1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
|
/* Load a shared object at runtime, relocate it, and run its initializer.
Copyright (C) 1996-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <dlfcn.h>
#include <errno.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h> /* Check whether MAP_COPY is defined. */
#include <sys/param.h>
#include <libc-lock.h>
#include <ldsodefs.h>
#include <caller.h>
#include <sysdep-cancel.h>
#include <tls.h>
#include <stap-probe.h>
#include <atomic.h>
#include <dl-dst.h>
extern int __libc_multiple_libcs; /* Defined in init-first.c. */
/* We must be careful not to leave us in an inconsistent state. Thus we
catch any error and re-raise it after cleaning up. */
struct dl_open_args
{
const char *file;
int mode;
/* This is the caller of the dlopen() function. */
const void *caller_dlopen;
/* This is the caller of _dl_open(). */
const void *caller_dl_open;
struct link_map *map;
/* Namespace ID. */
Lmid_t nsid;
/* Original parameters to the program and the current environment. */
int argc;
char **argv;
char **env;
};
static int
add_to_global (struct link_map *new)
{
struct link_map **new_global;
unsigned int to_add = 0;
unsigned int cnt;
/* Count the objects we have to put in the global scope. */
for (cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt)
if (new->l_searchlist.r_list[cnt]->l_global == 0)
++to_add;
/* The symbols of the new objects and its dependencies are to be
introduced into the global scope that will be used to resolve
references from other dynamically-loaded objects.
The global scope is the searchlist in the main link map. We
extend this list if necessary. There is one problem though:
since this structure was allocated very early (before the libc
is loaded) the memory it uses is allocated by the malloc()-stub
in the ld.so. When we come here these functions are not used
anymore. Instead the malloc() implementation of the libc is
used. But this means the block from the main map cannot be used
in an realloc() call. Therefore we allocate a completely new
array the first time we have to add something to the locale scope.
Also the list may be missing altogether if we are called via
dlopen() from a statically linked executable as in this case ld.so
has not been called and no dynamic symbols have been pulled yet.
Start a new list in this case. */
struct link_namespaces *ns = &GL(dl_ns)[new->l_ns];
if (ns->_ns_global_scope_alloc == 0)
{
/* See if we've got a list at all. */
if (ns->_ns_main_searchlist == NULL)
ns->_ns_main_searchlist = calloc (1, sizeof (struct r_scope_elem));
if (ns->_ns_main_searchlist == NULL)
goto nomem;
/* This is the first dynamic object given global scope. */
ns->_ns_global_scope_alloc
= ns->_ns_main_searchlist->r_nlist + to_add + 8;
new_global = (struct link_map **)
malloc (ns->_ns_global_scope_alloc * sizeof (struct link_map *));
if (new_global == NULL)
{
ns->_ns_global_scope_alloc = 0;
nomem:
_dl_signal_error (ENOMEM, new->l_libname->name, NULL,
N_("cannot extend global scope"));
return 1;
}
/* Copy over the old entries. */
ns->_ns_main_searchlist->r_list
= memcpy (new_global, ns->_ns_main_searchlist->r_list,
(ns->_ns_main_searchlist->r_nlist
* sizeof (struct link_map *)));
}
else if (ns->_ns_main_searchlist->r_nlist + to_add
> ns->_ns_global_scope_alloc)
{
/* We have to extend the existing array of link maps in the
main map. */
struct link_map **old_global
= GL(dl_ns)[new->l_ns]._ns_main_searchlist->r_list;
size_t new_nalloc = ((ns->_ns_global_scope_alloc + to_add) * 2);
new_global = (struct link_map **)
malloc (new_nalloc * sizeof (struct link_map *));
if (new_global == NULL)
goto nomem;
memcpy (new_global, old_global,
ns->_ns_global_scope_alloc * sizeof (struct link_map *));
ns->_ns_global_scope_alloc = new_nalloc;
ns->_ns_main_searchlist->r_list = new_global;
if (!RTLD_SINGLE_THREAD_P)
THREAD_GSCOPE_WAIT ();
free (old_global);
}
/* Now add the new entries. */
unsigned int new_nlist = ns->_ns_main_searchlist->r_nlist;
for (cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt)
{
struct link_map *map = new->l_searchlist.r_list[cnt];
if (map->l_global == 0)
{
map->l_global = 1;
ns->_ns_main_searchlist->r_list[new_nlist++] = map;
/* We modify the global scope. Report this. */
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
_dl_debug_printf ("\nadd %s [%lu] to global scope\n",
map->l_name, map->l_ns);
}
}
atomic_write_barrier ();
ns->_ns_main_searchlist->r_nlist = new_nlist;
return 0;
}
/* Search link maps in all namespaces for the DSO that contains the object at
address ADDR. Returns the pointer to the link map of the matching DSO, or
NULL if a match is not found. */
struct link_map *
internal_function
_dl_find_dso_for_object (const ElfW(Addr) addr)
{
struct link_map *l;
/* Find the highest-addressed object that ADDR is not below. */
for (Lmid_t ns = 0; ns < GL(dl_nns); ++ns)
for (l = GL(dl_ns)[ns]._ns_loaded; l != NULL; l = l->l_next)
if (addr >= l->l_map_start && addr < l->l_map_end
&& (l->l_contiguous
|| _dl_addr_inside_object (l, (ElfW(Addr)) addr)))
{
assert (ns == l->l_ns);
return l;
}
return NULL;
}
rtld_hidden_def (_dl_find_dso_for_object);
static void
dl_open_worker (void *a)
{
struct dl_open_args *args = a;
const char *file = args->file;
int mode = args->mode;
struct link_map *call_map = NULL;
/* Check whether _dl_open() has been called from a valid DSO. */
if (__check_caller (args->caller_dl_open,
allow_libc|allow_libdl|allow_ldso) != 0)
_dl_signal_error (0, "dlopen", NULL, N_("invalid caller"));
/* Determine the caller's map if necessary. This is needed in case
we have a DST, when we don't know the namespace ID we have to put
the new object in, or when the file name has no path in which
case we need to look along the RUNPATH/RPATH of the caller. */
const char *dst = strchr (file, '$');
if (dst != NULL || args->nsid == __LM_ID_CALLER
|| strchr (file, '/') == NULL)
{
const void *caller_dlopen = args->caller_dlopen;
/* We have to find out from which object the caller is calling.
By default we assume this is the main application. */
call_map = GL(dl_ns)[LM_ID_BASE]._ns_loaded;
struct link_map *l = _dl_find_dso_for_object ((ElfW(Addr)) caller_dlopen);
if (l)
call_map = l;
if (args->nsid == __LM_ID_CALLER)
args->nsid = call_map->l_ns;
}
/* One might be tempted to assert that we are RT_CONSISTENT at this point, but that
may not be true if this is a recursive call to dlopen. */
_dl_debug_initialize (0, args->nsid);
/* Load the named object. */
struct link_map *new;
args->map = new = _dl_map_object (call_map, file, lt_loaded, 0,
mode | __RTLD_CALLMAP, args->nsid);
/* If the pointer returned is NULL this means the RTLD_NOLOAD flag is
set and the object is not already loaded. */
if (new == NULL)
{
assert (mode & RTLD_NOLOAD);
return;
}
/* Mark the object as not deletable if the RTLD_NODELETE flags was passed.
Do this early so that we don't skip marking the object if it was
already loaded. */
if (__glibc_unlikely (mode & RTLD_NODELETE))
new->l_flags_1 |= DF_1_NODELETE;
if (__glibc_unlikely (mode & __RTLD_SPROF))
/* This happens only if we load a DSO for 'sprof'. */
return;
/* This object is directly loaded. */
++new->l_direct_opencount;
/* It was already open. */
if (__glibc_unlikely (new->l_searchlist.r_list != NULL))
{
/* Let the user know about the opencount. */
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
_dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n",
new->l_name, new->l_ns, new->l_direct_opencount);
/* If the user requested the object to be in the global namespace
but it is not so far, add it now. */
if ((mode & RTLD_GLOBAL) && new->l_global == 0)
(void) add_to_global (new);
assert (_dl_debug_initialize (0, args->nsid)->r_state == RT_CONSISTENT);
return;
}
/* Load that object's dependencies. */
_dl_map_object_deps (new, NULL, 0, 0,
mode & (__RTLD_DLOPEN | RTLD_DEEPBIND | __RTLD_AUDIT));
/* So far, so good. Now check the versions. */
for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i)
if (new->l_searchlist.r_list[i]->l_real->l_versions == NULL)
(void) _dl_check_map_versions (new->l_searchlist.r_list[i]->l_real,
0, 0);
#ifdef SHARED
/* Auditing checkpoint: we have added all objects. */
if (__glibc_unlikely (GLRO(dl_naudit) > 0))
{
struct link_map *head = GL(dl_ns)[new->l_ns]._ns_loaded;
/* Do not call the functions for any auditing object. */
if (head->l_auditing == 0)
{
struct audit_ifaces *afct = GLRO(dl_audit);
for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt)
{
if (afct->activity != NULL)
afct->activity (&head->l_audit[cnt].cookie, LA_ACT_CONSISTENT);
afct = afct->next;
}
}
}
#endif
/* Notify the debugger all new objects are now ready to go. */
struct r_debug *r = _dl_debug_initialize (0, args->nsid);
r->r_state = RT_CONSISTENT;
_dl_debug_state ();
LIBC_PROBE (map_complete, 3, args->nsid, r, new);
/* Print scope information. */
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
_dl_show_scope (new, 0);
/* Only do lazy relocation if `LD_BIND_NOW' is not set. */
int reloc_mode = mode & __RTLD_AUDIT;
if (GLRO(dl_lazy))
reloc_mode |= mode & RTLD_LAZY;
/* Sort the objects by dependency for the relocation process. This
allows IFUNC relocations to work and it also means copy
relocation of dependencies are if necessary overwritten. */
size_t nmaps = 0;
struct link_map *l = new;
do
{
if (! l->l_real->l_relocated)
++nmaps;
l = l->l_next;
}
while (l != NULL);
struct link_map *maps[nmaps];
nmaps = 0;
l = new;
do
{
if (! l->l_real->l_relocated)
maps[nmaps++] = l;
l = l->l_next;
}
while (l != NULL);
if (nmaps > 1)
{
uint16_t seen[nmaps];
memset (seen, '\0', sizeof (seen));
size_t i = 0;
while (1)
{
++seen[i];
struct link_map *thisp = maps[i];
/* Find the last object in the list for which the current one is
a dependency and move the current object behind the object
with the dependency. */
size_t k = nmaps - 1;
while (k > i)
{
struct link_map **runp = maps[k]->l_initfini;
if (runp != NULL)
/* Look through the dependencies of the object. */
while (*runp != NULL)
if (__glibc_unlikely (*runp++ == thisp))
{
/* Move the current object to the back past the last
object with it as the dependency. */
memmove (&maps[i], &maps[i + 1],
(k - i) * sizeof (maps[0]));
maps[k] = thisp;
if (seen[i + 1] > nmaps - i)
{
++i;
goto next_clear;
}
uint16_t this_seen = seen[i];
memmove (&seen[i], &seen[i + 1],
(k - i) * sizeof (seen[0]));
seen[k] = this_seen;
goto next;
}
--k;
}
if (++i == nmaps)
break;
next_clear:
memset (&seen[i], 0, (nmaps - i) * sizeof (seen[0]));
next:;
}
}
int relocation_in_progress = 0;
for (size_t i = nmaps; i-- > 0; )
{
l = maps[i];
if (! relocation_in_progress)
{
/* Notify the debugger that relocations are about to happen. */
LIBC_PROBE (reloc_start, 2, args->nsid, r);
relocation_in_progress = 1;
}
#ifdef SHARED
if (__glibc_unlikely (GLRO(dl_profile) != NULL))
{
/* If this here is the shared object which we want to profile
make sure the profile is started. We can find out whether
this is necessary or not by observing the `_dl_profile_map'
variable. If it was NULL but is not NULL afterwards we must
start the profiling. */
struct link_map *old_profile_map = GL(dl_profile_map);
_dl_relocate_object (l, l->l_scope, reloc_mode | RTLD_LAZY, 1);
if (old_profile_map == NULL && GL(dl_profile_map) != NULL)
{
/* We must prepare the profiling. */
_dl_start_profile ();
/* Prevent unloading the object. */
GL(dl_profile_map)->l_flags_1 |= DF_1_NODELETE;
}
}
else
#endif
_dl_relocate_object (l, l->l_scope, reloc_mode, 0);
}
/* If the file is not loaded now as a dependency, add the search
list of the newly loaded object to the scope. */
bool any_tls = false;
unsigned int first_static_tls = new->l_searchlist.r_nlist;
for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i)
{
struct link_map *imap = new->l_searchlist.r_list[i];
int from_scope = 0;
/* If the initializer has been called already, the object has
not been loaded here and now. */
if (imap->l_init_called && imap->l_type == lt_loaded)
{
struct r_scope_elem **runp = imap->l_scope;
size_t cnt = 0;
while (*runp != NULL)
{
if (*runp == &new->l_searchlist)
break;
++cnt;
++runp;
}
if (*runp != NULL)
/* Avoid duplicates. */
continue;
if (__glibc_unlikely (cnt + 1 >= imap->l_scope_max))
{
/* The 'r_scope' array is too small. Allocate a new one
dynamically. */
size_t new_size;
struct r_scope_elem **newp;
#define SCOPE_ELEMS(imap) \
(sizeof (imap->l_scope_mem) / sizeof (imap->l_scope_mem[0]))
if (imap->l_scope != imap->l_scope_mem
&& imap->l_scope_max < SCOPE_ELEMS (imap))
{
new_size = SCOPE_ELEMS (imap);
newp = imap->l_scope_mem;
}
else
{
new_size = imap->l_scope_max * 2;
newp = (struct r_scope_elem **)
malloc (new_size * sizeof (struct r_scope_elem *));
if (newp == NULL)
_dl_signal_error (ENOMEM, "dlopen", NULL,
N_("cannot create scope list"));
}
memcpy (newp, imap->l_scope, cnt * sizeof (imap->l_scope[0]));
struct r_scope_elem **old = imap->l_scope;
imap->l_scope = newp;
if (old != imap->l_scope_mem)
_dl_scope_free (old);
imap->l_scope_max = new_size;
}
/* First terminate the extended list. Otherwise a thread
might use the new last element and then use the garbage
at offset IDX+1. */
imap->l_scope[cnt + 1] = NULL;
atomic_write_barrier ();
imap->l_scope[cnt] = &new->l_searchlist;
/* Print only new scope information. */
from_scope = cnt;
}
/* Only add TLS memory if this object is loaded now and
therefore is not yet initialized. */
else if (! imap->l_init_called
/* Only if the module defines thread local data. */
&& __builtin_expect (imap->l_tls_blocksize > 0, 0))
{
/* Now that we know the object is loaded successfully add
modules containing TLS data to the slot info table. We
might have to increase its size. */
_dl_add_to_slotinfo (imap);
if (imap->l_need_tls_init
&& first_static_tls == new->l_searchlist.r_nlist)
first_static_tls = i;
/* We have to bump the generation counter. */
any_tls = true;
}
/* Print scope information. */
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
_dl_show_scope (imap, from_scope);
}
/* Bump the generation number if necessary. */
if (any_tls && __builtin_expect (++GL(dl_tls_generation) == 0, 0))
_dl_fatal_printf (N_("\
TLS generation counter wrapped! Please report this."));
/* We need a second pass for static tls data, because _dl_update_slotinfo
must not be run while calls to _dl_add_to_slotinfo are still pending. */
for (unsigned int i = first_static_tls; i < new->l_searchlist.r_nlist; ++i)
{
struct link_map *imap = new->l_searchlist.r_list[i];
if (imap->l_need_tls_init
&& ! imap->l_init_called
&& imap->l_tls_blocksize > 0)
{
/* For static TLS we have to allocate the memory here and
now, but we can delay updating the DTV. */
imap->l_need_tls_init = 0;
#ifdef SHARED
/* Update the slot information data for at least the
generation of the DSO we are allocating data for. */
_dl_update_slotinfo (imap->l_tls_modid);
#endif
GL(dl_init_static_tls) (imap);
assert (imap->l_need_tls_init == 0);
}
}
/* Notify the debugger all new objects have been relocated. */
if (relocation_in_progress)
LIBC_PROBE (reloc_complete, 3, args->nsid, r, new);
#ifndef SHARED
DL_STATIC_INIT (new);
#endif
/* Run the initializer functions of new objects. */
_dl_init (new, args->argc, args->argv, args->env);
/* Now we can make the new map available in the global scope. */
if (mode & RTLD_GLOBAL)
/* Move the object in the global namespace. */
if (add_to_global (new) != 0)
/* It failed. */
return;
#ifndef SHARED
/* We must be the static _dl_open in libc.a. A static program that
has loaded a dynamic object now has competition. */
__libc_multiple_libcs = 1;
#endif
/* Let the user know about the opencount. */
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
_dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n",
new->l_name, new->l_ns, new->l_direct_opencount);
}
void *
_dl_open (const char *file, int mode, const void *caller_dlopen, Lmid_t nsid,
int argc, char *argv[], char *env[])
{
if ((mode & RTLD_BINDING_MASK) == 0)
/* One of the flags must be set. */
_dl_signal_error (EINVAL, file, NULL, N_("invalid mode for dlopen()"));
/* Make sure we are alone. */
__rtld_lock_lock_recursive (GL(dl_load_lock));
if (__glibc_unlikely (nsid == LM_ID_NEWLM))
{
/* Find a new namespace. */
for (nsid = 1; DL_NNS > 1 && nsid < GL(dl_nns); ++nsid)
if (GL(dl_ns)[nsid]._ns_loaded == NULL)
break;
if (__glibc_unlikely (nsid == DL_NNS))
{
/* No more namespace available. */
__rtld_lock_unlock_recursive (GL(dl_load_lock));
_dl_signal_error (EINVAL, file, NULL, N_("\
no more namespaces available for dlmopen()"));
}
else if (nsid == GL(dl_nns))
{
__rtld_lock_initialize (GL(dl_ns)[nsid]._ns_unique_sym_table.lock);
++GL(dl_nns);
}
_dl_debug_initialize (0, nsid)->r_state = RT_CONSISTENT;
}
/* Never allow loading a DSO in a namespace which is empty. Such
direct placements is only causing problems. Also don't allow
loading into a namespace used for auditing. */
else if (__glibc_unlikely (nsid != LM_ID_BASE && nsid != __LM_ID_CALLER)
&& (__glibc_unlikely (nsid < 0 || nsid >= GL(dl_nns))
/* This prevents the [NSID] index expressions from being
evaluated, so the compiler won't think that we are
accessing an invalid index here in the !SHARED case where
DL_NNS is 1 and so any NSID != 0 is invalid. */
|| DL_NNS == 1
|| GL(dl_ns)[nsid]._ns_nloaded == 0
|| GL(dl_ns)[nsid]._ns_loaded->l_auditing))
_dl_signal_error (EINVAL, file, NULL,
N_("invalid target namespace in dlmopen()"));
struct dl_open_args args;
args.file = file;
args.mode = mode;
args.caller_dlopen = caller_dlopen;
args.caller_dl_open = RETURN_ADDRESS (0);
args.map = NULL;
args.nsid = nsid;
args.argc = argc;
args.argv = argv;
args.env = env;
const char *objname;
const char *errstring;
bool malloced;
int errcode = _dl_catch_error (&objname, &errstring, &malloced,
dl_open_worker, &args);
#if defined USE_LDCONFIG && !defined MAP_COPY
/* We must unmap the cache file. */
_dl_unload_cache ();
#endif
/* See if an error occurred during loading. */
if (__glibc_unlikely (errstring != NULL))
{
/* Remove the object from memory. It may be in an inconsistent
state if relocation failed, for example. */
if (args.map)
{
/* Maybe some of the modules which were loaded use TLS.
Since it will be removed in the following _dl_close call
we have to mark the dtv array as having gaps to fill the
holes. This is a pessimistic assumption which won't hurt
if not true. There is no need to do this when we are
loading the auditing DSOs since TLS has not yet been set
up. */
if ((mode & __RTLD_AUDIT) == 0)
GL(dl_tls_dtv_gaps) = true;
_dl_close_worker (args.map, true);
}
assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT);
/* Release the lock. */
__rtld_lock_unlock_recursive (GL(dl_load_lock));
/* Make a local copy of the error string so that we can release the
memory allocated for it. */
size_t len_errstring = strlen (errstring) + 1;
char *local_errstring;
if (objname == errstring + len_errstring)
{
size_t total_len = len_errstring + strlen (objname) + 1;
local_errstring = alloca (total_len);
memcpy (local_errstring, errstring, total_len);
objname = local_errstring + len_errstring;
}
else
{
local_errstring = alloca (len_errstring);
memcpy (local_errstring, errstring, len_errstring);
}
if (malloced)
free ((char *) errstring);
/* Reraise the error. */
_dl_signal_error (errcode, objname, NULL, local_errstring);
}
assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT);
/* Release the lock. */
__rtld_lock_unlock_recursive (GL(dl_load_lock));
return args.map;
}
void
_dl_show_scope (struct link_map *l, int from)
{
_dl_debug_printf ("object=%s [%lu]\n",
DSO_FILENAME (l->l_name), l->l_ns);
if (l->l_scope != NULL)
for (int scope_cnt = from; l->l_scope[scope_cnt] != NULL; ++scope_cnt)
{
_dl_debug_printf (" scope %u:", scope_cnt);
for (unsigned int cnt = 0; cnt < l->l_scope[scope_cnt]->r_nlist; ++cnt)
if (*l->l_scope[scope_cnt]->r_list[cnt]->l_name)
_dl_debug_printf_c (" %s",
l->l_scope[scope_cnt]->r_list[cnt]->l_name);
else
_dl_debug_printf_c (" %s", RTLD_PROGNAME);
_dl_debug_printf_c ("\n");
}
else
_dl_debug_printf (" no scope\n");
_dl_debug_printf ("\n");
}
#if IS_IN (rtld)
/* Return non-zero if ADDR lies within one of L's segments. */
int
internal_function
_dl_addr_inside_object (struct link_map *l, const ElfW(Addr) addr)
{
int n = l->l_phnum;
const ElfW(Addr) reladdr = addr - l->l_addr;
while (--n >= 0)
if (l->l_phdr[n].p_type == PT_LOAD
&& reladdr - l->l_phdr[n].p_vaddr >= 0
&& reladdr - l->l_phdr[n].p_vaddr < l->l_phdr[n].p_memsz)
return 1;
return 0;
}
#endif
|