# Point %ebx at the GOT.\n\
	call 0b\n\
	addl $_GLOBAL_OFFSET_TABLE_, %ebx\n\
	# See if we were run as a command with the executable file\n\
	# name as an extra leading argument.\n\
	movl _dl_skip_args@GOTOFF(%ebx), %eax\n\
	# Pop the original argument count.\n\
	popl %edx\n\
	# Adjust the stack pointer to skip _dl_skip_args words.\n\
	leal (%esp,%eax,4), %esp\n\
	# Subtract _dl_skip_args from argc.\n\
	subl %eax, %edx\n\
	# Push argc back on the stack.\n\
	push %edx\n\
	# The special initializer gets called with the stack just\n\
	# as the application's entry point will see it; it can\n\
	# switch stacks if it moves these contents over.\n\
" RTLD_START_SPECIAL_INIT "\n\
	# Load the parameters again.\n\
	# (eax, edx, ecx, *--esp) = (_dl_loaded, argc, argv, envp)\n\
	movl _rtld_local@GOTOFF(%ebx), %eax\n\
	leal 8(%esp,%edx,4), %esi\n\
	leal 4(%esp), %ecx\n\
	movl %esp, %ebp\n\
	# Make sure _dl_init is run with 16 byte aligned stack.\n\
	andl $-16, %esp\n\
	pushl %eax\n\
	pushl %eax\n\
	pushl %ebp\n\
	pushl %esi\n\
	# Clear %ebp, so that even constructors have terminated backchain.\n\
	xorl %ebp, %ebp\n\
	# Call the function to run the initializers.\n\
	call _dl_init_internal@PLT\n\
	# Pass our finalizer function to the user in %edx, as per ELF ABI.\n\
	leal _dl_fini@GOTOFF(%ebx), %edx\n\
	# Restore %esp _start expects.\n\
	movl (%esp), %esp\n\
	# Jump to the user's entry point.\n\
	jmp *%edi\n\
	.previous\n\
");

#ifndef RTLD_START_SPECIAL_INIT
# define RTLD_START_SPECIAL_INIT /* nothing */
#endif

/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or
   TLS variable, so undefined references should not be allowed to
   define the value.
   ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to one
   of the main executable's symbols, as for a COPY reloc.  */
# define elf_machine_type_class(type) \
  ((((type) == R_386_JMP_SLOT || (type) == R_386_TLS_DTPMOD32		      \
     || (type) == R_386_TLS_DTPOFF32 || (type) == R_386_TLS_TPOFF32	      \
     || (type) == R_386_TLS_TPOFF || (type) == R_386_TLS_DESC)		      \
    * ELF_RTYPE_CLASS_PLT)						      \
   | (((type) == R_386_COPY) * ELF_RTYPE_CLASS_COPY))

/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries.  */
#define ELF_MACHINE_JMP_SLOT	R_386_JMP_SLOT

/* The i386 never uses Elf32_Rela relocations for the dynamic linker.
   Prelinked libraries may use Elf32_Rela though.  */
#define ELF_MACHINE_PLT_REL 1

/* We define an initialization functions.  This is called very early in
   _dl_sysdep_start.  */
#define DL_PLATFORM_INIT dl_platform_init ()

static inline void __attribute__ ((unused))
dl_platform_init (void)
{
  if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0')
    /* Avoid an empty string which would disturb us.  */
    GLRO(dl_platform) = NULL;
}

static inline Elf32_Addr
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
		       const Elf32_Rel *reloc,
		       Elf32_Addr *reloc_addr, Elf32_Addr value)
{
  return *reloc_addr = value;
}

/* Return the final value of a plt relocation.  */
static inline Elf32_Addr
elf_machine_plt_value (struct link_map *map, const Elf32_Rel *reloc,
		       Elf32_Addr value)
{
  return value;
}


/* Names of the architecture-specific auditing callback functions.  */
#define ARCH_LA_PLTENTER i86_gnu_pltenter
#define ARCH_LA_PLTEXIT i86_gnu_pltexit

#endif /* !dl_machine_h */

/* The i386 never uses Elf32_Rela relocations for the dynamic linker.
   Prelinked libraries may use Elf32_Rela though.  */
#define ELF_MACHINE_NO_RELA defined RTLD_BOOTSTRAP

#ifdef RESOLVE_MAP

/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
   MAP is the object containing the reloc.  */

auto inline void
__attribute ((always_inline))
elf_machine_rel (struct link_map *map, const Elf32_Rel *reloc,
		 const Elf32_Sym *sym, const struct r_found_version *version,
		 void *const reloc_addr_arg, int skip_ifunc)
{
  Elf32_Addr *const reloc_addr = reloc_addr_arg;
  const unsigned int r_type = ELF32_R_TYPE (reloc->r_info);

# if !defined RTLD_BOOTSTRAP || !defined HAVE_Z_COMBRELOC
  if (__builtin_expect (r_type == R_386_RELATIVE, 0))
    {
#  if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC
      /* This is defined in rtld.c, but nowhere in the static libc.a;
	 make the reference weak so static programs can still link.
	 This declaration cannot be done when compiling rtld.c
	 (i.e. #ifdef RTLD_BOOTSTRAP) because rtld.c contains the
	 common defn for _dl_rtld_map, which is incompatible with a
	 weak decl in the same file.  */
#   ifndef SHARED
      weak_extern (_dl_rtld_map);
#   endif
      if (map != &GL(dl_rtld_map)) /* Already done in rtld itself.  */
#  endif
	*reloc_addr += map->l_addr;
    }
#  ifndef RTLD_BOOTSTRAP
  else if (__builtin_expect (r_type == R_386_NONE, 0))
    return;
#  endif
  else
# endif	/* !RTLD_BOOTSTRAP and have no -z combreloc */
    {
# ifndef RTLD_BOOTSTRAP
      const Elf32_Sym *const refsym = sym;
# endif
      struct link_map *sym_map = RESOLVE_MAP (&sym, version, r_type);
      Elf32_Addr value = sym_map == NULL ? 0 : sym_map->l_addr + sym->st_value;

      if (sym != NULL
	  && __builtin_expect (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC,
			       0)
	  && __builtin_expect (sym->st_shndx != SHN_UNDEF, 1)
	  && __builtin_expect (!skip_ifunc, 1))
	value = ((Elf32_Addr (*) (void)) value) ();

      switch (r_type)
	{
# ifndef RTLD_BOOTSTRAP
	case R_386_SIZE32:
	  /* Set to symbol size plus addend.  */
	  *reloc_addr += sym->st_size;
	  break;
# endif
	case R_386_GLOB_DAT:
	case R_386_JMP_SLOT:
	  *reloc_addr = value;
	  break;

	case R_386_TLS_DTPMOD32:
# ifdef RTLD_BOOTSTRAP
	  /* During startup the dynamic linker is always the module
	     with index 1.
	     XXX If this relocation is necessary move before RESOLVE
	     call.  */
	  *reloc_addr = 1;
# else
	  /* Get the information from the link map returned by the
	     resolv function.  */
	  if (sym_map != NULL)
	    *reloc_addr = sym_map->l_tls_modid;
# endif
	  break;
	case R_386_TLS_DTPOFF32:
# ifndef RTLD_BOOTSTRAP
	  /* During relocation all TLS symbols are defined and used.
	     Therefore the offset is already correct.  */
	  if (sym != NULL)
	    *reloc_addr = sym->st_value;
# endif
	  break;
	case R_386_TLS_DESC:
	  {
	    struct tlsdesc volatile *td =
	      (struct tlsdesc volatile *)reloc_addr;

# ifndef RTLD_BOOTSTRAP
	    if (! sym)
	      td->entry = _dl_tlsdesc_undefweak;
	    else
# endif
	      {
# ifndef RTLD_BOOTSTRAP
#  ifndef SHARED
		CHECK_STATIC_TLS (map, sym_map);
#  else
		if (!TRY_STATIC_TLS (map, sym_map))
		  {
		    td->arg = _dl_make_tlsdesc_dynamic
		      (sym_map, sym->st_value + (ElfW(Word))td->arg);
		    td->entry = _dl_tlsdesc_dynamic;
		  }
		else
#  endif
# endif
		  {
		    td->arg = (void*)(sym->st_value - sym_map->l_tls_offset
				      + (ElfW(Word))td->arg);
		    td->entry = _dl_tlsdesc_return;
		  }
	      }
	    break;
	  }
	case R_386_TLS_TPOFF32:
	  /* The offset is positive, backward from the thread pointer.  */
#  ifdef RTLD_BOOTSTRAP
	  *reloc_addr += map->l_tls_offset - sym->st_value;
#  else
	  /* We know the offset of object the symbol is contained in.
	     It is a positive value which will be subtracted from the
	     thread pointer.  To get the variable position in the TLS
	     block we subtract the offset from that of the TLS block.  */
	  if (sym != NULL)
	    {
	      CHECK_STATIC_TLS (map, sym_map);
	      *reloc_addr += sym_map->l_tls_offset - sym->st_value;
	    }
# endif
	  break;
	case R_386_TLS_TPOFF:
	  /* The offset is negative, forward from the thread pointer.  */
# ifdef RTLD_BOOTSTRAP
	  *reloc_addr += sym->st_value - map->l_tls_offset;
# else
	  /* We know the offset of object the symbol is contained in.
	     It is a negative value which will be added to the
	     thread pointer.  */
	  if (sym != NULL)
	    {
	      CHECK_STATIC_TLS (map, sym_map);
	      *reloc_addr += sym->st_value - sym_map->l_tls_offset;
	    }
# endif
	  break;

# ifndef RTLD_BOOTSTRAP
	case R_386_32:
	  *reloc_addr += value;
	  break;
	case R_386_PC32:
	  *reloc_addr += (value - (Elf32_Addr) reloc_addr);
	  break;
	case R_386_COPY:
	  if (sym == NULL)
	    /* This can happen in trace mode if an object could not be
	       found.  */
	    break;
	  if (__builtin_expect (sym->st_size > refsym->st_size, 0)
	      || (__builtin_expect (sym->st_size < refsym->st_size, 0)
		  && GLRO(dl_verbose)))
	    {
	      const char *strtab;

	      strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);
	      _dl_error_printf ("\
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
				RTLD_PROGNAME, strtab + refsym->st_name);
	    }
	  memcpy (reloc_addr_arg, (void *) value,
		  MIN (sym->st_size, refsym->st_size));
	  break;
	case R_386_IRELATIVE:
	  value = map->l_addr + *reloc_addr;
	  value = ((Elf32_Addr (*) (void)) value) ();
	  *reloc_addr = value;
	  break;
	default:
	  _dl_reloc_bad_type (map, r_type, 0);
	  break;
# endif	/* !RTLD_BOOTSTRAP */
	}
    }
}

# ifndef RTLD_BOOTSTRAP
auto inline void
__attribute__ ((always_inline))
elf_machine_rela (struct link_map *map, const Elf32_Rela *reloc,
		  const Elf32_Sym *sym, const struct r_found_version *version,
		  void *const reloc_addr_arg, int skip_ifunc)
{
  Elf32_Addr *const reloc_addr = reloc_addr_arg;
  const unsigned int r_type = ELF32_R_TYPE (reloc->r_info);

  if (ELF32_R_TYPE (reloc->r_info) == R_386_RELATIVE)
    *reloc_addr = map->l_addr + reloc->r_addend;
  else if (r_type != R_386_NONE)
    {
#  ifndef RESOLVE_CONFLICT_FIND_MAP
      const Elf32_Sym *const refsym = sym;
#  endif
      struct link_map *sym_map = RESOLVE_MAP (&sym, version, r_type);
      Elf32_Addr value = sym == NULL ? 0 : sym_map->l_addr + sym->st_value;

      if (sym != NULL
	  && __builtin_expect (sym->st_shndx != SHN_UNDEF, 1)
	  && __builtin_expect (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC, 0)
	  && __builtin_expect (!skip_ifunc, 1))
	value = ((Elf32_Addr (*) (void)) value) ();

      switch (ELF32_R_TYPE (reloc->r_info))
	{
	case R_386_SIZE32:
	  /* Set to symbol size plus addend.  */
	  value = sym->st_size;
	case R_386_GLOB_DAT:
	case R_386_JMP_SLOT:
	case R_386_32:
	  *reloc_addr = value + reloc->r_addend;
	  break;
#  ifndef RESOLVE_CONFLICT_FIND_MAP
	  /* Not needed for dl-conflict.c.  */
	case R_386_PC32:
	  *reloc_addr = (value + reloc->r_addend - (Elf32_Addr) reloc_addr);
	  break;

	case R_386_TLS_DTPMOD32:
	  /* Get the information from the link map returned by the
	     resolv function.  */
	  if (sym_map != NULL)
	    *reloc_addr = sym_map->l_tls_modid;
	  break;
	case R_386_TLS_DTPOFF32:
	  /* During relocation all TLS symbols are defined and used.
	     Therefore the offset is already correct.  */
	  *reloc_addr = (sym == NULL ? 0 : sym->st_value) + reloc->r_addend;
	  break;
	case R_386_TLS_DESC:
	  {
	    struct tlsdesc volatile *td =
	      (struct tlsdesc volatile *)reloc_addr;

#   ifndef RTLD_BOOTSTRAP
	    if (!sym)
	      {
		td->arg = (void*)reloc->r_addend;
		td->entry = _dl_tlsdesc_undefweak;
	      }
	    else
#   endif
	      {
#   ifndef RTLD_BOOTSTRAP
#    ifndef SHARED
		CHECK_STATIC_TLS (map, sym_map);
#    else
		if (!TRY_STATIC_TLS (map, sym_map))
		  {
		    td->arg = _dl_make_tlsdesc_dynamic
		      (sym_map, sym->st_value + reloc->r_addend);
		    td->entry = _dl_tlsdesc_dynamic;
		  }
		else
#    endif
#   endif
		  {
		    td->arg = (void*)(sym->st_value - sym_map->l_tls_offset
				      + reloc->r_addend);
		    td->entry = _dl_tlsdesc_return;
		  }
	      }
	  }
	  break;
	case R_386_TLS_TPOFF32:
	  /* The offset is positive, backward from the thread pointer.  */
	  /* We know the offset of object the symbol is contained in.
	     It is a positive value which will be subtracted from the
	     thread pointer.  To get the variable position in the TLS
	     block we subtract the offset from that of the TLS block.  */
	  if (sym != NULL)
	    {
	      CHECK_STATIC_TLS (map, sym_map);
	      *reloc_addr = sym_map->l_tls_offset - sym->st_value
			    + reloc->r_addend;
	    }
	  break;
	case R_386_TLS_TPOFF:
	  /* The offset is negative, forward from the thread pointer.  */
	  /* We know the offset of object the symbol is contained in.
	     It is a negative value which will be added to the
	     thread pointer.  */
	  if (sym != NULL)
	    {
	      CHECK_STATIC_TLS (map, sym_map);
	      *reloc_addr = sym->st_value - sym_map->l_tls_offset
			    + reloc->r_addend;
	    }
	  break;
	case R_386_COPY:
	  if (sym == NULL)
	    /* This can happen in trace mode if an object could not be
	       found.  */
	    break;
	  if (__builtin_expect (sym->st_size > refsym->st_size, 0)
	      || (__builtin_expect (sym->st_size < refsym->st_size, 0)
		  && GLRO(dl_verbose)))
	    {
	      const char *strtab;

	      strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);
	      _dl_error_printf ("\
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
				RTLD_PROGNAME, strtab + refsym->st_name);
	    }
	  memcpy (reloc_addr_arg, (void *) value,
		  MIN (sym->st_size, refsym->st_size));
	  break;
#  endif /* !RESOLVE_CONFLICT_FIND_MAP */
	case R_386_IRELATIVE:
	  value = map->l_addr + reloc->r_addend;
	  value = ((Elf32_Addr (*) (void)) value) ();
	  *reloc_addr = value;
	  break;
	default:
	  /* We add these checks in the version to relocate ld.so only
	     if we are still debugging.  */
	  _dl_reloc_bad_type (map, r_type, 0);
	  break;
	}
    }
}
# endif	/* !RTLD_BOOTSTRAP */

auto inline void
__attribute ((always_inline))
elf_machine_rel_relative (Elf32_Addr l_addr, const Elf32_Rel *reloc,
			  void *const reloc_addr_arg)
{
  Elf32_Addr *const reloc_addr = reloc_addr_arg;
  assert (ELF32_R_TYPE (reloc->r_info) == R_386_RELATIVE);
  *reloc_addr += l_addr;
}

# ifndef RTLD_BOOTSTRAP
auto inline void
__attribute__ ((always_inline))
elf_machine_rela_relative (Elf32_Addr l_addr, const Elf32_Rela *reloc,
			   void *const reloc_addr_arg)
{
  Elf32_Addr *const reloc_addr = reloc_addr_arg;
  *reloc_addr = l_addr + reloc->r_addend;
}
# endif	/* !RTLD_BOOTSTRAP */

auto inline void
__attribute__ ((always_inline))
elf_machine_lazy_rel (struct link_map *map,
		      Elf32_Addr l_addr, const Elf32_Rel *reloc,
		      int skip_ifunc)
{
  Elf32_Addr *const reloc_addr = (void *) (l_addr + reloc->r_offset);
  const unsigned int r_type = ELF32_R_TYPE (reloc->r_info);
  /* Check for unexpected PLT reloc type.  */
  if (__builtin_expect (r_type == R_386_JMP_SLOT, 1))
    {
      if (__builtin_expect (map->l_mach.plt, 0) == 0)
	*reloc_addr += l_addr;
      else
	*reloc_addr = (map->l_mach.plt
		       + (((Elf32_Addr) reloc_addr) - map->l_mach.gotplt) * 4);
    }
  else if (__builtin_expect (r_type == R_386_TLS_DESC, 1))
    {
      struct tlsdesc volatile * __attribute__((__unused__)) td =
	(struct tlsdesc volatile *)reloc_addr;

      /* Handle relocations that reference the local *ABS* in a simple
	 way, so as to preserve a potential addend.  */
      if (ELF32_R_SYM (reloc->r_info) == 0)
	td->entry = _dl_tlsdesc_resolve_abs_plus_addend;
      /* Given a known-zero addend, we can store a pointer to the
	 reloc in the arg position.  */
      else if (td->arg == 0)
	{
	  td->arg = (void*)reloc;
	  td->entry = _dl_tlsdesc_resolve_rel;
	}
      else
	{
	  /* We could handle non-*ABS* relocations with non-zero addends
	     by allocating dynamically an arg to hold a pointer to the
	     reloc, but that sounds pointless.  */
	  const Elf32_Rel *const r = reloc;
	  /* The code below was borrowed from elf_dynamic_do_rel().  */
	  const ElfW(Sym) *const symtab =
	    (const void *) D_PTR (map, l_info[DT_SYMTAB]);

# ifdef RTLD_BOOTSTRAP
	  /* The dynamic linker always uses versioning.  */
	  assert (map->l_info[VERSYMIDX (DT_VERSYM)] != NULL);
# else
	  if (map->l_info[VERSYMIDX (DT_VERSYM)])
# endif
	    {
	      const ElfW(Half) *const version =
		(const void *) D_PTR (map, l_info[VERSYMIDX (DT_VERSYM)]);
	      ElfW(Half) ndx = version[ELFW(R_SYM) (r->r_info)] & 0x7fff;
	      elf_machine_rel (map, r, &symtab[ELFW(R_SYM) (r->r_info)],
			       &map->l_versions[ndx],
			       (void *) (l_addr + r->r_offset), skip_ifunc);
	    }
# ifndef RTLD_BOOTSTRAP
	  else
	    elf_machine_rel (map, r, &symtab[ELFW(R_SYM) (r->r_info)], NULL,
			     (void *) (l_addr + r->r_offset), skip_ifunc);
# endif
	}
    }
  else if (__builtin_expect (r_type == R_386_IRELATIVE, 0))
    {
      Elf32_Addr value = map->l_addr + *reloc_addr;
      if (__builtin_expect (!skip_ifunc, 1))
	value = ((Elf32_Addr (*) (void)) value) ();
      *reloc_addr = value;
    }
  else
    _dl_reloc_bad_type (map, r_type, 1);
}

# ifndef RTLD_BOOTSTRAP

auto inline void
__attribute__ ((always_inline))
elf_machine_lazy_rela (struct link_map *map,
		       Elf32_Addr l_addr, const Elf32_Rela *reloc,
		       int skip_ifunc)
{
  Elf32_Addr *const reloc_addr = (void *) (l_addr + reloc->r_offset);
  const unsigned int r_type = ELF32_R_TYPE (reloc->r_info);
  if (__builtin_expect (r_type == R_386_JMP_SLOT, 1))
    ;
  else if (__builtin_expect (r_type == R_386_TLS_DESC, 1))
    {
      struct tlsdesc volatile * __attribute__((__unused__)) td =
	(struct tlsdesc volatile *)reloc_addr;

      td->arg = (void*)reloc;
      td->entry = _dl_tlsdesc_resolve_rela;
    }
  else if (__builtin_expect (r_type == R_386_IRELATIVE, 0))
    {
      Elf32_Addr value = map->l_addr + reloc->r_addend;
      if (__builtin_expect (!skip_ifunc, 1))
	value = ((Elf32_Addr (*) (void)) value) ();
      *reloc_addr = value;
    }
  else
    _dl_reloc_bad_type (map, r_type, 1);
}

# endif	/* !RTLD_BOOTSTRAP */

#endif /* RESOLVE_MAP */