1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
|
# libm test inputs for gen-auto-libm-tests.c.
# Copyright (C) 1997-2014 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
#
# The GNU C Library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# The GNU C Library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with the GNU C Library; if not, see
# <http://www.gnu.org/licenses/>. */
acos 0
acos -0
acos 1
acos -1
acos 0.5
acos -0.5
acos 0.75
acos 2e-17
acos 0.0625
acos 0x0.ffffffp0
acos -0x0.ffffffp0
acos 0x0.ffffffff8p0
acos -0x0.ffffffff8p0
acos 0x0.ffffffffffffp0
acos -0x0.ffffffffffffp0
acos 0x0.ffffffffffffffffp0
acos -0x0.ffffffffffffffffp0
acos min
acos -min
acos min_subnorm
acos -min_subnorm
acosh 1
acosh 1.625
acosh 7
acosh 100
acosh 1e5
acosh max no-test-inline
asin 0
asin -0
asin 0.5
asin -0.5
asin 1.0
asin -1.0
asin 0.75
asin 0x0.ffffffp0
asin -0x0.ffffffp0
asin 0x0.ffffffff8p0
asin -0x0.ffffffff8p0
asin 0x0.ffffffffffffp0
asin -0x0.ffffffffffffp0
asin 0x0.ffffffffffffffffp0
asin -0x0.ffffffffffffffffp0
# Bug 16351: underflow exception may be missing.
asin min missing-underflow
asin -min missing-underflow
asin min_subnorm missing-underflow
asin -min_subnorm missing-underflow
asinh 0
asinh -0
asinh 0.75
asinh 1
asinh 10
asinh 100
asinh 1e6
asinh 0x1p100
# Bug 16350: underflow exception may be missing.
asinh min missing-underflow
asinh -min missing-underflow
asinh min_subnorm missing-underflow
asinh -min_subnorm missing-underflow
asinh max no-test-inline
asinh -max no-test-inline
atan 0
atan -0
atan max
atan -max
atan 1
atan -1
atan 0.75
atan 0x1p-5
atan 2.5
atan 10
atan 1e6
# Bug 15319: underflow exception may be missing.
atan 0x1p-100 missing-underflow
atan 0x1p-600 missing-underflow
atan 0x1p-10000 missing-underflow
atan min missing-underflow
atan -min missing-underflow
atan min_subnorm missing-underflow
atan -min_subnorm missing-underflow
# atan2 (0,x) == 0 for x > 0.
atan2 0 1
# atan2 (-0,x) == -0 for x > 0.
atan2 -0 1
atan2 0 0
atan2 -0 0
# atan2 (+0,x) == +pi for x < 0.
atan2 0 -1
# atan2 (-0,x) == -pi for x < 0.
atan2 -0 -1
atan2 0 -0
atan2 -0 -0
# atan2 (y,+0) == pi/2 for y > 0.
atan2 1 0
# atan2 (y,-0) == pi/2 for y > 0.
atan2 1 -0
# atan2 (y,+0) == -pi/2 for y < 0.
atan2 -1 0
# atan2 (y,-0) == -pi/2 for y < 0.
atan2 -1 -0
atan2 max max
atan2 max -max
atan2 -max max
atan2 -max -max
atan2 max min
atan2 -max -min
atan2 -max min
atan2 max -min
atan2 max min_subnorm
atan2 -max -min_subnorm
atan2 -max min_subnorm
atan2 max -min_subnorm
atan2 0.75 1
atan2 -0.75 1.0
atan2 0.75 -1.0
atan2 -0.75 -1.0
atan2 0.390625 .00029
atan2 1.390625 0.9296875
atan2 -0.00756827042671106339 -.001792735857538728036
atan2 0x1.00000000000001p0 0x1.00000000000001p0
atan2 min min
atan2 min -min
atan2 -min min
atan2 -min -min
atan2 min_subnorm min_subnorm
atan2 min_subnorm -min_subnorm
atan2 -min_subnorm min_subnorm
atan2 -min_subnorm -min_subnorm
atan2 1 -max
atan2 -1 -max
atan2 min -max
atan2 -min -max
atan2 min_subnorm -max
atan2 -min_subnorm -max
# Bug 15319: underflow exception may be missing.
# Bug 16349: errno setting may be missing.
atan2 1 max missing-underflow
atan2 -1 max missing-underflow
atan2 min max missing-underflow missing-errno
atan2 -min max missing-underflow missing-errno
atan2 min_subnorm max missing-underflow missing-errno
atan2 -min_subnorm max missing-underflow missing-errno
atanh 0
atanh -0
atanh 0.75
atanh -0.75
atanh 0.25
atanh 0x1p-5
atanh 0x1p-10
atanh 0x1.2345p-20
# Bug 16352: underflow exception may be missing.
# Bug 16357: spurious underflow may occur.
atanh min missing-underflow spurious-underflow:ldbl-96-intel:x86
atanh -min missing-underflow spurious-underflow:ldbl-96-intel:x86
atanh min_subnorm missing-underflow
atanh -min_subnorm missing-underflow
# cabs (x,y) == cabs (y,x).
cabs 0.75 12.390625
# cabs (x,y) == cabs (-x,y).
cabs -12.390625 0.75
# cabs (x,y) == cabs (-y,x).
cabs -0.75 12.390625
# cabs (x,y) == cabs (-x,-y).
cabs -12.390625 -0.75
# cabs (x,y) == cabs (-y,-x).
cabs -0.75 -12.390625
# cabs (x,0) == fabs (x).
cabs -0.75 0
cabs 0.75 0
cabs -1.0 0
cabs 1.0 0
cabs -5.7e7 0
cabs 5.7e7 0
cabs 0.75 1.25
# carg (x + i 0) == 0 for x > 0.
carg 2.0 0
# carg (x - i 0) == -0 for x > 0.
carg 2.0 -0
carg 0 0
carg 0 -0
# carg (x + i 0) == +pi for x < 0.
carg -2.0 0
# carg (x - i 0) == -pi for x < 0.
carg -2.0 -0
carg -0 0
carg -0 -0
# carg (+0 + i y) == pi/2 for y > 0.
carg 0 2.0
# carg (-0 + i y) == pi/2 for y > 0.
carg -0 2.0
# carg (+0 + i y) == -pi/2 for y < 0.
carg 0 -2.0
# carg (-0 + i y) == -pi/2 for y < 0.
carg -0 -2.0
cbrt 0.0
cbrt -0
cbrt -0.001
cbrt 8
cbrt -27.0
cbrt 0.9921875
cbrt 0.75
cbrt 0x1p16383
cbrt 0x1p-16383
cbrt 1e5
cbrt max
cbrt -max
cbrt min
cbrt -min
cbrt min_subnorm
cbrt -min_subnorm
ccos 0.0 0.0
ccos -0 0.0
ccos 0.0 -0
ccos -0 -0
ccos 0.75 1.25
ccos -2 -3
ccos 0.75 89.5
ccos 0.75 -89.5
ccos -0.75 89.5
ccos -0.75 -89.5
ccos 0.75 710.5
ccos 0.75 -710.5
ccos -0.75 710.5
ccos -0.75 -710.5
ccos 0.75 11357.25
ccos 0.75 -11357.25
ccos -0.75 11357.25
ccos -0.75 -11357.25
ccos 0x1p-149 180
ccos 0x1p-1074 1440
ccos 0x1p-16434 22730
ccos min_subnorm_p120 0x1p-120
ccos 0x1p-120 min_subnorm_p120
ccosh 0.0 0.0
ccosh -0 0.0
ccosh 0.0 -0
ccosh -0 -0
ccosh 0.75 1.25
ccosh -2 -3
ccosh 89.5 0.75
ccosh -89.5 0.75
ccosh 89.5 -0.75
ccosh -89.5 -0.75
ccosh 710.5 0.75
ccosh -710.5 0.75
ccosh 710.5 -0.75
ccosh -710.5 -0.75
ccosh 11357.25 0.75
ccosh -11357.25 0.75
ccosh 11357.25 -0.75
ccosh -11357.25 -0.75
ccosh 180 0x1p-149
ccosh 1440 0x1p-1074
ccosh 22730 0x1p-16434
ccosh min_subnorm_p120 0x1p-120
ccosh 0x1p-120 min_subnorm_p120
cexp 0 0
cexp -0 0
cexp 0 -0
cexp -0 -0
cexp 0.75 1.25
cexp -2.0 -3.0
cexp 0 0x1p65
cexp 0 -0x1p65
cexp 50 0x1p127
cexp 0 1e22
cexp 0 0x1p1023
cexp 500 0x1p1023
cexp 0 0x1p16383
cexp -10000 0x1p16383
cexp 88.75 0.75
cexp -95 0.75
cexp 709.8125 0.75
cexp -720 0.75
cexp 11356.5625 0.75
cexp -11370 0.75
cexp 180 0x1p-149
cexp 1440 0x1p-1074
cexp 22730 0x1p-16434
cexp 1e6 0
cexp 1e6 min
cexp 1e6 -min
# Bug 16348: spurious underflow may occur.
cexp min min_subnorm spurious-underflow:ldbl-96-intel:x86 spurious-underflow:ldbl-96-intel:x86_64
cexp min -min_subnorm spurious-underflow:ldbl-96-intel:x86 spurious-underflow:ldbl-96-intel:x86_64
clog 0.75 1.25
clog -2 -3
clog 0x1.fffffep+127 0x1.fffffep+127
clog 0x1.fffffep+127 1.0
clog 0x1p-149 0x1p-149
clog 0x1p-147 0x1p-147
clog 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
clog 0x1.fffffffffffffp+1023 0x1p+1023
clog 0x1p-1074 0x1p-1074
clog 0x1p-1073 0x1p-1073
clog 0x1.fp+16383 0x1.fp+16383
clog 0x1.fp+16383 0x1p+16383
clog 0x1p-16440 0x1p-16441
clog 0x1p-149 0x1.fp+127
clog -0x1p-149 0x1.fp+127
clog 0x1p-149 -0x1.fp+127
clog -0x1p-149 -0x1.fp+127
clog -0x1.fp+127 0x1p-149
clog -0x1.fp+127 -0x1p-149
clog 0x1.fp+127 0x1p-149
clog 0x1.fp+127 -0x1p-149
clog 0x1p-1074 0x1.fp+1023
clog -0x1p-1074 0x1.fp+1023
clog 0x1p-1074 -0x1.fp+1023
clog -0x1p-1074 -0x1.fp+1023
clog -0x1.fp+1023 0x1p-1074
clog -0x1.fp+1023 -0x1p-1074
clog 0x1.fp+1023 0x1p-1074
clog 0x1.fp+1023 -0x1p-1074
clog 0x1p-16445 0x1.fp+16383
clog -0x1p-16445 0x1.fp+16383
clog 0x1p-16445 -0x1.fp+16383
clog -0x1p-16445 -0x1.fp+16383
clog -0x1.fp+16383 0x1p-16445
clog -0x1.fp+16383 -0x1p-16445
clog 0x1.fp+16383 0x1p-16445
clog 0x1.fp+16383 -0x1p-16445
clog 0x1p-16494 0x1.fp+16383
clog -0x1p-16494 0x1.fp+16383
clog 0x1p-16494 -0x1.fp+16383
clog -0x1p-16494 -0x1.fp+16383
clog -0x1.fp+16383 0x1p-16494
clog -0x1.fp+16383 -0x1p-16494
clog 0x1.fp+16383 0x1p-16494
clog 0x1.fp+16383 -0x1p-16494
clog 1.0 0x1.234566p-10
clog -1.0 0x1.234566p-20
clog 0x1.234566p-30 1.0
clog -0x1.234566p-40 -1.0
clog 0x1.234566p-50 1.0
clog 0x1.234566p-60 1.0
clog 0x1p-62 1.0
clog 0x1p-63 1.0
clog 0x1p-64 1.0
clog 0x1p-510 1.0
clog 0x1p-511 1.0
clog 0x1p-512 1.0
clog 0x1p-8190 1.0
clog 0x1p-8191 1.0
clog 0x1p-8192 1.0
clog 0x1.000566p0 0x1.234p-10
clog 0x1.000566p0 0x1.234p-100
clog -0x1.0000000123456p0 0x1.2345678p-30
clog -0x1.0000000123456p0 0x1.2345678p-1000
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-60
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-1000
clog 0x0.ffffffp0 0x0.ffffffp-100
clog 0x0.fffffffffffff8p0 0x0.fffffffffffff8p-1000
clog 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp-15000
clog 0x1a6p-10 0x3a5p-10
clog 0xf2p-10 0x3e3p-10
clog 0x4d4ep-15 0x6605p-15
clog 0x2818p-15 0x798fp-15
clog 0x9b57bp-20 0xcb7b4p-20
clog 0x2731p-20 0xfffd0p-20
clog 0x2ede88p-23 0x771c3fp-23
clog 0x11682p-23 0x7ffed1p-23
clog 0xa1f2c1p-24 0xc643aep-24
clog 0x659feap-24 0xeaf6f9p-24
clog 0x4447d7175p-35 0x6c445e00ap-35
clog 0x2dd46725bp-35 0x7783a1284p-35
clog 0x164c74eea876p-45 0x16f393482f77p-45
clog 0xfe961079616p-45 0x1bc37e09e6d1p-45
clog 0xa4722f19346cp-51 0x7f9631c5e7f07p-51
clog 0x10673dd0f2481p-51 0x7ef1d17cefbd2p-51
clog 0x8ecbf810c4ae6p-52 0xd479468b09a37p-52
clog 0x5b06b680ea2ccp-52 0xef452b965da9fp-52
clog 0x659b70ab7971bp-53 0x1f5d111e08abecp-53
clog 0x15cfbd1990d1ffp-53 0x176a3973e09a9ap-53
clog 0x1367a310575591p-54 0x3cfcc0a0541f60p-54
clog 0x55cb6d0c83af5p-55 0x7fe33c0c7c4e90p-55
clog 0x298c62cb546588a7p-63 0x7911b1dfcc4ecdaep-63
clog 0x4d9c37e2b5cb4533p-63 0x65c98be2385a042ep-63
clog 0x602fd5037c4792efp-64 0xed3e2086dcca80b8p-64
clog 0x6b10b4f3520217b6p-64 0xe8893cbb449253a1p-64
clog 0x81b7efa81fc35ad1p-65 0x1ef4b835f1c79d812p-65
clog 0x3f96469050f650869c2p-75 0x6f16b2c9c8b05988335p-75
clog 0x3157fc1d73233e580c8p-75 0x761b52ccd435d7c7f5fp-75
clog 0x155f8afc4c48685bf63610p-85 0x17d0cf2652cdbeb1294e19p-85
clog 0x13836d58a13448d750b4b9p-85 0x195ca7bc3ab4f9161edbe6p-85
clog 0x1df515eb171a808b9e400266p-95 0x7c71eb0cd4688dfe98581c77p-95
clog 0xe33f66c9542ca25cc43c867p-95 0x7f35a68ebd3704a43c465864p-95
clog 0x6771f22c64ed551b857c128b4cp-105 0x1f570e7a13cc3cf2f44fd793ea1p-105
clog 0x15d8ab6ed05ca514086ac3a1e84p-105 0x1761e480aa094c0b10b34b09ce9p-105
clog 0x187190c1a334497bdbde5a95f48p-106 0x3b25f08062d0a095c4cfbbc338dp-106
clog 0x6241ef0da53f539f02fad67dabp-106 0x3fb46641182f7efd9caa769dac0p-106
clog 0x3e1d0a105ac4ebeacd9c6952d34cp-112 0xf859b3d1b06d005dcbb5516d5479p-112
clog 0x47017a2e36807acb1e5214b209dep-112 0xf5f4a550c9d75e3bb1839d865f0dp-112
clog 0x148f818cb7a9258fca942ade2a0cap-113 0x18854a34780b8333ec53310ad7001p-113
clog 0xfd95243681c055c2632286921092p-113 0x1bccabcd29ca2152860ec29e34ef7p-113
clog 0xdb85c467ee2aadd5f425fe0f4b8dp-114 0x3e83162a0f95f1dcbf97dddf410eap-114
clog 0x1415bcaf2105940d49a636e98ae59p-115 0x7e6a150adfcd1b0921d44b31f40f4p-115
cos 0
cos -0
cos pi/3
cos 2pi/3
cos pi/2
cos 0.75
cos 0x1p65
cos -0x1p65
cos 0.80190127184058835
cos 0x1.442f74p+15
cos 1e22
cos 0x1p1023
cos 0x1p16383
cos 0x1p+120
cos 0x1p+127
cos 0x1.fffff8p+127
cos 0x1.fffffep+127
cos 0x1p+50
cos 0x1p+28
cos 0x1.000000cf4a2a2p0
cos 0x1.0000010b239a9p0
cos 0x1.00000162a932bp0
cos 0x1.000002d452a10p0
cos 0x1.000005bc7d86dp0
cos 1
cos 2
cos 3
cos 4
cos 5
cos 6
cos 7
cos 8
cos 9
cos 10
cos max
cos -max
cos min
cos -min
cos min_subnorm
cos -min_subnorm
cosh 0
cosh -0
cosh 0.75
cosh 709.8893558127259666434838436543941497802734375
cosh -709.8893558127259666434838436543941497802734375
cosh 22
cosh 23
cosh 24
cosh 0x1p-5
cosh 0x1p-20
cosh -1
cosh 50
# GCC bug 59666: results on directed rounding may be incorrect.
cosh max no-test-inline xfail-rounding:ldbl-128ibm
cosh -max no-test-inline xfail-rounding:ldbl-128ibm
# Bug 16354: spurious underflow may occur.
cosh min spurious-underflow
cosh -min spurious-underflow
cosh min_subnorm spurious-underflow
cosh -min_subnorm spurious-underflow
# Test values either side of overflow for each floating-point format.
cosh 0x5.96a7ep+4
cosh 0x5.96a7e8p+4
cosh -0x5.96a7ep+4
cosh -0x5.96a7e8p+4
# GCC bug 59666: results on directed rounding may be incorrect.
cosh 0x2.c679d1f73f0fap+8 xfail-rounding:ldbl-128ibm
cosh 0x2.c679d1f73f0fcp+8 xfail-rounding:ldbl-128ibm
cosh -0x2.c679d1f73f0fap+8 xfail-rounding:ldbl-128ibm
cosh -0x2.c679d1f73f0fcp+8 xfail-rounding:ldbl-128ibm
cosh 0x2.c679d1f73f0fb624d358b213a7p+8 xfail-rounding:ldbl-128ibm
cosh 0x2.c679d1f73f0fb624d358b213a8p+8 xfail-rounding:ldbl-128ibm
cosh -0x2.c679d1f73f0fb624d358b213a7p+8 xfail-rounding:ldbl-128ibm
cosh -0x2.c679d1f73f0fb624d358b213a8p+8 xfail-rounding:ldbl-128ibm
cosh 0x2.c5d37700c6bb03a4p+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh 0x2.c5d37700c6bb03a8p+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh -0x2.c5d37700c6bb03a4p+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh -0x2.c5d37700c6bb03a8p+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh 0x2.c5d37700c6bb03a6c24b6c9b494cp+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh 0x2.c5d37700c6bb03a6c24b6c9b494ep+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh -0x2.c5d37700c6bb03a6c24b6c9b494cp+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh -0x2.c5d37700c6bb03a6c24b6c9b494ep+12 no-test-inline xfail-rounding:ldbl-128ibm
cpow 1 0 0 0
cpow 2 0 10 0
# Bug 14473: cpow results inaccurate.
cpow e 0 0 2pi xfail
cpow 2 3 4 0
cpow 0.75 1.25 0.75 1.25
cpow 0.75 1.25 1.0 1.0
cpow 0.75 1.25 1.0 0.0
cpow 0.75 1.25 0.0 1.0
csqrt 0 0
csqrt 0 -0
csqrt -0 0
csqrt -0 -0
csqrt 16.0 -30.0
csqrt -1 0
csqrt 0 2
csqrt 119 120
csqrt 0.75 1.25
csqrt -2 -3
csqrt -2 3
# Principal square root should be returned (i.e., non-negative real part).
csqrt 0 -1
csqrt 0x1.fffffep+127 0x1.fffffep+127
csqrt 0x1.fffffep+127 1.0
csqrt 0x1p-149 0x1p-149
csqrt 0x1p-147 0x1p-147
csqrt 0 0x1p-149
csqrt 0x1p-50 0x1p-149
csqrt 0x1p+127 0x1p-149
csqrt 0x1p-149 0x1p+127
csqrt 0x1.000002p-126 0x1.000002p-126
csqrt -0x1.000002p-126 -0x1.000002p-126
csqrt 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
csqrt 0x1.fffffffffffffp+1023 0x1p+1023
csqrt 0x1p-1074 0x1p-1074
csqrt 0x1p-1073 0x1p-1073
csqrt 0 0x1p-1074
csqrt 0x1p-500 0x1p-1074
csqrt 0x1p+1023 0x1p-1074
csqrt 0x1p-1074 0x1p+1023
csqrt 0x1.0000000000001p-1022 0x1.0000000000001p-1022
csqrt -0x1.0000000000001p-1022 -0x1.0000000000001p-1022
csqrt 0x1.fp+16383 0x1.fp+16383
csqrt 0x1.fp+16383 0x1p+16383
csqrt 0x1p-16440 0x1p-16441
csqrt 0 0x1p-16445
csqrt 0x1p-5000 0x1p-16445
csqrt 0x1p+16383 0x1p-16445
csqrt 0x1p-16445 0x1p+16383
csqrt 0x1.0000000000000002p-16382 0x1.0000000000000002p-16382
csqrt -0x1.0000000000000002p-16382 -0x1.0000000000000002p-16382
csqrt 0 0x1p-16494
csqrt 0x1p-5000 0x1p-16494
csqrt 0x1p+16383 0x1p-16494
csqrt 0x1p-16494 0x1p+16383
csqrt 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-16382
csqrt -0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-16382
ctan 0 0
ctan 0 -0
ctan -0 0
ctan -0 -0
ctan 0.75 1.25
ctan -2 -3
ctan 1 45
ctan 1 47
ctan 1 355
ctan 1 365
# GCC bug 59666: results on directed rounding may be incorrect.
ctan 1 5680 xfail-rounding:ldbl-128ibm
ctan 1 5690 xfail-rounding:ldbl-128ibm
ctan 0x3.243f6cp-1 0
ctan 0x1p127 1
ctan 0x1p1023 1
ctan 0x1p16383 1
# GCC bug 59666: results on directed rounding may be incorrect.
ctan 50000 50000 xfail-rounding:ldbl-128ibm
ctan 50000 -50000 xfail-rounding:ldbl-128ibm
ctan -50000 50000 xfail-rounding:ldbl-128ibm
ctan -50000 -50000 xfail-rounding:ldbl-128ibm
ctan 0x1.921fb6p+0 0x1p-149
ctan 0x1.921fb54442d18p+0 0x1p-1074
ctan 0x1.921fb54442d1846ap+0 0x1p-16445
ctanh 0 0
ctanh 0 -0
ctanh -0 0
ctanh -0 -0
ctanh 0 pi/4
ctanh 0.75 1.25
ctanh -2 -3
ctanh 45 1
ctanh 47 1
ctanh 355 1
ctanh 365 1
# GCC bug 59666: results on directed rounding may be incorrect.
ctanh 5680 1 xfail-rounding:ldbl-128ibm
ctanh 5690 1 xfail-rounding:ldbl-128ibm
ctanh 0 0x3.243f6cp-1
ctanh 1 0x1p127
ctanh 1 0x1p1023
ctanh 1 0x1p16383
# GCC bug 59666: results on directed rounding may be incorrect.
ctanh 50000 50000 xfail-rounding:ldbl-128ibm
ctanh 50000 -50000 xfail-rounding:ldbl-128ibm
ctanh -50000 50000 xfail-rounding:ldbl-128ibm
ctanh -50000 -50000 xfail-rounding:ldbl-128ibm
ctanh 0x1p-149 0x1.921fb6p+0
ctanh 0x1p-1074 0x1.921fb54442d18p+0
ctanh 0x1p-16445 0x1.921fb54442d1846ap+0
erf 0
erf -0
erf 0.125
erf 0.75
erf 1.25
erf 2.0
erf 4.125
erf 27.0
erf -27.0
erf -0x1.fffffffffffff8p-2
erfc 0.0
erfc -0
erfc 0.125
erfc 0.75
erfc 1.25
erfc 2.0
erfc 0x1.f7303cp+1
erfc 4.125
erfc 0x1.ffa002p+2
erfc 0x1.ffffc8p+2
erfc -0x1.fffffffffffff8p-2
erfc 26.0
erfc 27.0
erfc 28.0
erfc 0x1.ffff56789abcdef0123456789a8p+2
erfc 100
erfc 106
erfc 106.5
erfc 106.625
erfc 107
erfc 108
erfc 1000
erfc max
exp 0
exp -0
exp 1
exp 2
exp 3
exp 0.75
exp 50.0
exp 88.72269439697265625
exp 709.75
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp 1000.0 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp 710 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp -1234
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp 0x2.c679d1f73f0fb628p+8 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp 1e5 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp max xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp -7.4444006192138124e+02
exp -0x1.75f113c30b1c8p+9
exp -max
exp10 0
exp10 -0
exp10 3
exp10 -1
exp10 36
exp10 -36
exp10 305
exp10 -305
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 4932 xfail-rounding:flt-32 xfail-rounding:ldbl-128ibm
# Bug 16361: underflow exception may be misssing
exp10 -4932 missing-underflow:ldbl-96-intel:x86 missing-underflow:ldbl-96-intel:x86_64
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 1e5 xfail-rounding:flt-32 xfail-rounding:ldbl-128ibm
exp10 -1e5
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 1e6 xfail-rounding:flt-32 xfail-rounding:ldbl-128ibm
exp10 -1e6
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 max xfail-rounding:flt-32 xfail-rounding:ldbl-128ibm
exp10 -max
exp10 0.75
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 0x1.348e45573a1dd72cp+8 xfail-rounding:flt-32 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp2 0
exp2 -0
exp2 10
exp2 -1
exp2 1e6
exp2 -1e6
exp2 max
exp2 -max
exp2 0.75
exp2 100.5
exp2 127
exp2 -149
exp2 1000.25
exp2 1023
exp2 -1074
exp2 16383
exp2 -16400
expm1 0
expm1 -0
expm1 1
expm1 0.75
expm1 50.0
expm1 127.0
expm1 500.0
# GCC bug 59666: results on directed rounding may be incorrect.
expm1 11356.25 xfail-rounding:ldbl-128ibm
expm1 -10.0
expm1 -16.0
expm1 -17.0
expm1 -18.0
expm1 -36.0
expm1 -37.0
expm1 -38.0
expm1 -44.0
expm1 -45.0
expm1 -46.0
expm1 -73.0
expm1 -74.0
expm1 -75.0
expm1 -78.0
expm1 -79.0
expm1 -80.0
expm1 -100.0
expm1 -1000.0
expm1 -10000.0
expm1 -100000.0
# GCC bug 59666: results on directed rounding may be incorrect.
expm1 100000.0 xfail-rounding:ldbl-128ibm
expm1 max xfail-rounding:ldbl-128ibm
expm1 -max
expm1 0x1p-2
expm1 -0x1p-2
expm1 0x1p-10
expm1 -0x1p-10
expm1 0x1p-20
expm1 -0x1p-20
expm1 0x1p-29
expm1 -0x1p-29
expm1 0x1p-32
expm1 -0x1p-32
expm1 0x1p-50
expm1 -0x1p-50
expm1 0x1p-64
expm1 -0x1p-64
expm1 0x1p-100
expm1 -0x1p-100
hypot 0 0
hypot 0 -0
hypot -0 0
hypot -0 -0
# hypot (x,y) == hypot (+-x, +-y).
hypot 0.7 12.4
hypot -0.7 12.4
hypot 0.7 -12.4
hypot -0.7 -12.4
hypot 12.4 0.7
hypot -12.4 0.7
hypot 12.4 -0.7
hypot -12.4 -0.7
# hypot (x,0) == fabs (x).
hypot 0.75 0
hypot -0.75 0
hypot -5.7e7 0
hypot 0.75 1.25
hypot 1.0 0x1p-61
hypot 0x1p+0 0x1.fp-129
hypot 0x1.23456789abcdef0123456789ab8p-500 0x1.23456789abcdef0123456789ab8p-500
hypot 0x3p125 0x4p125 no-test-inline:flt-32
hypot 0x1.234566p-126 0x1.234566p-126 no-test-inline:flt-32
hypot 0x3p1021 0x4p1021 no-test-inline:dbl-64
hypot 0x1p+0 0x0.3ep-1022 no-test-inline:dbl-64
hypot 0x3p16381 0x4p16381 no-test-inline
hypot 0x1p-149 0x1p-149
hypot 0x1p-1074 0x1p-1074
hypot 0x1p-16445 0x1p-16445 no-test-inline
hypot 0x1p-16494 0x1p-16494 no-test-inline
hypot 0x0.fffffep-126 0x0.fp-127
hypot 0x0.fffffep-126 0x0.fp-130
hypot 0x0.fffffffffffffp-1022 0x0.fp-1023
hypot 0x0.fffffffffffffp-1022 0x0.fp-1026
hypot 0x0.ffffffp-16382 0x0.fp-16383 no-test-inline
hypot 0x0.ffffffp-16382 0x0.fp-16386 no-test-inline
hypot 0 min_subnorm no-test-inline
j0 -1.0
j0 0.0
j0 0.125
j0 0.75
j0 1.0
j0 1.5
j0 2.0
j0 8.0
j0 10.0
j0 4.0
j0 -4.0
j0 0x1.d7ce3ap+107
j0 -0x1.001000001p+593
j0 0x1p1023
j0 0x1p16382
j0 0x1p16383
j1 -1.0
j1 0.0
j1 0.125
j1 0.75
j1 1.0
j1 1.5
j1 2.0
j1 8.0
j1 10.0
j1 0x1.3ffp+74
j1 0x1.ff00000000002p+840
j1 0x1p1023
j1 0x1p16382
j1 0x1p16383
# jn (0, x) == j0 (x).
jn 0 -1.0
jn 0 0.0
jn 0 0.125
jn 0 0.75
jn 0 1.0
jn 0 1.5
jn 0 2.0
jn 0 8.0
jn 0 10.0
jn 0 4.0
jn 0 -4.0
# jn (1, x) == j1 (x).
jn 1 -1.0
jn 1 0.0
jn 1 0.125
jn 1 0.75
jn 1 1.0
jn 1 1.5
jn 1 2.0
jn 1 8.0
jn 1 10.0
jn 3 -1.0
jn 3 0.0
jn 3 0.125
jn 3 0.75
jn 3 1.0
jn 3 2.0
jn 3 10.0
jn 10 -1.0
jn 10 0.0
jn 10 0.125
jn 10 0.75
jn 10 1.0
jn 10 2.0
jn 10 10.0
jn 2 2.4048255576957729
jn 3 2.4048255576957729
jn 4 2.4048255576957729
jn 5 2.4048255576957729
jn 6 2.4048255576957729
jn 7 2.4048255576957729
jn 8 2.4048255576957729
jn 9 2.4048255576957729
jn 2 0x1.ffff62p+99
jn 2 0x1p127
jn 2 0x1p1023
jn 2 0x1p16383
lgamma max
lgamma 1
lgamma 3
lgamma 0.5
lgamma -0.5
lgamma 0.7
lgamma 1.2
lgamma 0x1p-5
lgamma -0x1p-5
lgamma 0x1p-10
lgamma -0x1p-10
lgamma 0x1p-15
lgamma -0x1p-15
lgamma 0x1p-20
lgamma -0x1p-20
lgamma 0x1p-25
lgamma -0x1p-25
lgamma 0x1p-30
lgamma -0x1p-30
lgamma 0x1p-40
lgamma -0x1p-40
lgamma 0x1p-50
lgamma -0x1p-50
lgamma 0x1p-60
lgamma -0x1p-60
lgamma 0x1p-64
lgamma -0x1p-64
lgamma 0x1p-70
lgamma -0x1p-70
lgamma 0x1p-100
lgamma -0x1p-100
lgamma 0x1p-126
lgamma -0x1p-126
lgamma 0x1p-149
lgamma -0x1p-149
lgamma 0x1p-200
lgamma -0x1p-200
lgamma 0x1p-500
lgamma -0x1p-500
lgamma 0x1p-1000
lgamma -0x1p-1000
lgamma 0x1p-1022
lgamma -0x1p-1022
lgamma 0x1p-1074
lgamma -0x1p-1074
lgamma 0x1p-5000
lgamma -0x1p-5000
lgamma 0x1p-10000
lgamma -0x1p-10000
lgamma 0x1p-16382
lgamma -0x1p-16382
lgamma 0x1p-16445
lgamma -0x1p-16445
lgamma 0x1p-16494
lgamma -0x1p-16494
log 1
log e
log 1/e
log 2
log 10
log 0.75
log min
log min_subnorm
log10 1
log10 0.1
log10 10.0
log10 100.0
log10 10000.0
log10 e
log10 0.75
log10 min
log10 min_subnorm
log1p 0
log1p -0
log1p e-1
log1p -0.25
log1p -0.875
# Bug 16339: underflow exception may be missing.
log1p min missing-underflow
log1p min_subnorm missing-underflow
log1p -min missing-underflow
log1p -min_subnorm missing-underflow
log2 1
log2 e
log2 2.0
log2 16.0
log2 256.0
log2 0.75
log2 min
log2 min_subnorm
pow 0 0
pow 0 -0
pow -0 0
pow -0 -0
pow 10 0
pow 10 -0
pow -10 0
pow -10 -0
pow 1 1
pow 1 -1
pow 1 1.25
pow 1 -1.25
pow 1 0x1p62
pow 1 0x1p63
pow 1 0x1p64
pow 1 0x1p72
pow 1 min_subnorm
pow 1 -min_subnorm
# pow (x, +-0) == 1.
pow 32.75 0
pow 32.75 -0
pow -32.75 0
pow -32.75 -0
pow 0x1p72 0
pow 0x1p72 -0
pow 0x1p-72 0
pow 0x1p-72 -0
pow 0x1p72 0x1p72
pow 10 -0x1p72
pow max max
pow 10 -max
pow 0 1
pow 0 11
pow -0 1
pow -0 11
pow 0 2
pow 0 11.1
pow -0 2
pow -0 11.1
# pow (+0, y) == +0 for y an odd integer > 0.
pow 0.0 27
pow 0.0 0xffffff
pow 0.0 0x1.fffffffffffffp+52
pow 0.0 0x1.fffffffffffffffep+63
pow 0.0 0x1.ffffffffffffffffffffffffff8p+105
pow 0.0 0x1.ffffffffffffffffffffffffffffp+112
# pow (-0, y) == -0 for y an odd integer > 0.
pow -0 27
pow -0 0xffffff
pow -0 0x1fffffe
pow -0 0x1.fffffffffffffp+52
pow -0 0x1.fffffffffffffp+53
pow -0 0x1.fffffffffffffffep+63
pow -0 0x1.fffffffffffffffep+64
pow -0 0x1.ffffffffffffffffffffffffff8p+105
pow -0 0x1.ffffffffffffffffffffffffff8p+106
pow -0 0x1.ffffffffffffffffffffffffffffp+112
pow -0 0x1.ffffffffffffffffffffffffffffp+113
# pow (+0, y) == +0 for y > 0 and not an odd integer.
pow 0.0 4
pow 0.0 0x1p24
pow 0.0 0x1p127
pow 0.0 max
pow 0.0 min_subnorm
# pow (-0, y) == +0 for y > 0 and not an odd integer.
pow -0 4
pow -0 0x1p24
pow -0 0x1p127
pow -0 max
pow -0 min_subnorm
pow 16 0.25
pow 0x1p64 0.125
pow 2 4
pow 256 8
pow 0.75 1.25
pow -7.49321e+133 -9.80818e+16
pow -1.0 -0xffffff
pow -1.0 -0x1fffffe
pow -1.0 -0x1.fffffffffffffp+52
pow -1.0 -0x1.fffffffffffffp+53
pow -1.0 -0x1.fffffffffffffffep+63
pow -1.0 -0x1.fffffffffffffffep+64
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+105
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+106
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+112
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+113
pow -1.0 -max
pow -1.0 0xffffff
pow -1.0 0x1fffffe
pow -1.0 0x1.fffffffffffffp+52
pow -1.0 0x1.fffffffffffffp+53
pow -1.0 0x1.fffffffffffffffep+63
pow -1.0 0x1.fffffffffffffffep+64
pow -1.0 0x1.ffffffffffffffffffffffffff8p+105
pow -1.0 0x1.ffffffffffffffffffffffffff8p+106
pow -1.0 0x1.ffffffffffffffffffffffffffffp+112
pow -1.0 0x1.ffffffffffffffffffffffffffffp+113
pow -1.0 max
pow -2.0 126
pow -2.0 127
pow -2.0 -126
pow -2.0 -127
pow -2.0 -0xffffff
pow -2.0 -0x1fffffe
pow -2.0 -0x1.fffffffffffffp+52
pow -2.0 -0x1.fffffffffffffp+53
pow -2.0 -0x1.fffffffffffffffep+63
pow -2.0 -0x1.fffffffffffffffep+64
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+105
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+106
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+112
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+113
pow -2.0 -max
pow -2.0 0xffffff
pow -2.0 0x1fffffe
pow -2.0 0x1.fffffffffffffp+52
pow -2.0 0x1.fffffffffffffp+53
pow -2.0 0x1.fffffffffffffffep+63
pow -2.0 0x1.fffffffffffffffep+64
pow -2.0 0x1.ffffffffffffffffffffffffff8p+105
pow -2.0 0x1.ffffffffffffffffffffffffff8p+106
pow -2.0 0x1.ffffffffffffffffffffffffffffp+112
pow -2.0 0x1.ffffffffffffffffffffffffffffp+113
pow -2.0 max
pow -max -2
pow -max -3
pow -max 2
pow -max 3
pow -max -0xffffff
pow -max -0x1fffffe
pow -max -0x1.fffffffffffffp+52
pow -max -0x1.fffffffffffffp+53
pow -max -0x1.fffffffffffffffep+63
pow -max -0x1.fffffffffffffffep+64
pow -max -0x1.ffffffffffffffffffffffffff8p+105
pow -max -0x1.ffffffffffffffffffffffffff8p+106
pow -max -0x1.ffffffffffffffffffffffffffffp+112
pow -max -0x1.ffffffffffffffffffffffffffffp+113
pow -max -max
pow -max 0xffffff
pow -max 0x1fffffe
pow -max 0x1.fffffffffffffp+52
pow -max 0x1.fffffffffffffp+53
pow -max 0x1.fffffffffffffffep+63
pow -max 0x1.fffffffffffffffep+64
pow -max 0x1.ffffffffffffffffffffffffff8p+105
pow -max 0x1.ffffffffffffffffffffffffff8p+106
pow -max 0x1.ffffffffffffffffffffffffffffp+112
pow -max 0x1.ffffffffffffffffffffffffffffp+113
pow -max max
pow -0.5 126
pow -0.5 127
pow -0.5 -126
pow -0.5 -127
pow -0.5 -0xffffff
pow -0.5 -0x1fffffe
pow -0.5 -0x1.fffffffffffffp+52
pow -0.5 -0x1.fffffffffffffp+53
pow -0.5 -0x1.fffffffffffffffep+63
pow -0.5 -0x1.fffffffffffffffep+64
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+105
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+106
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+112
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+113
pow -0.5 -max
pow -0.5 0xffffff
pow -0.5 0x1fffffe
pow -0.5 0x1.fffffffffffffp+52
pow -0.5 0x1.fffffffffffffp+53
pow -0.5 0x1.fffffffffffffffep+63
pow -0.5 0x1.fffffffffffffffep+64
pow -0.5 0x1.ffffffffffffffffffffffffff8p+105
pow -0.5 0x1.ffffffffffffffffffffffffff8p+106
pow -0.5 0x1.ffffffffffffffffffffffffffffp+112
pow -0.5 0x1.ffffffffffffffffffffffffffffp+113
pow -0.5 max
pow -min -2
pow -min -3
pow -min 1
pow -min 2
pow -min 3
pow -min -0xffffff
pow -min -0x1fffffe
pow -min -0x1.fffffffffffffp+52
pow -min -0x1.fffffffffffffp+53
pow -min -0x1.fffffffffffffffep+63
pow -min -0x1.fffffffffffffffep+64
pow -min -0x1.ffffffffffffffffffffffffff8p+105
pow -min -0x1.ffffffffffffffffffffffffff8p+106
pow -min -0x1.ffffffffffffffffffffffffffffp+112
pow -min -0x1.ffffffffffffffffffffffffffffp+113
pow -min -max
pow -min 0xffffff
pow -min 0x1fffffe
pow -min 0x1.fffffffffffffp+52
pow -min 0x1.fffffffffffffp+53
pow -min 0x1.fffffffffffffffep+63
pow -min 0x1.fffffffffffffffep+64
pow -min 0x1.ffffffffffffffffffffffffff8p+105
pow -min 0x1.ffffffffffffffffffffffffff8p+106
pow -min 0x1.ffffffffffffffffffffffffffffp+112
pow -min 0x1.ffffffffffffffffffffffffffffp+113
pow -min max
pow 0x0.ffffffp0 10
pow 0x0.ffffffp0 100
pow 0x0.ffffffp0 1000
pow 0x0.ffffffp0 0x1p24
pow 0x0.ffffffp0 0x1p30
pow 0x0.ffffffp0 0x1.234566p30
pow 0x0.ffffffp0 -10
pow 0x0.ffffffp0 -100
pow 0x0.ffffffp0 -1000
pow 0x0.ffffffp0 -0x1p24
pow 0x0.ffffffp0 -0x1p30
pow 0x0.ffffffp0 -0x1.234566p30
pow 0x1.000002p0 0x1p24
pow 0x1.000002p0 0x1.234566p29
pow 0x1.000002p0 -0x1.234566p29
pow 0x0.fffffffffffff8p0 0x1.23456789abcdfp62
pow 0x0.fffffffffffff8p0 -0x1.23456789abcdfp62
pow 0x1.0000000000001p0 0x1.23456789abcdfp61
pow 0x1.0000000000001p0 -0x1.23456789abcdfp61
pow 0x0.ffffffffffffffffp0 0x1.23456789abcdef0ep77
pow 0x0.ffffffffffffffffp0 -0x1.23456789abcdef0ep77
pow 0x1.0000000000000002p0 0x1.23456789abcdef0ep76
pow 0x1.0000000000000002p0 -0x1.23456789abcdef0ep76
pow 0x0.ffffffffffffffffffffffffffff8p0 0x1.23456789abcdef0123456789abcdp126
pow 0x0.ffffffffffffffffffffffffffff8p0 -0x1.23456789abcdef0123456789abcdp126
pow 0x1.0000000000000000000000000001p0 0x1.23456789abcdef0123456789abcdp125
pow 0x1.0000000000000000000000000001p0 -0x1.23456789abcdef0123456789abcdp125
pow 1e4932 0.75
pow 1e4928 0.75
pow 1e4924 0.75
pow 1e4920 0.75
pow 10.0 4932.0
pow 10.0 4931.0
pow 10.0 4930.0
pow 10.0 4929.0
pow 10.0 -4931.0
pow 10.0 -4930.0
pow 10.0 -4929.0
pow 1e27 182.0
pow 1e27 -182.0
pow min_subnorm min_subnorm
pow min_subnorm -min_subnorm
pow max min_subnorm
pow max -min_subnorm
pow 0.99 min_subnorm
pow 0.99 -min_subnorm
pow 1.01 min_subnorm
pow 1.01 -min_subnorm
pow 2.0 -100000.0
pow 1.0625 1.125
pow 1.5 1.03125
sin 0
sin -0
sin pi/6
sin -pi/6
sin pi/2
sin -pi/2
sin 0.75
sin 0x1p65
sin -0x1p65
sin 0x1.7f4134p+103
sin 0.80190127184058835
sin 2.522464e-1
sin 1e22
sin 0x1p1023
sin 0x1p16383
sin 0x1p+120
sin 0x1p+127
sin 0x1.fffff8p+127
sin 0x1.fffffep+127
sin 0x1p+50
sin 0x1p+28
sin 0.93340582292648832662962377071381
sin 2.3328432680770916363144351635128
sin 3.7439477503636453548097051680088
sin 3.9225160069792437411706487182528
sin 4.0711651639931289992091478779912
sin 4.7858438478542097982426639646292
sin 5.9840767662578002727968851104379
sin 1
sin 2
sin 3
sin 4
sin 5
sin 6
sin 7
sin 8
sin 9
sin 10
sincos 0
sincos -0
sincos pi/2
sincos pi/6
sincos pi/3
sincos 0.75
sincos 0x1p65
sincos -0x1p65
sincos 0.80190127184058835
sincos 1e22
sincos 0x1p1023
sincos 0x1p16383
sincos 0x1p+120
sincos 0x1p+127
sincos 0x1.fffff8p+127
sincos 0x1.fffffep+127
sincos 0x1p+50
sincos 0x1p+28
sinh 0
sinh -0
sinh 0.75
sinh 0x8p-32
sinh 22
sinh 23
sinh 24
sqrt 0
sqrt -0
sqrt 2209
sqrt 4
sqrt 2
sqrt 0.25
sqrt 6642.25
sqrt 15190.5625
sqrt 0.75
sqrt 0x1.fffffffffffffp+1023
sqrt 0x1.ffffffffffffbp+1023
sqrt 0x1.ffffffffffff7p+1023
sqrt 0x1.ffffffffffff3p+1023
sqrt 0x1.fffffffffffefp+1023
sqrt 0x1.fffffffffffebp+1023
sqrt 0x1.fffffffffffe7p+1023
sqrt 0x1.fffffffffffe3p+1023
sqrt 0x1.fffffffffffdfp+1023
sqrt 0x1.fffffffffffdbp+1023
sqrt 0x1.fffffffffffd7p+1023
sqrt 0x1.0000000000003p-1022
sqrt 0x1.0000000000007p-1022
sqrt 0x1.000000000000bp-1022
sqrt 0x1.000000000000fp-1022
sqrt 0x1.0000000000013p-1022
sqrt 0x1.0000000000017p-1022
sqrt 0x1.000000000001bp-1022
sqrt 0x1.000000000001fp-1022
sqrt 0x1.0000000000023p-1022
sqrt 0x1.0000000000027p-1022
sqrt 0x1.000000000002bp-1022
sqrt 0x1.000000000002fp-1022
sqrt 0x1.0000000000033p-1022
sqrt 0x1.0000000000037p-1022
sqrt 0x1.7167bc36eaa3bp+6
sqrt 0x1.7570994273ad7p+6
sqrt 0x1.7dae969442fe6p+6
sqrt 0x1.7f8444fcf67e5p+6
sqrt 0x1.8364650e63a54p+6
sqrt 0x1.85bedd274edd8p+6
sqrt 0x1.8609cf496ab77p+6
sqrt 0x1.873849c70a375p+6
sqrt 0x1.8919c962cbaaep+6
sqrt 0x1.8de4493e22dc6p+6
sqrt 0x1.924829a17a288p+6
sqrt 0x1.92702cd992f12p+6
sqrt 0x1.92b763a8311fdp+6
sqrt 0x1.947da013c7293p+6
sqrt 0x1.9536091c494d2p+6
sqrt 0x1.61b04c6p-1019
sqrt 0x1.93789f1p-1018
sqrt 0x1.a1989b4p-1018
sqrt 0x1.f93bc9p-1018
sqrt 0x1.2f675e3p-1017
sqrt 0x1.a158508p-1017
sqrt 0x1.cd31f078p-1017
sqrt 0x1.33b43b08p-1016
sqrt 0x1.6e66a858p-1016
sqrt 0x1.8661cbf8p-1016
sqrt 0x1.bbb221b4p-1016
sqrt 0x1.c4942f3cp-1016
sqrt 0x1.dbb258c8p-1016
sqrt 0x1.57103ea4p-1015
sqrt 0x1.9b294f88p-1015
sqrt 0x1.0000000000001p+0
sqrt 0x1.fffffffffffffp-1
tan 0
tan -0
tan pi/4
tan 0.75
tan 0x1p65
tan -0x1p65
tan 0xc.9p-4
tan 0xc.908p-4
tan 0xc.90cp-4
tan 0xc.90ep-4
tan 0xc.90fp-4
tan 0xc.90f8p-4
tan 0xc.90fcp-4
tan 0xc.90fdp-4
tan 0xc.90fd8p-4
tan 0xc.90fdap-4
tan 0xc.ap-4
tan 0xc.98p-4
tan 0xc.94p-4
tan 0xc.92p-4
tan 0xc.91p-4
tan 0xc.90fep-4
tan 0xc.90fdcp-4
tan 0xc.90fdbp-4
tan -0xc.9p-4
tan -0xc.908p-4
tan -0xc.90cp-4
tan -0xc.90ep-4
tan -0xc.90fp-4
tan -0xc.90f8p-4
tan -0xc.90fcp-4
tan -0xc.90fdp-4
tan -0xc.90fd8p-4
tan -0xc.90fdap-4
tan -0xc.ap-4
tan -0xc.98p-4
tan -0xc.94p-4
tan -0xc.92p-4
tan -0xc.91p-4
tan -0xc.90fep-4
tan -0xc.90fdcp-4
tan -0xc.90fdbp-4
tan 1e22
tan 0x1p1023
tan 0x1p16383
tan 1
tan 2
tan 3
tan 4
tan 5
tan 6
tan 7
tan 8
tan 9
tan 10
tanh 0
tanh -0
tanh 0.75
tanh -0.75
tanh 1.0
tanh -1.0
tanh 0x1p-57
tgamma 0.5
tgamma -0.5
tgamma 1
tgamma 2
tgamma 3
tgamma 4
tgamma 5
tgamma 6
tgamma 7
tgamma 8
tgamma 9
tgamma 10
tgamma 0.7
tgamma 1.2
tgamma 1.5
tgamma 2.5
tgamma 3.5
tgamma 4.5
tgamma 5.5
tgamma 6.5
tgamma 7.5
tgamma 8.5
tgamma 9.5
tgamma -1.5
tgamma -2.5
tgamma -3.5
tgamma -4.5
tgamma -5.5
tgamma -6.5
tgamma -7.5
tgamma -8.5
tgamma -9.5
tgamma 0x1p-24
tgamma -0x1p-24
tgamma 0x1p-53
tgamma -0x1p-53
tgamma 0x1p-64
tgamma -0x1p-64
tgamma 0x1p-106
tgamma -0x1p-106
tgamma 0x1p-113
tgamma -0x1p-113
tgamma 0x1p-127
tgamma -0x1p-127
tgamma 0x1p-128
tgamma -0x1p-128
tgamma 0x1p-149
tgamma -0x1p-149
tgamma 0x1p-1023
tgamma -0x1p-1023
tgamma 0x1p-1024
tgamma -0x1p-1024
tgamma 0x1p-1074
tgamma -0x1p-1074
tgamma 0x1p-16383
tgamma -0x1p-16383
tgamma 0x1p-16384
tgamma -0x1p-16384
tgamma 0x1p-16445
tgamma -0x1p-16445
tgamma 0x1p-16494
tgamma -0x1p-16494
tgamma 0x8.00001p0
tgamma 0x7.fffff8p0
tgamma 0x7.000008p0
tgamma 0x6.fffff8p0
tgamma 0x6.000008p0
tgamma 0x5.fffff8p0
tgamma 0x5.000008p0
tgamma 0x4.fffff8p0
tgamma 0x4.000008p0
tgamma 0x3.fffffcp0
tgamma 0x3.000004p0
tgamma 0x2.fffffcp0
tgamma 0x2.000004p0
tgamma 0x1.fffffep0
tgamma 0x1.000002p0
tgamma 0x0.ffffffp0
tgamma -0x0.ffffffp0
tgamma -0x1.000002p0
tgamma -0x1.fffffep0
tgamma -0x2.000004p0
tgamma -0x2.fffffcp0
tgamma -0x3.000004p0
tgamma -0x3.fffffcp0
tgamma -0x4.000008p0
tgamma -0x4.fffff8p0
tgamma -0x5.000008p0
tgamma -0x5.fffff8p0
tgamma -0x6.000008p0
tgamma -0x6.fffff8p0
tgamma -0x7.000008p0
tgamma -0x7.fffff8p0
tgamma -0x8.00001p0
tgamma -0x9.fffffp0
tgamma -0xa.00001p0
tgamma -0x13.ffffep0
tgamma -0x14.00002p0
tgamma -0x1d.ffffep0
tgamma -0x1e.00002p0
tgamma -0x27.ffffcp0
tgamma -0x28.00004p0
tgamma -0x28.ffffcp0
tgamma -0x29.00004p0
tgamma -0x29.ffffcp0
tgamma -0x2a.00004p0
tgamma 0x8.0000000000008p0
tgamma 0x7.ffffffffffffcp0
tgamma 0x7.0000000000004p0
tgamma 0x6.ffffffffffffcp0
tgamma 0x6.0000000000004p0
tgamma 0x5.ffffffffffffcp0
tgamma 0x5.0000000000004p0
tgamma 0x4.ffffffffffffcp0
tgamma 0x4.0000000000004p0
tgamma 0x3.ffffffffffffep0
tgamma 0x3.0000000000002p0
tgamma 0x2.ffffffffffffep0
tgamma 0x2.0000000000002p0
tgamma 0x1.fffffffffffffp0
tgamma 0x1.0000000000001p0
tgamma 0x0.fffffffffffff8p0
tgamma -0x0.fffffffffffff8p0
tgamma -0x1.0000000000001p0
tgamma -0x1.fffffffffffffp0
tgamma -0x2.0000000000002p0
tgamma -0x2.ffffffffffffep0
tgamma -0x3.0000000000002p0
tgamma -0x3.ffffffffffffep0
tgamma -0x4.0000000000004p0
tgamma -0x4.ffffffffffffcp0
tgamma -0x5.0000000000004p0
tgamma -0x5.ffffffffffffcp0
tgamma -0x6.0000000000004p0
tgamma -0x6.ffffffffffffcp0
tgamma -0x7.0000000000004p0
tgamma -0x7.ffffffffffffcp0
tgamma -0x8.0000000000008p0
tgamma -0x9.ffffffffffff8p0
tgamma -0xa.0000000000008p0
tgamma -0x13.ffffffffffffp0
tgamma -0x14.000000000001p0
tgamma -0x1d.ffffffffffffp0
tgamma -0x1e.000000000001p0
tgamma -0x27.fffffffffffep0
tgamma -0x28.000000000002p0
tgamma -0x28.fffffffffffep0
tgamma -0x29.000000000002p0
tgamma -0x29.fffffffffffep0
tgamma -0x2a.000000000002p0
tgamma -0x31.fffffffffffep0
tgamma -0x32.000000000002p0
tgamma -0x63.fffffffffffcp0
tgamma -0x64.000000000004p0
tgamma -0x95.fffffffffff8p0
tgamma -0x96.000000000008p0
tgamma -0xb4.fffffffffff8p0
tgamma -0xb5.000000000008p0
tgamma -0xb5.fffffffffff8p0
tgamma -0xb6.000000000008p0
tgamma -0xb6.fffffffffff8p0
tgamma -0xb7.000000000008p0
tgamma -0xb7.fffffffffff8p0
tgamma -0xb8.000000000008p0
tgamma 0x8.00000000000000000000000004p0
tgamma 0x7.fffffffffffffffffffffffffep0
tgamma 0x7.00000000000000000000000002p0
tgamma 0x6.fffffffffffffffffffffffffep0
tgamma 0x6.00000000000000000000000002p0
tgamma 0x5.fffffffffffffffffffffffffep0
tgamma 0x5.00000000000000000000000002p0
tgamma 0x4.fffffffffffffffffffffffffep0
tgamma 0x4.00000000000000000000000002p0
tgamma 0x3.ffffffffffffffffffffffffffp0
tgamma 0x3.00000000000000000000000001p0
tgamma 0x2.ffffffffffffffffffffffffffp0
tgamma 0x2.00000000000000000000000001p0
tgamma 0x1.ffffffffffffffffffffffffff8p0
tgamma 0x1.000000000000000000000000008p0
tgamma 0x0.ffffffffffffffffffffffffffcp0
tgamma -0x0.ffffffffffffffffffffffffffcp0
tgamma -0x1.000000000000000000000000008p0
tgamma -0x1.ffffffffffffffffffffffffff8p0
tgamma -0x2.00000000000000000000000001p0
tgamma -0x2.ffffffffffffffffffffffffffp0
tgamma -0x3.00000000000000000000000001p0
tgamma -0x3.ffffffffffffffffffffffffffp0
tgamma -0x4.00000000000000000000000002p0
tgamma -0x4.fffffffffffffffffffffffffep0
tgamma -0x5.00000000000000000000000002p0
tgamma -0x5.fffffffffffffffffffffffffep0
tgamma -0x6.00000000000000000000000002p0
tgamma -0x6.fffffffffffffffffffffffffep0
tgamma -0x7.00000000000000000000000002p0
tgamma -0x7.fffffffffffffffffffffffffep0
tgamma -0x8.00000000000000000000000004p0
tgamma -0x9.fffffffffffffffffffffffffcp0
tgamma -0xa.00000000000000000000000004p0
tgamma -0x13.fffffffffffffffffffffffff8p0
tgamma -0x14.00000000000000000000000008p0
tgamma -0x1d.fffffffffffffffffffffffff8p0
tgamma -0x1e.00000000000000000000000008p0
tgamma -0x27.fffffffffffffffffffffffffp0
tgamma -0x28.0000000000000000000000001p0
tgamma -0x28.fffffffffffffffffffffffffp0
tgamma -0x29.0000000000000000000000001p0
tgamma -0x29.fffffffffffffffffffffffffp0
tgamma -0x2a.0000000000000000000000001p0
tgamma -0x31.fffffffffffffffffffffffffp0
tgamma -0x32.0000000000000000000000001p0
tgamma -0x63.ffffffffffffffffffffffffep0
tgamma -0x64.0000000000000000000000002p0
tgamma -0x95.ffffffffffffffffffffffffcp0
tgamma -0x96.0000000000000000000000004p0
tgamma -0xb4.ffffffffffffffffffffffffcp0
tgamma -0xb5.0000000000000000000000004p0
tgamma -0xb5.ffffffffffffffffffffffffcp0
tgamma -0xb6.0000000000000000000000004p0
tgamma -0xb6.ffffffffffffffffffffffffcp0
tgamma -0xb7.0000000000000000000000004p0
tgamma -0xb7.ffffffffffffffffffffffffcp0
tgamma -0xb8.0000000000000000000000004p0
tgamma -0xbb.ffffffffffffffffffffffffcp0
tgamma -0xbc.0000000000000000000000004p0
tgamma -0xbc.ffffffffffffffffffffffffcp0
tgamma -0xbd.0000000000000000000000004p0
tgamma -0xbd.ffffffffffffffffffffffffcp0
tgamma -0xbe.0000000000000000000000004p0
tgamma -0xbe.ffffffffffffffffffffffffcp0
tgamma -0xbf.0000000000000000000000004p0
tgamma 0x8.000000000000001p0
tgamma 0x7.fffffffffffffff8p0
tgamma 0x7.0000000000000008p0
tgamma 0x6.fffffffffffffff8p0
tgamma 0x6.0000000000000008p0
tgamma 0x5.fffffffffffffff8p0
tgamma 0x5.0000000000000008p0
tgamma 0x4.fffffffffffffff8p0
tgamma 0x4.0000000000000008p0
tgamma 0x3.fffffffffffffffcp0
tgamma 0x3.0000000000000004p0
tgamma 0x2.fffffffffffffffcp0
tgamma 0x2.0000000000000004p0
tgamma 0x1.fffffffffffffffep0
tgamma 0x1.0000000000000002p0
tgamma 0x0.ffffffffffffffffp0
tgamma -0x0.ffffffffffffffffp0
tgamma -0x1.0000000000000002p0
tgamma -0x1.fffffffffffffffep0
tgamma -0x2.0000000000000004p0
tgamma -0x2.fffffffffffffffcp0
tgamma -0x3.0000000000000004p0
tgamma -0x3.fffffffffffffffcp0
tgamma -0x4.0000000000000008p0
tgamma -0x4.fffffffffffffff8p0
tgamma -0x5.0000000000000008p0
tgamma -0x5.fffffffffffffff8p0
tgamma -0x6.0000000000000008p0
tgamma -0x6.fffffffffffffff8p0
tgamma -0x7.0000000000000008p0
tgamma -0x7.fffffffffffffff8p0
tgamma -0x8.000000000000001p0
tgamma -0x9.fffffffffffffffp0
tgamma -0xa.000000000000001p0
tgamma -0x13.ffffffffffffffep0
tgamma -0x14.000000000000002p0
tgamma -0x1d.ffffffffffffffep0
tgamma -0x1e.000000000000002p0
tgamma -0x27.ffffffffffffffcp0
tgamma -0x28.000000000000004p0
tgamma -0x28.ffffffffffffffcp0
tgamma -0x29.000000000000004p0
tgamma -0x29.ffffffffffffffcp0
tgamma -0x2a.000000000000004p0
tgamma -0x31.ffffffffffffffcp0
tgamma -0x32.000000000000004p0
tgamma -0x63.ffffffffffffff8p0
tgamma -0x64.000000000000008p0
tgamma -0x95.ffffffffffffffp0
tgamma -0x96.00000000000001p0
tgamma -0xb4.ffffffffffffffp0
tgamma -0xb5.00000000000001p0
tgamma -0xb5.ffffffffffffffp0
tgamma -0xb6.00000000000001p0
tgamma -0xb6.ffffffffffffffp0
tgamma -0xb7.00000000000001p0
tgamma -0xb7.ffffffffffffffp0
tgamma -0xb8.00000000000001p0
tgamma -0xbb.ffffffffffffffp0
tgamma -0xbc.00000000000001p0
tgamma -0xbc.ffffffffffffffp0
tgamma -0xbd.00000000000001p0
tgamma -0xbd.ffffffffffffffp0
tgamma -0xbe.00000000000001p0
tgamma -0xbe.ffffffffffffffp0
tgamma -0xbf.00000000000001p0
tgamma -0xf9.ffffffffffffffp0
tgamma -0xfa.00000000000001p0
tgamma -0x1f3.fffffffffffffep0
tgamma -0x1f4.00000000000002p0
tgamma -0x2ed.fffffffffffffcp0
tgamma -0x2ee.00000000000004p0
tgamma -0x3e7.fffffffffffffcp0
tgamma -0x3e8.00000000000004p0
tgamma -0x4e1.fffffffffffff8p0
tgamma -0x4e2.00000000000008p0
tgamma -0x5db.fffffffffffff8p0
tgamma -0x5dc.00000000000008p0
tgamma -0x6d5.fffffffffffff8p0
tgamma -0x6d6.00000000000008p0
tgamma -0x6e2.fffffffffffff8p0
tgamma -0x6e3.00000000000008p0
tgamma -0x6e3.fffffffffffff8p0
tgamma -0x6e4.00000000000008p0
tgamma -0x6e4.fffffffffffff8p0
tgamma -0x6e5.00000000000008p0
tgamma -0x6e5.fffffffffffff8p0
tgamma -0x6e6.00000000000008p0
tgamma 0x8.0000000000000000000000000008p0
tgamma 0x7.fffffffffffffffffffffffffffcp0
tgamma 0x7.0000000000000000000000000004p0
tgamma 0x6.fffffffffffffffffffffffffffcp0
tgamma 0x6.0000000000000000000000000004p0
tgamma 0x5.fffffffffffffffffffffffffffcp0
tgamma 0x5.0000000000000000000000000004p0
tgamma 0x4.fffffffffffffffffffffffffffcp0
tgamma 0x4.0000000000000000000000000004p0
tgamma 0x3.fffffffffffffffffffffffffffep0
tgamma 0x3.0000000000000000000000000002p0
tgamma 0x2.fffffffffffffffffffffffffffep0
tgamma 0x2.0000000000000000000000000002p0
tgamma 0x1.ffffffffffffffffffffffffffffp0
tgamma 0x1.0000000000000000000000000001p0
tgamma 0x0.ffffffffffffffffffffffffffff8p0
tgamma -0x0.ffffffffffffffffffffffffffff8p0
tgamma -0x1.0000000000000000000000000001p0
tgamma -0x1.ffffffffffffffffffffffffffffp0
tgamma -0x2.0000000000000000000000000002p0
tgamma -0x2.fffffffffffffffffffffffffffep0
tgamma -0x3.0000000000000000000000000002p0
tgamma -0x3.fffffffffffffffffffffffffffep0
tgamma -0x4.0000000000000000000000000004p0
tgamma -0x4.fffffffffffffffffffffffffffcp0
tgamma -0x5.0000000000000000000000000004p0
tgamma -0x5.fffffffffffffffffffffffffffcp0
tgamma -0x6.0000000000000000000000000004p0
tgamma -0x6.fffffffffffffffffffffffffffcp0
tgamma -0x7.0000000000000000000000000004p0
tgamma -0x7.fffffffffffffffffffffffffffcp0
tgamma -0x8.0000000000000000000000000008p0
tgamma -0x9.fffffffffffffffffffffffffff8p0
tgamma -0xa.0000000000000000000000000008p0
tgamma -0x13.fffffffffffffffffffffffffffp0
tgamma -0x14.000000000000000000000000001p0
tgamma -0x1d.fffffffffffffffffffffffffffp0
tgamma -0x1e.000000000000000000000000001p0
tgamma -0x27.ffffffffffffffffffffffffffep0
tgamma -0x28.000000000000000000000000002p0
tgamma -0x28.ffffffffffffffffffffffffffep0
tgamma -0x29.000000000000000000000000002p0
tgamma -0x29.ffffffffffffffffffffffffffep0
tgamma -0x2a.000000000000000000000000002p0
tgamma -0x31.ffffffffffffffffffffffffffep0
tgamma -0x32.000000000000000000000000002p0
tgamma -0x63.ffffffffffffffffffffffffffcp0
tgamma -0x64.000000000000000000000000004p0
tgamma -0x95.ffffffffffffffffffffffffff8p0
tgamma -0x96.000000000000000000000000008p0
tgamma -0xb4.ffffffffffffffffffffffffff8p0
tgamma -0xb5.000000000000000000000000008p0
tgamma -0xb5.ffffffffffffffffffffffffff8p0
tgamma -0xb6.000000000000000000000000008p0
tgamma -0xb6.ffffffffffffffffffffffffff8p0
tgamma -0xb7.000000000000000000000000008p0
tgamma -0xb7.ffffffffffffffffffffffffff8p0
tgamma -0xb8.000000000000000000000000008p0
tgamma -0xbb.ffffffffffffffffffffffffff8p0
tgamma -0xbc.000000000000000000000000008p0
tgamma -0xbc.ffffffffffffffffffffffffff8p0
tgamma -0xbd.000000000000000000000000008p0
tgamma -0xbd.ffffffffffffffffffffffffff8p0
tgamma -0xbe.000000000000000000000000008p0
tgamma -0xbe.ffffffffffffffffffffffffff8p0
tgamma -0xbf.000000000000000000000000008p0
tgamma -0xf9.ffffffffffffffffffffffffff8p0
tgamma -0xfa.000000000000000000000000008p0
tgamma -0x1f3.ffffffffffffffffffffffffffp0
tgamma -0x1f4.00000000000000000000000001p0
tgamma -0x2ed.fffffffffffffffffffffffffep0
tgamma -0x2ee.00000000000000000000000002p0
tgamma -0x3e7.fffffffffffffffffffffffffep0
tgamma -0x3e8.00000000000000000000000002p0
tgamma -0x4e1.fffffffffffffffffffffffffcp0
tgamma -0x4e2.00000000000000000000000004p0
tgamma -0x5db.fffffffffffffffffffffffffcp0
tgamma -0x5dc.00000000000000000000000004p0
tgamma -0x6d5.fffffffffffffffffffffffffcp0
tgamma -0x6d6.00000000000000000000000004p0
tgamma -0x6e2.fffffffffffffffffffffffffcp0
tgamma -0x6e3.00000000000000000000000004p0
tgamma -0x6e3.fffffffffffffffffffffffffcp0
tgamma -0x6e4.00000000000000000000000004p0
tgamma -0x6e4.fffffffffffffffffffffffffcp0
tgamma -0x6e5.00000000000000000000000004p0
tgamma -0x6e5.fffffffffffffffffffffffffcp0
tgamma -0x6e6.00000000000000000000000004p0
tgamma -0x6eb.fffffffffffffffffffffffffcp0
tgamma -0x6ec.00000000000000000000000004p0
tgamma -0x6ec.fffffffffffffffffffffffffcp0
tgamma -0x6ed.00000000000000000000000004p0
tgamma -0x6ed.fffffffffffffffffffffffffcp0
tgamma -0x6ee.00000000000000000000000004p0
tgamma -0x6ee.fffffffffffffffffffffffffcp0
tgamma -0x6ef.00000000000000000000000004p0
tgamma -0x1.0a32a2p+5
tgamma -0x1.5800000080001p+7
tgamma 18.5
tgamma 19.5
tgamma 23.5
tgamma 29.5
tgamma 30.5
tgamma 31.5
tgamma 32.5
tgamma 33.5
tgamma 34.5
tgamma 0x2.30a43cp+4
tgamma 0x2.30a44p+4
tgamma 0xa.b9fd72b0fb238p+4
tgamma 0xa.b9fd72b0fb24p+4
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f4p+4
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f8p+4
tgamma 0x6.db8c603359a97108p+8
tgamma 0x6.db8c603359a9711p+8
tgamma 0x6.db8c603359a971081bc4a2e9dfdp+8
tgamma 0x6.db8c603359a971081bc4a2e9dfd4p+8
tgamma 1e3
tgamma -100000.5
y0 0.125
y0 0.75
y0 1.0
y0 1.5
y0 2.0
y0 8.0
y0 10.0
y0 0x1.3ffp+74
y0 0x1.ff00000000002p+840
y0 0x1p1023
y0 0x1p16382
y0 0x1p16383
y0 0x1p-10
y0 0x1p-20
y0 0x1p-30
y0 0x1p-40
y0 0x1p-50
y0 0x1p-60
y0 0x1p-70
y0 0x1p-80
y0 0x1p-90
y0 0x1p-100
y0 0x1p-110
y1 0.125
y1 0.75
y1 1.0
y1 1.5
y1 2.0
y1 8.0
y1 10.0
y1 0x1.27e204p+99
y1 0x1.001000001p+593
y1 0x1p1023
y1 0x1p16382
y1 0x1p16383
y1 0x1p-10
y1 0x1p-20
y1 0x1p-30
y1 0x1p-40
y1 0x1p-50
y1 0x1p-60
y1 0x1p-70
y1 0x1p-80
y1 0x1p-90
y1 0x1p-100
y1 0x1p-110
# yn (0, x) == y0 (x).
yn 0 0.125
yn 0 0.75
yn 0 1.0
yn 0 1.5
yn 0 2.0
yn 0 8.0
yn 0 10.0
# yn (1, x) == y1 (x).
yn 1 0.125
yn 1 0.75
yn 1 1.0
yn 1 1.5
yn 1 2.0
yn 1 8.0
yn 1 10.0
# yn (-1, x) == -y1 (x).
yn -1 1.0
# yn (3, x).
yn 3 0.125
yn 3 0.75
yn 3 1.0
yn 3 2.0
yn 3 10.0
# yn (10, x).
yn 10 0.125
yn 10 0.75
yn 10 1.0
yn 10 2.0
yn 10 10.0
yn -10 1.0
yn 10 min
yn 2 0x1.ffff62p+99
yn 2 0x1p127
yn 2 0x1p1023
yn 2 0x1p16383
|