1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
|
.file "acos.s"
// Copyright (c) 2000 - 2003 Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
// History
//==============================================================
// 02/02/00 Initial version
// 08/17/00 New and much faster algorithm.
// 08/30/00 Avoided bank conflicts on loads, shortened |x|=1 and x=0 paths,
// fixed mfb split issue stalls.
// 05/20/02 Cleaned up namespace and sf0 syntax
// 08/02/02 New and much faster algorithm II
// 02/06/03 Reordered header: .section, .global, .proc, .align
// Description
//=========================================
// The acos function computes the principal value of the arc cosine of x.
// acos(0) returns Pi/2, acos(1) returns 0, acos(-1) returns Pi.
// A doman error occurs for arguments not in the range [-1,+1].
//
// The acos function returns the arc cosine in the range [0, Pi] radians.
//
// There are 8 paths:
// 1. x = +/-0.0
// Return acos(x) = Pi/2 + x
//
// 2. 0.0 < |x| < 0.625
// Return acos(x) = Pi/2 - x - x^3 *PolA(x^2)
// where PolA(x^2) = A3 + A5*x^2 + A7*x^4 +...+ A35*x^32
//
// 3. 0.625 <=|x| < 1.0
// Return acos(x) = Pi/2 - asin(x) =
// = Pi/2 - sign(x) * ( Pi/2 - sqrt(R) * PolB(R))
// Where R = 1 - |x|,
// PolB(R) = B0 + B1*R + B2*R^2 +...+B12*R^12
//
// sqrt(R) is approximated using the following sequence:
// y0 = (1 + eps)/sqrt(R) - initial approximation by frsqrta,
// |eps| < 2^(-8)
// Then 3 iterations are used to refine the result:
// H0 = 0.5*y0
// S0 = R*y0
//
// d0 = 0.5 - H0*S0
// H1 = H0 + d0*H0
// S1 = S0 + d0*S0
//
// d1 = 0.5 - H1*S1
// H2 = H1 + d0*H1
// S2 = S1 + d0*S1
//
// d2 = 0.5 - H2*S2
// S3 = S3 + d2*S3
//
// S3 approximates sqrt(R) with enough accuracy for this algorithm
//
// So, the result should be reconstracted as follows:
// acos(x) = Pi/2 - sign(x) * (Pi/2 - S3*PolB(R))
//
// But for optimization purposes the reconstruction step is slightly
// changed:
// acos(x) = Cpi + sign(x)*PolB(R)*S2 - sign(x)*d2*S2*PolB(R)
// where Cpi = 0 if x > 0 and Cpi = Pi if x < 0
//
// 4. |x| = 1.0
// Return acos(1.0) = 0.0, acos(-1.0) = Pi
//
// 5. 1.0 < |x| <= +INF
// A doman error occurs for arguments not in the range [-1,+1]
//
// 6. x = [S,Q]NaN
// Return acos(x) = QNaN
//
// 7. x is denormal
// Return acos(x) = Pi/2 - x,
//
// 8. x is unnormal
// Normalize input in f8 and return to the very beginning of the function
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input, output
// f6, f7, f9 -> f15, f32 -> f64
// General registers used:
// r3, r21 -> r31, r32 -> r38
// Predicate registers used:
// p0, p6 -> p14
//
// Assembly macros
//=========================================
// integer registers used
// scratch
rTblAddr = r3
rPiBy2Ptr = r21
rTmpPtr3 = r22
rDenoBound = r23
rOne = r24
rAbsXBits = r25
rHalf = r26
r0625 = r27
rSign = r28
rXBits = r29
rTmpPtr2 = r30
rTmpPtr1 = r31
// stacked
GR_SAVE_PFS = r32
GR_SAVE_B0 = r33
GR_SAVE_GP = r34
GR_Parameter_X = r35
GR_Parameter_Y = r36
GR_Parameter_RESULT = r37
GR_Parameter_TAG = r38
// floating point registers used
FR_X = f10
FR_Y = f1
FR_RESULT = f8
// scratch
fXSqr = f6
fXCube = f7
fXQuadr = f9
f1pX = f10
f1mX = f11
f1pXRcp = f12
f1mXRcp = f13
fH = f14
fS = f15
// stacked
fA3 = f32
fB1 = f32
fA5 = f33
fB2 = f33
fA7 = f34
fPiBy2 = f34
fA9 = f35
fA11 = f36
fB10 = f35
fB11 = f36
fA13 = f37
fA15 = f38
fB4 = f37
fB5 = f38
fA17 = f39
fA19 = f40
fB6 = f39
fB7 = f40
fA21 = f41
fA23 = f42
fB3 = f41
fB8 = f42
fA25 = f43
fA27 = f44
fB9 = f43
fB12 = f44
fA29 = f45
fA31 = f46
fA33 = f47
fA35 = f48
fBaseP = f49
fB0 = f50
fSignedS = f51
fD = f52
fHalf = f53
fR = f54
fCloseTo1Pol = f55
fSignX = f56
fDenoBound = f57
fNormX = f58
fX8 = f59
fRSqr = f60
fRQuadr = f61
fR8 = f62
fX16 = f63
fCpi = f64
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(acos_base_range_table)
// Ai: Polynomial coefficients for the acos(x), |x| < .625000
// Bi: Polynomial coefficients for the acos(x), |x| > .625000
data8 0xBFDAAB56C01AE468 //A29
data8 0x3FE1C470B76A5B2B //A31
data8 0xBFDC5FF82A0C4205 //A33
data8 0x3FC71FD88BFE93F0 //A35
data8 0xB504F333F9DE6487, 0x00003FFF //B0
data8 0xAAAAAAAAAAAAFC18, 0x00003FFC //A3
data8 0x3F9F1C71BC4A7823 //A9
data8 0x3F96E8BBAAB216B2 //A11
data8 0x3F91C4CA1F9F8A98 //A13
data8 0x3F8C9DDCEDEBE7A6 //A15
data8 0x3F877784442B1516 //A17
data8 0x3F859C0491802BA2 //A19
data8 0x9999999998C88B8F, 0x00003FFB //A5
data8 0x3F6BD7A9A660BF5E //A21
data8 0x3F9FC1659340419D //A23
data8 0xB6DB6DB798149BDF, 0x00003FFA //A7
data8 0xBFB3EF18964D3ED3 //A25
data8 0x3FCD285315542CF2 //A27
data8 0xF15BEEEFF7D2966A, 0x00003FFB //B1
data8 0x3EF0DDA376D10FB3 //B10
data8 0xBEB83CAFE05EBAC9 //B11
data8 0x3F65FFB67B513644 //B4
data8 0x3F5032FBB86A4501 //B5
data8 0x3F392162276C7CBA //B6
data8 0x3F2435949FD98BDF //B7
data8 0xD93923D7FA08341C, 0x00003FF9 //B2
data8 0x3F802995B6D90BDB //B3
data8 0x3F10DF86B341A63F //B8
data8 0xC90FDAA22168C235, 0x00003FFF // Pi/2
data8 0x3EFA3EBD6B0ECB9D //B9
data8 0x3EDE18BA080E9098 //B12
LOCAL_OBJECT_END(acos_base_range_table)
.section .text
GLOBAL_LIBM_ENTRY(acos)
acos_unnormal_back:
{ .mfi
getf.d rXBits = f8 // grab bits of input value
// set p12 = 1 if x is a NaN, denormal, or zero
fclass.m p12, p0 = f8, 0xcf
adds rSign = 1, r0
}
{ .mfi
addl rTblAddr = @ltoff(acos_base_range_table),gp
// 1 - x = 1 - |x| for positive x
fms.s1 f1mX = f1, f1, f8
addl rHalf = 0xFFFE, r0 // exponent of 1/2
}
;;
{ .mfi
addl r0625 = 0x3FE4, r0 // high 16 bits of 0.625
// set p8 = 1 if x < 0
fcmp.lt.s1 p8, p9 = f8, f0
shl rSign = rSign, 63 // sign bit
}
{ .mfi
// point to the beginning of the table
ld8 rTblAddr = [rTblAddr]
// 1 + x = 1 - |x| for negative x
fma.s1 f1pX = f1, f1, f8
adds rOne = 0x3FF, r0
}
;;
{ .mfi
andcm rAbsXBits = rXBits, rSign // bits of |x|
fmerge.s fSignX = f8, f1 // signum(x)
shl r0625 = r0625, 48 // bits of DP representation of 0.625
}
{ .mfb
setf.exp fHalf = rHalf // load A2 to FP reg
fma.s1 fXSqr = f8, f8, f0 // x^2
// branch on special path if x is a NaN, denormal, or zero
(p12) br.cond.spnt acos_special
}
;;
{ .mfi
adds rPiBy2Ptr = 272, rTblAddr
nop.f 0
shl rOne = rOne, 52 // bits of 1.0
}
{ .mfi
adds rTmpPtr1 = 16, rTblAddr
nop.f 0
// set p6 = 1 if |x| < 0.625
cmp.lt p6, p7 = rAbsXBits, r0625
}
;;
{ .mfi
ldfpd fA29, fA31 = [rTblAddr] // A29, fA31
// 1 - x = 1 - |x| for positive x
(p9) fms.s1 fR = f1, f1, f8
// point to coefficient of "near 1" polynomial
(p7) adds rTmpPtr2 = 176, rTblAddr
}
{ .mfi
ldfpd fA33, fA35 = [rTmpPtr1], 16 // A33, fA35
// 1 + x = 1 - |x| for negative x
(p8) fma.s1 fR = f1, f1, f8
(p6) adds rTmpPtr2 = 48, rTblAddr
}
;;
{ .mfi
ldfe fB0 = [rTmpPtr1], 16 // B0
nop.f 0
nop.i 0
}
{ .mib
adds rTmpPtr3 = 16, rTmpPtr2
// set p10 = 1 if |x| = 1.0
cmp.eq p10, p0 = rAbsXBits, rOne
// branch on special path for |x| = 1.0
(p10) br.cond.spnt acos_abs_1
}
;;
{ .mfi
ldfe fA3 = [rTmpPtr2], 48 // A3 or B1
nop.f 0
adds rTmpPtr1 = 64, rTmpPtr3
}
{ .mib
ldfpd fA9, fA11 = [rTmpPtr3], 16 // A9, A11 or B10, B11
// set p11 = 1 if |x| > 1.0
cmp.gt p11, p0 = rAbsXBits, rOne
// branch on special path for |x| > 1.0
(p11) br.cond.spnt acos_abs_gt_1
}
;;
{ .mfi
ldfpd fA17, fA19 = [rTmpPtr2], 16 // A17, A19 or B6, B7
// initial approximation of 1 / sqrt(1 - x)
frsqrta.s1 f1mXRcp, p0 = f1mX
nop.i 0
}
{ .mfi
ldfpd fA13, fA15 = [rTmpPtr3] // A13, A15 or B4, B5
fma.s1 fXCube = fXSqr, f8, f0 // x^3
nop.i 0
}
;;
{ .mfi
ldfe fA5 = [rTmpPtr2], 48 // A5 or B2
// initial approximation of 1 / sqrt(1 + x)
frsqrta.s1 f1pXRcp, p0 = f1pX
nop.i 0
}
{ .mfi
ldfpd fA21, fA23 = [rTmpPtr1], 16 // A21, A23 or B3, B8
fma.s1 fXQuadr = fXSqr, fXSqr, f0 // x^4
nop.i 0
}
;;
{ .mfi
ldfe fA7 = [rTmpPtr1] // A7 or Pi/2
fma.s1 fRSqr = fR, fR, f0 // R^2
nop.i 0
}
{ .mfb
ldfpd fA25, fA27 = [rTmpPtr2] // A25, A27 or B9, B12
nop.f 0
(p6) br.cond.spnt acos_base_range;
}
;;
{ .mfi
nop.m 0
(p9) fma.s1 fH = fHalf, f1mXRcp, f0 // H0 for x > 0
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 fS = f1mX, f1mXRcp, f0 // S0 for x > 0
nop.i 0
}
;;
{ .mfi
nop.m 0
(p8) fma.s1 fH = fHalf, f1pXRcp, f0 // H0 for x < 0
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fS = f1pX, f1pXRcp, f0 // S0 for x > 0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fRQuadr = fRSqr, fRSqr, f0 // R^4
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fB11 = fB11, fR, fB10
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB1 = fB1, fR, fB0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fB5 = fB5, fR, fB4
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB7 = fB7, fR, fB6
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fB3 = fB3, fR, fB2
nop.i 0
}
;;
{ .mfi
nop.m 0
fnma.s1 fD = fH, fS, fHalf // d0 = 1/2 - H0*S0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fR8 = fRQuadr, fRQuadr, f0 // R^4
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB9 = fB9, fR, fB8
nop.i 0
}
;;
{.mfi
nop.m 0
fma.s1 fB12 = fB12, fRSqr, fB11
nop.i 0
}
{.mfi
nop.m 0
fma.s1 fB7 = fB7, fRSqr, fB5
nop.i 0
}
;;
{.mfi
nop.m 0
fma.s1 fB3 = fB3, fRSqr, fB1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fH = fH, fD, fH // H1 = H0 + H0*d0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS = fS, fD, fS // S1 = S0 + S0*d0
nop.i 0
}
;;
{.mfi
nop.m 0
(p9) fma.s1 fCpi = f1, f0, f0 // Cpi = 0 if x > 0
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fCpi = fPiBy2, f1, fPiBy2 // Cpi = Pi if x < 0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fB12 = fB12, fRSqr, fB9
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB7 = fB7, fRQuadr, fB3
nop.i 0
}
;;
{.mfi
nop.m 0
fnma.s1 fD = fH, fS, fHalf // d1 = 1/2 - H1*S1
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 fSignedS = fSignX, fS, f0 // -signum(x)*S1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fCloseTo1Pol = fB12, fR8, fB7
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fH = fH, fD, fH // H2 = H1 + H1*d1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS = fS, fD, fS // S2 = S1 + S1*d1
nop.i 0
}
;;
{ .mfi
nop.m 0
// -signum(x)* S2 = -signum(x)*(S1 + S1*d1)
fma.s1 fSignedS = fSignedS, fD, fSignedS
nop.i 0
}
;;
{.mfi
nop.m 0
fnma.s1 fD = fH, fS, fHalf // d2 = 1/2 - H2*S2
nop.i 0
}
;;
{ .mfi
nop.m 0
// Cpi + signum(x)*PolB*S2
fnma.s1 fCpi = fSignedS, fCloseTo1Pol, fCpi
nop.i 0
}
{ .mfi
nop.m 0
// signum(x)*PolB * S2
fnma.s1 fCloseTo1Pol = fSignedS, fCloseTo1Pol, f0
nop.i 0
}
;;
{ .mfb
nop.m 0
// final result for 0.625 <= |x| < 1
fma.d.s0 f8 = fCloseTo1Pol, fD, fCpi
// exit here for 0.625 <= |x| < 1
br.ret.sptk b0
}
;;
// here if |x| < 0.625
.align 32
acos_base_range:
{ .mfi
ldfe fCpi = [rPiBy2Ptr] // Pi/2
fma.s1 fA33 = fA33, fXSqr, fA31
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA15 = fA15, fXSqr, fA13
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA29 = fA29, fXSqr, fA27
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA25 = fA25, fXSqr, fA23
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA21 = fA21, fXSqr, fA19
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA9 = fA9, fXSqr, fA7
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA5 = fA5, fXSqr, fA3
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA35 = fA35, fXQuadr, fA33
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA17 = fA17, fXQuadr, fA15
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fX8 = fXQuadr, fXQuadr, f0 // x^8
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA25 = fA25, fXQuadr, fA21
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA9 = fA9, fXQuadr, fA5
nop.i 0
}
;;
{ .mfi
nop.m 0
fms.s1 fCpi = fCpi, f1, f8 // Pi/2 - x
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA35 = fA35, fXQuadr, fA29
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA17 = fA17, fXSqr, fA11
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fX16 = fX8, fX8, f0 // x^16
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA35 = fA35, fX8, fA25
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA17 = fA17, fX8, fA9
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fBaseP = fA35, fX16, fA17
nop.i 0
}
;;
{ .mfb
nop.m 0
// final result for |x| < 0.625
fnma.d.s0 f8 = fBaseP, fXCube, fCpi
// exit here for |x| < 0.625 path
br.ret.sptk b0
}
;;
// here if |x| = 1
// acos(1) = 0
// acos(-1) = Pi
.align 32
acos_abs_1:
{ .mfi
ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2
nop.f 0
nop.i 0
}
;;
.pred.rel "mutex", p8, p9
{ .mfi
nop.m 0
// result for x = 1.0
(p9) fma.d.s0 f8 = f1, f0, f0 // 0.0
nop.i 0
}
{.mfb
nop.m 0
// result for x = -1.0
(p8) fma.d.s0 f8 = fPiBy2, f1, fPiBy2 // Pi
// exit here for |x| = 1.0
br.ret.sptk b0
}
;;
// here if x is a NaN, denormal, or zero
.align 32
acos_special:
{ .mfi
// point to Pi/2
adds rPiBy2Ptr = 272, rTblAddr
// set p12 = 1 if x is a NaN
fclass.m p12, p0 = f8, 0xc3
nop.i 0
}
{ .mlx
nop.m 0
// smallest positive DP normalized number
movl rDenoBound = 0x0010000000000000
}
;;
{ .mfi
ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2
// set p13 = 1 if x = 0.0
fclass.m p13, p0 = f8, 0x07
nop.i 0
}
{ .mfi
nop.m 0
fnorm.s1 fNormX = f8
nop.i 0
}
;;
{ .mfb
// load smallest normal to FP reg
setf.d fDenoBound = rDenoBound
// answer if x is a NaN
(p12) fma.d.s0 f8 = f8,f1,f0
// exit here if x is a NaN
(p12) br.ret.spnt b0
}
;;
{ .mfi
nop.m 0
// absolute value of normalized x
fmerge.s fNormX = f1, fNormX
nop.i 0
}
;;
{ .mfb
nop.m 0
// final result for x = 0
(p13) fma.d.s0 f8 = fPiBy2, f1, f8
// exit here if x = 0.0
(p13) br.ret.spnt b0
}
;;
// if we still here then x is denormal or unnormal
{ .mfi
nop.m 0
// set p14 = 1 if normalized x is greater than or
// equal to the smallest denormalized value
// So, if p14 is set to 1 it means that we deal with
// unnormal rather than with "true" denormal
fcmp.ge.s1 p14, p0 = fNormX, fDenoBound
nop.i 0
}
;;
{ .mfi
nop.m 0
(p14) fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag if x unnormal
nop.i 0
}
{ .mfb
nop.m 0
// normalize unnormal input
(p14) fnorm.s1 f8 = f8
// return to the main path
(p14) br.cond.sptk acos_unnormal_back
}
;;
// if we still here it means that input is "true" denormal
{ .mfb
nop.m 0
// final result if x is denormal
fms.d.s0 f8 = fPiBy2, f1, f8 // Pi/2 - x
// exit here if x is denormal
br.ret.sptk b0
}
;;
// here if |x| > 1.0
// error handler should be called
.align 32
acos_abs_gt_1:
{ .mfi
alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
fmerge.s FR_X = f8,f8
nop.i 0
}
{ .mfb
mov GR_Parameter_TAG = 58 // error code
frcpa.s0 FR_RESULT, p0 = f0,f0
// call error handler routine
br.cond.sptk __libm_error_region
}
;;
GLOBAL_LIBM_END(acos)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|