1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
.file "asinf.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
// History
//==============================================================
// 02/02/00 Initial version
// 06/28/00 Improved speed
// 06/31/00 Changed register allocation because of some duplicate macros
// moved nan exit bundle up to gain a cycle.
// 08/08/00 Improved speed by avoiding SIR flush.
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 08/17/00 Changed predicate register macro-usage to direct predicate
// names due to an assembler bug.
// 10/17/00 Improved speed of x=0 and x=1 paths, set D flag if x denormal.
// 03/13/01 Corrected sign of imm1 value in dep instruction.
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/06/03 Reordered header: .section, .global, .proc, .align
// Description
//=========================================
// The asinf function computes the arc sine of x in the range [-pi,+pi].
// A doman error occurs for arguments not in the range [-1,+1].
// asinf(+-0) returns +-0
// asinf(x) returns a Nan and raises the invalid exception for |x| >1
// The acosf function returns the arc cosine in the range [0, +pi] radians.
// A doman error occurs for arguments not in the range [-1,+1].
// acosf(1) returns +0
// acosf(x) returns a Nan and raises the invalid exception for |x| >1
// |x| <= sqrt(2)/2. get Ax and Bx
// poly_p1 = x p1
// poly_p3 = x2 p4 + p3
// poly_p1 = x2 (poly_p1) + x = x2(x p1) + x
// poly_p2 = x2( poly_p3) + p2 = x2(x2 p4 + p3) + p2
// poly_Ax = x5(x2( poly_p3) + p2) + x2(x p1) + x
// = x5(x2(x2 p4 + p3) + p2) + x2(x p1) + x
// poly_p7 = x2 p8 + p7
// poly_p5 = x2 p6 + p5
// poly_p7 = x4 p9 + (poly_p7)
// poly_p7 = x4 p9 + (x2 p8 + p7)
// poly_Bx = x4 (x4 p9 + (x2 p8 + p7)) + x2 p6 + p5
// answer1 = x11(x4 (x4 p9 + (x2 p8 + p7)) + x2 p6 + p5) + x5(x2(x2 p4 + p3) + p2) + x2(x p1) + x
// = x19 p9 + x17 p8 + x15 p7 x13 p6 + x11 p5 + x9 p4 + x7 p3 + x5 p2 + x3 p1 + x
// |x| > sqrt(2)/2
// Get z = sqrt(1-x2)
// Get polynomial in t = 1-x2
// t2 = t t
// t4 = t2 t2
// poly_p4 = t p5 + p4
// poly_p1 = t p1 + 1
// poly_p6 = t p7 + p6
// poly_p2 = t p3 + p2
// poly_p8 = t p9 + p8
// poly_p4 = t2 poly_p6 + poly_p4
// = t2 (t p7 + p6) + (t p5 + p4)
// poly_p2 = t2 poly_p2 + poly_p1
// = t2 (t p3 + p2) + (t p1 + 1)
// poly_p4 = t4 poly_p8 + poly_p4
// = t4 (t p9 + p8) + (t2 (t p7 + p6) + (t p5 + p4))
// P(t) = poly_p2 + t4 poly_p8
// = t2 (t p3 + p2) + (t p1 + 1) + t4 (t4 (t p9 + p8) + (t2 (t p7 + p6) + (t p5 + p4)))
// = t3 p3 + t2 p2 + t p1 + 1 + t9 p9 + t8 p8 + t7 p7 + t6 p6 + t5 p5 + t4 p4
// answer2 = - sign(x) z P(t) + (sign(x) pi/2)
//
// Assembly macros
//=========================================
// predicate registers
//asinf_pred_LEsqrt2by2 = p7
//asinf_pred_GTsqrt2by2 = p8
// integer registers
ASINF_Addr1 = r33
ASINF_Addr2 = r34
ASINF_GR_1by2 = r35
ASINF_GR_3by2 = r36
ASINF_GR_5by2 = r37
GR_SAVE_B0 = r38
GR_SAVE_PFS = r39
GR_SAVE_GP = r40
GR_Parameter_X = r41
GR_Parameter_Y = r42
GR_Parameter_RESULT = r43
GR_Parameter_TAG = r44
// floating point registers
asinf_y = f32
asinf_abs_x = f33
asinf_x2 = f34
asinf_sgn_x = f35
asinf_1by2 = f36
asinf_3by2 = f37
asinf_5by2 = f38
asinf_coeff_P3 = f39
asinf_coeff_P8 = f40
asinf_coeff_P1 = f41
asinf_coeff_P4 = f42
asinf_coeff_P5 = f43
asinf_coeff_P2 = f44
asinf_coeff_P7 = f45
asinf_coeff_P6 = f46
asinf_coeff_P9 = f47
asinf_x2 = f48
asinf_x3 = f49
asinf_x4 = f50
asinf_x8 = f51
asinf_x5 = f52
asinf_const_piby2 = f53
asinf_const_sqrt2by2 = f54
asinf_x11 = f55
asinf_poly_p1 = f56
asinf_poly_p3 = f57
asinf_sinf1 = f58
asinf_poly_p2 = f59
asinf_poly_Ax = f60
asinf_poly_p7 = f61
asinf_poly_p5 = f62
asinf_sgnx_t4 = f63
asinf_poly_Bx = f64
asinf_t = f65
asinf_yby2 = f66
asinf_B = f67
asinf_B2 = f68
asinf_Az = f69
asinf_dz = f70
asinf_Sz = f71
asinf_d2z = f72
asinf_Fz = f73
asinf_z = f74
asinf_sgnx_z = f75
asinf_t2 = f76
asinf_2poly_p4 = f77
asinf_2poly_p6 = f78
asinf_2poly_p1 = f79
asinf_2poly_p2 = f80
asinf_2poly_p8 = f81
asinf_t4 = f82
asinf_Pt = f83
asinf_sgnx_2poly_p2 = f84
asinf_sgn_x_piby2 = f85
asinf_poly_p7a = f86
asinf_2poly_p4a = f87
asinf_2poly_p4b = f88
asinf_2poly_p2a = f89
asinf_poly_p1a = f90
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(asinf_coeff_1_table)
data8 0x3FC5555607DCF816 // P1
data8 0x3F9CF81AD9BAB2C6 // P4
data8 0x3FC59E0975074DF3 // P7
data8 0xBFA6F4CC2780AA1D // P6
data8 0x3FC2DD45292E93CB // P9
data8 0x3fe6a09e667f3bcd // sqrt(2)/2
LOCAL_OBJECT_END(asinf_coeff_1_table)
LOCAL_OBJECT_START(asinf_coeff_2_table)
data8 0x3FA6F108E31EFBA6 // P3
data8 0xBFCA31BF175D82A0 // P8
data8 0x3FA30C0337F6418B // P5
data8 0x3FB332C9266CB1F9 // P2
data8 0x3ff921fb54442d18 // pi_by_2
LOCAL_OBJECT_END(asinf_coeff_2_table)
.section .text
GLOBAL_LIBM_ENTRY(asinf)
// Load the addresses of the two tables.
// Then, load the coefficients and other constants.
{ .mfi
alloc r32 = ar.pfs,1,8,4,0
fnma.s1 asinf_t = f8,f8,f1
dep.z ASINF_GR_1by2 = 0x3f,24,8 // 0x3f000000
}
{ .mfi
addl ASINF_Addr1 = @ltoff(asinf_coeff_1_table),gp
fma.s1 asinf_x2 = f8,f8,f0
addl ASINF_Addr2 = @ltoff(asinf_coeff_2_table),gp ;;
}
{ .mfi
ld8 ASINF_Addr1 = [ASINF_Addr1]
fmerge.s asinf_abs_x = f1,f8
dep ASINF_GR_3by2 = -1,r0,22,8 // 0x3fc00000
}
{ .mlx
nop.m 999
movl ASINF_GR_5by2 = 0x40200000;;
}
{ .mfi
setf.s asinf_1by2 = ASINF_GR_1by2
fmerge.s asinf_sgn_x = f8,f1
nop.i 999
}
{ .mfi
ld8 ASINF_Addr2 = [ASINF_Addr2]
nop.f 0
nop.i 999;;
}
{ .mfi
setf.s asinf_5by2 = ASINF_GR_5by2
fcmp.lt.s1 p11,p12 = f8,f0
nop.i 999;;
}
{ .mmf
ldfpd asinf_coeff_P1,asinf_coeff_P4 = [ASINF_Addr1],16
setf.s asinf_3by2 = ASINF_GR_3by2
fclass.m.unc p8,p0 = f8, 0xc3 ;; //@qnan | @snan
}
{ .mfi
ldfpd asinf_coeff_P7,asinf_coeff_P6 = [ASINF_Addr1],16
fma.s1 asinf_t2 = asinf_t,asinf_t,f0
nop.i 999
}
{ .mfi
ldfpd asinf_coeff_P3,asinf_coeff_P8 = [ASINF_Addr2],16
fma.s1 asinf_x4 = asinf_x2,asinf_x2,f0
nop.i 999;;
}
{ .mfi
ldfpd asinf_coeff_P9,asinf_const_sqrt2by2 = [ASINF_Addr1]
fclass.m.unc p10,p0 = f8, 0x07 //@zero
nop.i 999
}
{ .mfi
ldfpd asinf_coeff_P5,asinf_coeff_P2 = [ASINF_Addr2],16
fma.s1 asinf_x3 = f8,asinf_x2,f0
nop.i 999;;
}
{ .mfi
ldfd asinf_const_piby2 = [ASINF_Addr2]
frsqrta.s1 asinf_B,p0 = asinf_t
nop.i 999
}
{ .mfb
nop.m 999
(p8) fma.s.s0 f8 = f8,f1,f0
(p8) br.ret.spnt b0 ;; // Exit if x=nan
}
{ .mfb
nop.m 999
fcmp.eq.s1 p6,p0 = asinf_abs_x,f1
(p10) br.ret.spnt b0 ;; // Exit if x=0
}
{ .mfi
nop.m 999
fcmp.gt.s1 p9,p0 = asinf_abs_x,f1
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 asinf_x8 = asinf_x4,asinf_x4,f0
nop.i 999
}
{ .mfb
nop.m 999
fma.s1 asinf_t4 = asinf_t2,asinf_t2,f0
(p6) br.cond.spnt ASINF_ABS_ONE ;; // Branch if |x|=1
}
{ .mfi
nop.m 999
fma.s1 asinf_x5 = asinf_x2,asinf_x3,f0
nop.i 999
}
{ .mfb
(p9) mov GR_Parameter_TAG = 62
fma.s1 asinf_yby2 = asinf_t,asinf_1by2,f0
(p9) br.cond.spnt __libm_error_region ;; // Branch if |x|>1
}
{ .mfi
nop.m 999
fma.s1 asinf_Az = asinf_t,asinf_B,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 asinf_B2 = asinf_B,asinf_B,f0
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 asinf_poly_p1 = f8,asinf_coeff_P1,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 asinf_2poly_p1 = asinf_coeff_P1,asinf_t,f1
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 asinf_poly_p3 = asinf_coeff_P4,asinf_x2,asinf_coeff_P3
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 asinf_2poly_p6 = asinf_coeff_P7,asinf_t,asinf_coeff_P6
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 asinf_poly_p7 = asinf_x2,asinf_coeff_P8,asinf_coeff_P7
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 asinf_2poly_p2 = asinf_coeff_P3,asinf_t,asinf_coeff_P2
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 asinf_poly_p5 = asinf_x2,asinf_coeff_P6,asinf_coeff_P5
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 asinf_2poly_p4 = asinf_coeff_P5,asinf_t,asinf_coeff_P4
nop.i 999;;
}
{ .mfi
nop.m 999
fma.d.s1 asinf_x11 = asinf_x8,asinf_x3,f0
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 asinf_dz = asinf_B2,asinf_yby2,asinf_1by2
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 asinf_poly_p1a = asinf_x2,asinf_poly_p1,f8
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 asinf_2poly_p8 = asinf_coeff_P9,asinf_t,asinf_coeff_P8
nop.i 999;;
}
// Get the absolute value of x and determine the region in which x lies
{ .mfi
nop.m 999
fcmp.le.s1 p7,p8 = asinf_abs_x,asinf_const_sqrt2by2
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 asinf_poly_p2 = asinf_x2,asinf_poly_p3,asinf_coeff_P2
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 asinf_poly_p7a = asinf_x4,asinf_coeff_P9,asinf_poly_p7
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 asinf_2poly_p2a = asinf_2poly_p2,asinf_t2,asinf_2poly_p1
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.s1 asinf_sgnx_t4 = asinf_sgn_x,asinf_t4,f0
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 asinf_2poly_p4a = asinf_2poly_p6,asinf_t2,asinf_2poly_p4
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.s1 asinf_Sz = asinf_5by2,asinf_dz,asinf_3by2
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 asinf_d2z = asinf_dz,asinf_dz,f0
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.s1 asinf_sgn_x_piby2 = asinf_sgn_x,asinf_const_piby2,f0
nop.i 999
}
{ .mfi
nop.m 999
(p7) fma.d.s1 asinf_poly_Ax = asinf_x5,asinf_poly_p2,asinf_poly_p1a
nop.i 999;;
}
{ .mfi
nop.m 999
(p7) fma.d.s1 asinf_poly_Bx = asinf_x4,asinf_poly_p7a,asinf_poly_p5
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 asinf_sgnx_2poly_p2 = asinf_sgn_x,asinf_2poly_p2a,f0
nop.i 999;;
}
{ .mfi
nop.m 999
fcmp.eq.s0 p6,p0 = f8,f0 // Only purpose is to set D if x denormal
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 asinf_2poly_p4b = asinf_2poly_p8,asinf_t4,asinf_2poly_p4a
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.s1 asinf_Fz = asinf_d2z,asinf_Sz,asinf_dz
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.d.s1 asinf_Pt = asinf_2poly_p4b,asinf_sgnx_t4,asinf_sgnx_2poly_p2
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.d.s1 asinf_z = asinf_Az,asinf_Fz,asinf_Az
nop.i 999;;
}
.pred.rel "mutex",p8,p7 //asinf_pred_GTsqrt2by2,asinf_pred_LEsqrt2by2
{ .mfi
nop.m 999
(p8) fnma.s.s0 f8 = asinf_z,asinf_Pt,asinf_sgn_x_piby2
nop.i 999
}
{ .mfb
nop.m 999
(p7) fma.s.s0 f8 = asinf_x11,asinf_poly_Bx,asinf_poly_Ax
br.ret.sptk b0 ;;
}
ASINF_ABS_ONE:
// Here for short exit if |x|=1
{ .mfb
nop.m 999
fma.s.s0 f8 = asinf_sgn_x,asinf_const_piby2,f0
br.ret.sptk b0
}
;;
GLOBAL_LIBM_END(asinf)
// Stack operations when calling error support.
// (1) (2)
// sp -> + psp -> +
// | |
// | | <- GR_Y
// | |
// | <-GR_Y Y2->|
// | |
// | | <- GR_X
// | |
// sp-64 -> + sp -> +
// save ar.pfs save b0
// save gp
// Stack operations when calling error support.
// (3) (call) (4)
// psp -> + sp -> +
// | |
// R3 ->| <- GR_RESULT | -> f8
// | |
// Y2 ->| <- GR_Y |
// | |
// X1 ->| |
// | |
// sp -> + +
// restore gp
// restore ar.pfs
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfs [GR_Parameter_Y] = f1,16 // Store Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mfi
nop.m 0
frcpa.s0 f9,p0 = f0,f0
nop.i 0
};;
{ .mib
stfs [GR_Parameter_X] = f8 // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfs [GR_Parameter_Y] = f9 // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|