1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
|
.file "powl.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// Function: powl(x,y), where
// y
// powl(x,y) = x , for double extended precision x and y values
//
//*********************************************************************
//
// History:
// 02/02/00 (Hand Optimized)
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 01/22/01 Corrected results for powl(1,inf), powl(1,nan), and
// powl(snan,0) to be 1 per C99, not nan. Fixed many flag settings.
// 02/06/01 Call __libm_error support if over/underflow when y=2.
// 04/17/01 Support added for y close to 1 and x a non-special value.
// Shared software under/overflow detection for all paths
// 02/07/02 Corrected sf3 setting to disable traps
// 05/13/02 Improved performance of all paths
// 02/10/03 Reordered header: .section, .global, .proc, .align;
// used data8 for long double table values
// 04/17/03 Added missing mutex directive
// 10/13/03 Corrected .endp names to match .proc names
//
//*********************************************************************
//
// Resources Used:
//
// Floating-Point Registers:
// f8 (Input x and Return Value)
// f9 (Input y)
// f10-f15,f32-f79
//
// General Purpose Registers:
// Locals r14-24,r32-r65
// Parameters to __libm_error_support r62,r63,r64,r65
//
// Predicate Registers: p6-p15
//
//*********************************************************************
//
// Special Cases and IEEE special conditions:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions raised when appropriate for pow
// Underflow exceptions raised when appropriate for pow
// (Error Handling Routine called for overflow and Underflow)
// Inexact raised when appropriate by algorithm
//
// 1. (anything) ** NatVal or (NatVal) ** anything is NatVal
// 2. X or Y unsupported or sNaN is qNaN/Invalid
// 3. (anything) ** 0 is 1
// 4. (anything) ** 1 is itself
// 5. (anything except 1) ** qNAN is qNAN
// 6. qNAN ** (anything except 0) is qNAN
// 7. +-(|x| > 1) ** +INF is +INF
// 8. +-(|x| > 1) ** -INF is +0
// 9. +-(|x| < 1) ** +INF is +0
// 10. +-(|x| < 1) ** -INF is +INF
// 11. +-1 ** +-INF is +1
// 12. +0 ** (+anything except 0, NAN) is +0
// 13. -0 ** (+anything except 0, NAN, odd integer) is +0
// 14. +0 ** (-anything except 0, NAN) is +INF/div_0
// 15. -0 ** (-anything except 0, NAN, odd integer) is +INF/div_0
// 16. -0 ** (odd integer) = -( +0 ** (odd integer) )
// 17. +INF ** (+anything except 0,NAN) is +INF
// 18. +INF ** (-anything except 0,NAN) is +0
// 19. -INF ** (anything except NAN) = -0 ** (-anything)
// 20. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
// 21. (-anything except 0 and inf) ** (non-integer) is qNAN/Invalid
// 22. X or Y denorm/unorm and denorm/unorm operand trap is enabled,
// generate denorm/unorm fault except if invalid or div_0 raised.
//
//*********************************************************************
//
// Algorithm
// =========
//
// Special Cases
//
// If Y = 2, return X*X.
// If Y = 0.5, return sqrt(X).
//
// Compute log(X) to extra precision.
//
// ker_log_80( X, logX_hi, logX_lo, Safe );
//
// ...logX_hi + logX_lo approximates log(X) to roughly 80
// ...significant bits of accuracy.
//
// Compute Y*log(X) to extra precision.
//
// P_hi := Y * logX_hi
// P_lo := Y * logX_hi - P_hi ...using FMA
// P_lo := Y * logX_lo + P_lo ...using FMA
//
// Compute exp(P_hi + P_lo)
//
// Flag := 2;
// Expo_Range := 2; (assuming double-extended power function)
// ker_exp_64( P_hi, P_lo, Flag, Expo_Range,
// Z_hi, Z_lo, scale, Safe )
//
// scale := sgn * scale
//
// If (Safe) then ...result will not over/underflow
// return scale*Z_hi + (scale*Z_lo)
// quickly
// Else
// take necessary precaution in computing
// scale*Z_hi + (scale*Z_lo)
// to set possible exceptions correctly.
// End If
//
// Case_Y_Special
//
// ...Follow the order of the case checks
//
// If Y is +-0, return +1 without raising any exception.
// If Y is +1, return X without raising any exception.
// If Y is qNaN, return Y without exception.
// If X is qNaN, return X without exception.
//
// At this point, X is real and Y is +-inf.
// Thus |X| can only be 1, strictly bigger than 1, or
// strictly less than 1.
//
// If |X| < 1, then
// return ( Y == +inf? +0 : +inf )
// elseif |X| > 1, then
// return ( Y == +inf? +0 : +inf )
// else
// goto Case_Invalid
//
// Case_X_Special
//
// ...Follow the order of the case checks
// ...Note that Y is real, finite, non-zero, and not +1.
//
// If X is qNaN, return X without exception.
//
// If X is +-0,
// return ( Y > 0 ? +0 : +inf )
//
// If X is +inf
// return ( Y > 0 ? +inf : +0 )
//
// If X is -inf
// return -0 ** -Y
// return ( Y > 0 ? +inf : +0 )
//
// Case_Invalid
//
// Return 0 * inf to generate a quiet NaN together
// with an invalid exception.
//
// Implementation
// ==============
//
// We describe the quick branch since this part is important
// in reaching the normal case efficiently.
//
// STAGE 1
// -------
// This stage contains two threads.
//
// Stage1.Thread1
//
// fclass.m X_excep, X_ok = X, (NatVal or s/qNaN) or
// +-0, +-infinity
//
// fclass.nm X_unsupp, X_supp = X, (NatVal or s/qNaN) or
// +-(0, unnorm, norm, infinity)
//
// X_norm := fnorm( X ) with traps disabled
//
// If (X_excep) goto Filtering (Step 2)
// If (X_unsupp) goto Filtering (Step 2)
//
// Stage1.Thread2
// ..............
//
// fclass.m Y_excep, Y_ok = Y, (NatVal or s/qNaN) or
// +-0, +-infinity
//
// fclass.nm Y_unsupp, Y_supp = Y, (NatVal or s/qNaN) or
// +-(0, unnorm, norm, infinity)
//
// Y_norm := fnorm( Y ) with traps disabled
//
// If (Y_excep) goto Filtering (Step 2)
// If (Y_unsupp) goto Filtering (Step 2)
//
//
// STAGE 2
// -------
// This stage contains two threads.
//
// Stage2.Thread1
// ..............
//
// Set X_lt_0 if X < 0 (using fcmp)
// sgn := +1.0
// If (X_lt_0) goto Filtering (Step 2)
//
// Stage2.Thread2
// ..............
//
// Set Y_is_1 if Y = +1 (using fcmp)
// If (Y_is_1) goto Filtering (Step 2)
//
// STAGE 3
// -------
// This stage contains two threads.
//
//
// Stage3.Thread1
// ..............
//
// X := fnorm(X) in prevailing traps
//
//
// Stage3.Thread2
// ..............
//
// Y := fnorm(Y) in prevailing traps
//
// STAGE 4
// -------
//
// Go to Case_Normal.
//
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
// double-extended 1/ln(2)
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
// 3fff b8aa 3b29 5c17 f0bc
// For speed the significand will be loaded directly with a movl and setf.sig
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
// computations need to scale appropriately.
// The constant 2^12/ln(2) is needed for the computation of N. This is also
// obtained by scaling the computations.
//
// Two shifting constants are loaded directly with movl and setf.d.
// 1. RSHF_2TO51 = 1.1000..00 * 2^(63-12)
// This constant is added to x*1/ln2 to shift the integer part of
// x*2^12/ln2 into the rightmost bits of the significand.
// The result of this fma is N_signif.
// 2. RSHF = 1.1000..00 * 2^(63)
// This constant is subtracted from N_signif * 2^(-51) to give
// the integer part of N, N_fix, as a floating-point number.
// The result of this fms is float_N.
RODATA
.align 16
// L_hi, L_lo
LOCAL_OBJECT_START(Constants_exp_64_Arg)
data8 0xB17217F400000000,0x00003FF2 // L_hi = hi part log(2)/2^12
data8 0xF473DE6AF278ECE6,0x00003FD4 // L_lo = lo part log(2)/2^12
LOCAL_OBJECT_END(Constants_exp_64_Arg)
LOCAL_OBJECT_START(Constants_exp_64_A)
// Reversed
data8 0xAAAAAAABB1B736A0,0x00003FFA
data8 0xAAAAAAAB90CD6327,0x00003FFC
data8 0xFFFFFFFFFFFFFFFF,0x00003FFD
LOCAL_OBJECT_END(Constants_exp_64_A)
LOCAL_OBJECT_START(Constants_exp_64_P)
// Reversed
data8 0xD00D6C8143914A8A,0x00003FF2
data8 0xB60BC4AC30304B30,0x00003FF5
data8 0x888888887474C518,0x00003FF8
data8 0xAAAAAAAA8DAE729D,0x00003FFA
data8 0xAAAAAAAAAAAAAF61,0x00003FFC
data8 0x80000000000004C7,0x00003FFE
LOCAL_OBJECT_END(Constants_exp_64_P)
LOCAL_OBJECT_START(Constants_exp_64_T1)
data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
LOCAL_OBJECT_END(Constants_exp_64_T1)
LOCAL_OBJECT_START(Constants_exp_64_T2)
data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
LOCAL_OBJECT_END(Constants_exp_64_T2)
LOCAL_OBJECT_START(Constants_exp_64_W1)
data8 0x0000000000000000, 0xBE384454171EC4B4
data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
LOCAL_OBJECT_END(Constants_exp_64_W1)
LOCAL_OBJECT_START(Constants_exp_64_W2)
data8 0x0000000000000000, 0xBE641F2537A3D7A2
data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
data8 0xBE56856B49BFF529, 0x3E66DD3300508651
data8 0x3E51165FC114BC13, 0x3E53333DC453290F
data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
data8 0xBE559725ADE45917, 0xBE68C29C042FC476
data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
LOCAL_OBJECT_END(Constants_exp_64_W2)
LOCAL_OBJECT_START(Constants_log_80_P)
// P_8, P_7, ..., P_1
data8 0xCCCE8B883B1042BC, 0x0000BFFB // P_8
data8 0xE38997B7CADC2149, 0x00003FFB // P_7
data8 0xFFFFFFFEB1ACB090, 0x0000BFFB // P_6
data8 0x9249249806481C81, 0x00003FFC // P_5
data8 0x0000000000000000, 0x00000000 // Pad for bank conflicts
data8 0xAAAAAAAAAAAAB0EF, 0x0000BFFC // P_4
data8 0xCCCCCCCCCCC91416, 0x00003FFC // P_3
data8 0x8000000000000000, 0x0000BFFD // P_2
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFD // P_1
LOCAL_OBJECT_END(Constants_log_80_P)
LOCAL_OBJECT_START(Constants_log_80_Q)
// log2_hi, log2_lo, Q_6, Q_5, Q_4, Q_3, Q_2, Q_1
data8 0xB172180000000000,0x00003FFE
data8 0x82E308654361C4C6,0x0000BFE2
data8 0x92492453A51BE0AF,0x00003FFC
data8 0xAAAAAB73A0CFD29F,0x0000BFFC
data8 0xCCCCCCCCCCCE3872,0x00003FFC
data8 0xFFFFFFFFFFFFB4FB,0x0000BFFC
data8 0xAAAAAAAAAAAAAAAB,0x00003FFD
data8 0x8000000000000000,0x0000BFFE
LOCAL_OBJECT_END(Constants_log_80_Q)
LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h1)
// Z1 - 16 bit fixed, G1 and H1 IEEE single, h1 IEEE double
data4 0x00008000,0x3F800000,0x00000000,0x00000000
data4 0x00000000,0x00000000,0x00000000,0x00000000
data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000
data4 0xEBA0E0D1,0x8B1D330B,0x00003FDA,0x00000000
data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000
data4 0x9EADD553,0xE2AF365E,0x00003FE2,0x00000000
data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000
data4 0x752F34A2,0xF585FEC3,0x0000BFE3,0x00000000
data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000
data4 0x893B03F3,0xF3546435,0x00003FE2,0x00000000
data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000
data4 0x39CDD2AC,0xBABA62E0,0x00003FE4,0x00000000
data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000
data4 0x457978A1,0x8718789F,0x00003FE2,0x00000000
data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000
data4 0x3185E56A,0x9442DF96,0x0000BFE4,0x00000000
data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000
data4 0x2BBE2CBD,0xCBF9A4BF,0x00003FE4,0x00000000
data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000
data4 0x852D5935,0xF3537535,0x00003FE3,0x00000000
data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000
data4 0x46CDF32F,0xA1F1E699,0x0000BFDF,0x00000000
data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000
data4 0xD8484CE3,0x84A61856,0x00003FE4,0x00000000
data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000
data4 0xFF28821B,0xC7DD97E0,0x0000BFE2,0x00000000
data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000
data4 0xEF1FD32F,0xD3C4A887,0x00003FE3,0x00000000
data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000
data4 0x464C76DA,0x84672BE6,0x00003FE5,0x00000000
data4 0x00004211,0x3F042108,0x3F29516A,0x00000000
data4 0x18835FB9,0x9A43A511,0x0000BFE5,0x00000000
LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h1)
LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h2)
// Z2 - 16 bit fixed, G2 and H2 IEEE single, h2 IEEE double
data4 0x00008000,0x3F800000,0x00000000,0x00000000
data4 0x00000000,0x00000000,0x00000000,0x00000000
data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000
data4 0x211398BF,0xAD08B116,0x00003FDB,0x00000000
data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000
data4 0xC376958E,0xB106790F,0x00003FDE,0x00000000
data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000
data4 0x79A7679A,0xFD03F242,0x0000BFDA,0x00000000
data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000
data4 0x05E7AE08,0xF03F81C3,0x0000BFDF,0x00000000
data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000
data4 0x049EB22F,0xD1B87D3C,0x00003FDE,0x00000000
data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000
data4 0x3A9E81E0,0xFABC8B95,0x00003FDF,0x00000000
data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000
data4 0x7C4B5443,0xF5F3653F,0x00003FDF,0x00000000
data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000
data4 0xF65A1773,0xE78AB204,0x00003FE0,0x00000000
data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000
data4 0x7B8EF695,0xDB7CBFFF,0x0000BFE0,0x00000000
data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000
data4 0xCF773FB3,0xC0241AEA,0x0000BFE0,0x00000000
data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000
data4 0xC9539FDF,0xFC8F4D48,0x00003FE1,0x00000000
data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000
data4 0x954665C2,0x9CD035FB,0x0000BFE1,0x00000000
data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000
data4 0xDD367A30,0xEC9017C7,0x00003FE1,0x00000000
data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000
data4 0xCB11189C,0xEE6625D3,0x0000BFE1,0x00000000
data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000
data4 0xBE11C424,0xA49C8DB5,0x0000BFE0,0x00000000
LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h2)
LOCAL_OBJECT_START(Constants_log_80_h3_G_H)
// h3 IEEE double extended, H3 and G3 IEEE single
data4 0x112666B0,0xAAACAAB1,0x00003FD3,0x3F7FFC00
data4 0x9B7FAD21,0x90051030,0x00003FD8,0x3F7FF400
data4 0xF4D783C4,0xA6B46F46,0x00003FDA,0x3F7FEC00
data4 0x11C6DDCA,0xDA148D88,0x0000BFD8,0x3F7FE400
data4 0xCA964D95,0xCE65C1D8,0x0000BFD8,0x3F7FDC00
data4 0x23412D13,0x883838EE,0x0000BFDB,0x3F7FD400
data4 0x983ED687,0xB7E5CFA1,0x00003FDB,0x3F7FCC08
data4 0xE3C3930B,0xDBE23B16,0x0000BFD9,0x3F7FC408
data4 0x48AA4DFC,0x9B92F1FC,0x0000BFDC,0x3F7FBC10
data4 0xCE9C8F7E,0x9A8CEB15,0x0000BFD9,0x3F7FB410
data4 0x0DECE74A,0x8C220879,0x00003FDC,0x3F7FAC18
data4 0x2F053150,0xB25CA912,0x0000BFDA,0x3F7FA420
data4 0xD9A5BE20,0xA5876555,0x00003FDB,0x3F7F9C20
data4 0x2053F087,0xC919BB6E,0x00003FD9,0x3F7F9428
data4 0x041E9A77,0xB70BDA79,0x00003FDC,0x3F7F8C30
data4 0xEA1C9C30,0xF18A5C08,0x00003FDA,0x3F7F8438
data4 0x796D89E5,0xA3790D84,0x0000BFDD,0x3F7F7C40
data4 0xA2915A3A,0xE1852369,0x0000BFDD,0x3F7F7448
data4 0xA39ED868,0xD803858F,0x00003FDC,0x3F7F6C50
data4 0x9417EBB7,0xB2EEE356,0x0000BFDD,0x3F7F6458
data4 0x9BB0D07F,0xED5C1F8A,0x0000BFDC,0x3F7F5C68
data4 0xE87C740A,0xD6D201A0,0x0000BFDD,0x3F7F5470
data4 0x1CA74025,0xE8DEBF5E,0x00003FDC,0x3F7F4C78
data4 0x1F34A7EB,0x9A995A97,0x0000BFDC,0x3F7F4488
data4 0x359EED97,0x9CB0F742,0x0000BFDA,0x3F7F3C90
data4 0xBBC6A1C8,0xD6F833C2,0x0000BFDD,0x3F7F34A0
data4 0xE71090EC,0xE1F68F2A,0x00003FDC,0x3F7F2CA8
data4 0xC160A74F,0xD1881CF1,0x0000BFDB,0x3F7F24B8
data4 0xD78CB5A4,0x9AD05AE2,0x00003FD6,0x3F7F1CC8
data4 0x9A77DC4B,0xE658CB8E,0x0000BFDD,0x3F7F14D8
data4 0x6BD6D312,0xBA281296,0x00003FDC,0x3F7F0CE0
data4 0xF95210D0,0xB478BBEB,0x0000BFDB,0x3F7F04F0
data4 0x38800100,0x39400480,0x39A00640,0x39E00C41 // H's start here
data4 0x3A100A21,0x3A300F22,0x3A4FF51C,0x3A6FFC1D
data4 0x3A87F20B,0x3A97F68B,0x3AA7EB86,0x3AB7E101
data4 0x3AC7E701,0x3AD7DD7B,0x3AE7D474,0x3AF7CBED
data4 0x3B03E1F3,0x3B0BDE2F,0x3B13DAAA,0x3B1BD766
data4 0x3B23CC5C,0x3B2BC997,0x3B33C711,0x3B3BBCC6
data4 0x3B43BAC0,0x3B4BB0F4,0x3B53AF6D,0x3B5BA620
data4 0x3B639D12,0x3B6B9444,0x3B7393BC,0x3B7B8B6D
LOCAL_OBJECT_END(Constants_log_80_h3_G_H)
GR_sig_inv_ln2 = r14
GR_rshf_2to51 = r15
GR_exp_2tom51 = r16
GR_rshf = r17
GR_exp_half = r18
GR_sign_mask = r19
GR_exp_square_oflow = r20
GR_exp_square_uflow = r21
GR_exp_ynear1_oflow = r22
GR_exp_ynear1_uflow = r23
GR_signif_Z = r24
GR_signexp_x = r32
GR_exp_x = r33
GR_Table_Ptr = r34
GR_Table_Ptr1 = r35
GR_Index1 = r36
GR_Index2 = r37
GR_Expo_X = r37
GR_M = r38
GR_X_0 = r39
GR_Mask = r39
GR_X_1 = r40
GR_W1_ptr = r40
GR_W2_ptr = r41
GR_X_2 = r41
GR_Z_1 = r42
GR_M2 = r42
GR_M1 = r43
GR_Z_2 = r43
GR_N = r44
GR_k = r44
GR_Big_Pos_Exp = r45
GR_exp_pos_max = r46
GR_exp_bias_p_k = r47
GR_Index3 = r48
GR_temp = r48
GR_vsm_expo = r49
GR_T1_ptr = r50
GR_P_ptr1 = r50
GR_T2_ptr = r51
GR_P_ptr2 = r51
GR_N_fix = r52
GR_exp_y = r53
GR_signif_y = r54
GR_signexp_y = r55
GR_fraction_y = r55
GR_low_order_bit = r56
GR_exp_mask = r57
GR_exp_bias = r58
GR_y_sign = r59
GR_table_base = r60
GR_ptr_exp_Arg = r61
GR_Delta_Exp = r62
GR_Special_Exp = r63
GR_exp_neg_max = r64
GR_Big_Neg_Exp = r65
//** Registers for unwind support
GR_SAVE_PFS = r59
GR_SAVE_B0 = r60
GR_SAVE_GP = r61
GR_Parameter_X = r62
GR_Parameter_Y = r63
GR_Parameter_RESULT = r64
GR_Parameter_TAG = r65
//**
FR_Input_X = f8
FR_Result = f8
FR_Input_Y = f9
FR_Neg = f10
FR_P_hi = f10
FR_X = f10
FR_Half = f11
FR_h_3 = f11
FR_poly_hi = f11
FR_Sgn = f12
FR_half_W = f13
FR_X_cor = f14
FR_P_lo = f14
FR_W = f15
FR_X_lo = f32
FR_S = f33
FR_W3 = f33
FR_Y_hi = f34
FR_logx_hi = f34
FR_Z = f35
FR_logx_lo = f35
FR_GS_hi = f35
FR_Y_lo = f35
FR_r_cor = f36
FR_Scale = f36
FR_G_1 = f37
FR_G = f37
FR_Wsq = f37
FR_temp = f37
FR_H_1 = f38
FR_H = f38
FR_W4 = f38
FR_h = f39
FR_h_1 = f39
FR_N = f39
FR_P_7 = f39
FR_G_2 = f40
FR_P_8 = f40
FR_L_hi = f40
FR_H_2 = f41
FR_L_lo = f41
FR_A_1 = f41
FR_h_2 = f42
FR_W1 = f43
FR_G_3 = f44
FR_P_8 = f44
FR_T1 = f44
FR_log2_hi = f45
FR_W2 = f45
FR_GS_lo = f46
FR_T2 = f46
FR_W_1_p1 = f47
FR_H_3 = f47
FR_float_N = f48
FR_A_2 = f49
FR_Q_4 = f50
FR_r4 = f50
FR_Q_3 = f51
FR_A_3 = f51
FR_Q_2 = f52
FR_P_2 = f52
FR_Q_1 = f53
FR_P_1 = f53
FR_T = f53
FR_Wp1 = f54
FR_Q_5 = f54
FR_P_3 = f54
FR_Q_6 = f55
FR_log2_lo = f56
FR_Two = f56
FR_Big = f57
FR_neg_2_mK = f58
FR_r = f59
FR_poly_lo = f60
FR_poly = f61
FR_P_5 = f62
FR_Result_small = f62
FR_rsq = f63
FR_Delta = f64
FR_save_Input_X = f65
FR_norm_X = f66
FR_norm_Y = f67
FR_Y_lo_2 = f68
FR_P_6 = f69
FR_Result_big = f69
FR_RSHF_2TO51 = f70
FR_INV_LN2_2TO63 = f71
FR_2TOM51 = f72
FR_RSHF = f73
FR_TMP1 = f74
FR_TMP2 = f75
FR_TMP3 = f76
FR_Tscale = f77
FR_P_4 = f78
FR_NBig = f79
.section .text
GLOBAL_LIBM_ENTRY(powl)
//
// Get significand of x. It is the critical path.
//
{ .mfi
getf.sig GR_signif_Z = FR_Input_X // Get significand of x
fclass.m p11, p12 = FR_Input_X, 0x0b // Test x unorm
nop.i 999
}
{ .mfi
nop.m 999
fnorm.s1 FR_norm_X = FR_Input_X // Normalize x
mov GR_exp_half = 0xffff - 1 // Exponent for 0.5
}
;;
{ .mfi
alloc r32 = ar.pfs,0,30,4,0
fclass.m p7, p0 = FR_Input_Y, 0x1E7 // Test y natval, nan, inf, zero
mov GR_exp_pos_max = 0x13fff // Max exponent for pos oflow test
}
{ .mfi
addl GR_table_base = @ltoff(Constants_exp_64_Arg#), gp // Ptr to tables
fnorm.s1 FR_norm_Y = FR_Input_Y // Normalize y
mov GR_exp_neg_max = 0x33fff // Max exponent for neg oflow test
}
;;
{ .mfi
getf.exp GR_signexp_y = FR_Input_Y // Get sign and exp of y
(p12) fclass.m p11, p0 = FR_Input_Y, 0x0b // Test y unorm
mov GR_sign_mask = 0x20000 // Sign mask
}
{ .mfi
ld8 GR_table_base = [GR_table_base] // Get base address for tables
fadd.s1 FR_Two = f1, f1 // Form 2.0 for square test
mov GR_exp_mask = 0x1FFFF // Exponent mask
}
;;
{ .mfi
getf.sig GR_signif_y = FR_Input_Y // Get significand of y
fclass.m p6, p0 = FR_Input_X, 0x1E7 // Test x natval, nan, inf, zero
nop.i 999
}
;;
{ .mfi
getf.exp GR_signexp_x = FR_Input_X // Get signexp of x
fmerge.s FR_save_Input_X = FR_Input_X, FR_Input_X
extr.u GR_Index1 = GR_signif_Z, 59, 4 // Extract upper 4 signif bits of x
}
{ .mfb
setf.exp FR_Half = GR_exp_half // Load half
nop.f 999
(p11) br.cond.spnt POWL_DENORM // Branch if x or y denorm/unorm
}
;;
// Return here from POWL_DENORM
POWL_COMMON:
{ .mfi
setf.exp FR_Big = GR_exp_pos_max // Form big pos value for oflow test
fclass.nm p11, p0 = FR_Input_Y, 0x1FF // Test Y unsupported
shl GR_Index1 = GR_Index1,5 // Adjust index1 pointer x 32
}
{ .mfi
add GR_Table_Ptr = 0x7c0, GR_table_base // Constants_log_80_Z_G_H_h1
fma.s1 FR_Sgn = f1,f1,f0 // Assume result positive
mov GR_exp_bias = 0xFFFF // Form exponent bias
}
;;
//
// Identify NatVals, NaNs, Infs, and Zeros.
//
//
// Remove sign bit from exponent of y.
// Check for x = 1
// Branch on Infs, Nans, Zeros, and Natvals
// Check to see that exponent < 0
//
{ .mfi
setf.exp FR_NBig = GR_exp_neg_max // Form big neg value for oflow test
fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test X unsupported
and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent of y
}
{ .mfb
add GR_Index1 = GR_Index1,GR_Table_Ptr
nop.f 999
(p6) br.cond.spnt POWL_64_SPECIAL // Branch if x natval, nan, inf, zero
}
;;
// load Z_1 from Index1
// There is logic starting here to determine if y is an integer when x < 0.
// If 0 < |y| < 1 then clearly y is not an integer.
// If |y| > 1, then the significand of y is shifted left by the size of
// the exponent of y. This preserves the lsb of the integer part + the
// fractional bits. The lsb of the integer can be tested to determine if
// the integer is even or odd. The fractional bits can be tested. If zero,
// then y is an integer.
//
{ .mfi
ld2 GR_Z_1 =[GR_Index1],4 // Load Z_1
fmerge.s FR_Z = f0, FR_norm_X // Z = |x|
extr.u GR_X_0 = GR_signif_Z, 49, 15 // Extract X_0 from significand
}
{ .mfb
cmp.lt p9, p0 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1
nop.f 999
(p7) br.cond.spnt POWL_64_SPECIAL // Branch if y natval, nan, inf, zero
}
;;
{ .mfb
ldfs FR_G_1 = [GR_Index1],4 // Load G_1
fcmp.eq.s1 p10, p0 = FR_Input_Y, f1 // Test Y = +1.0
(p8) br.cond.spnt POWL_64_UNSUPPORT // Branch if x unsupported
}
;;
//
// X_0 = High order 15 bit of Z
//
{ .mfb
ldfs FR_H_1 = [GR_Index1],8 // Load H_1
(p9) fcmp.lt.unc.s1 p9, p0 = FR_Input_X, f0 // Test x<0, 0 <|y|<1
(p11) br.cond.spnt POWL_64_UNSUPPORT // Branch if y unsupported
}
;;
{ .mfi
ldfe FR_h_1 = [GR_Index1] // Load h_1
fcmp.eq.s1 p7, p0 = FR_Input_Y, FR_Two // Test y = 2.0
pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // X_1 = X_0 * Z_1 (bits 15-30)
// Wait 4 cycles to use result
}
{ .mfi
add GR_Table_Ptr = 0x9c0, GR_table_base // Constants_log_80_Z_G_H_h2
nop.f 999
sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent of y
}
;;
//
// Branch for (x < 0) and Y not an integer.
//
{ .mfb
nop.m 999
fcmp.lt.s1 p6, p0 = FR_Input_X, f0 // Test x < 0
(p9) br.cond.spnt POWL_64_XNEG // Branch if x < 0, 0 < |y| < 1
}
;;
{ .mfi
nop.m 999
fcmp.eq.s1 p12, p0 = FR_Input_X, f1 // Test x=+1.0
nop.i 999
}
{ .mfb
nop.m 999
fsub.s1 FR_W = FR_Z, f1 // W = Z - 1
(p7) br.cond.spnt POWL_64_SQUARE // Branch if y=2
}
;;
{ .mfi
nop.m 999
(p10) fmpy.s0 FR_Result = FR_Input_X, f1 // If y=+1.0, result=x
(p6) shl GR_fraction_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
// Wait 4 cycles to use result
}
;;
{ .mfi
nop.m 999
(p12) fma.s0 FR_Result = FR_Input_Y, f0, f1 // If x=1.0, result=1, chk denorm
extr.u GR_Index2 = GR_X_1, 6, 4 // Extract index2
}
;;
//
// N = exponent of Z
//
{ .mib
getf.exp GR_N = FR_Z // Get exponent of Z (also x)
shl GR_Index2=GR_Index2,5 // Index2 x 32 bytes
(p10) br.ret.spnt b0 // Exit if y=+1.0
}
;;
{ .mib
add GR_Index2 = GR_Index2, GR_Table_Ptr // Pointer to table 2
nop.i 999
(p12) br.ret.spnt b0 // Exit if x=+1.0
}
;;
{ .mmi
ld2 GR_Z_2 =[GR_Index2],4 // Load Z_2
;;
ldfs FR_G_2 = [GR_Index2],4 // Load G_2
nop.i 999
}
;;
{ .mii
ldfs FR_H_2 = [GR_Index2],8 // Load H_2
(p6) tbit.nz.unc p9, p0 = GR_fraction_y, 63 // Test x<0 and y odd integer
add GR_Table_Ptr = 0xbcc, GR_table_base // Constants_log_80_h3_G_H, G_3
}
;;
//
// For x < 0 and y odd integer,, set sign = -1.
//
{ .mfi
getf.exp GR_M = FR_W // Get signexp of W
nop.f 999
pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // X_2 = X_1 * Z_2 (bits 15-30)
}
{ .mfi
ldfe FR_h_2 = [GR_Index2] // Load h_2
(p9) fnma.s1 FR_Sgn = f1, f1, f0 // If x<0, y odd int, result negative
sub GR_N = GR_N, GR_exp_bias // Get true exponent of x = N
}
;;
{ .mfi
add GR_Table_Ptr1 = 0xdc0, GR_table_base // Ptr to H_3
fcmp.eq.s0 p11, p0 = FR_Input_Y, FR_Half // Test y=0.5, also set denorm
(p6) shl GR_fraction_y= GR_fraction_y, 1 // Shift left 1 to get fraction
}
;;
{ .mmb
setf.sig FR_float_N = GR_N
(p6) cmp.ne.unc p8, p0 = GR_fraction_y, r0 // Test x<0 and y not integer
(p8) br.cond.spnt POWL_64_XNEG // Branch if x<0 and y not int
}
;;
//
// Raise possible denormal operand exception for both X and Y.
// Set pointers in case |x| near 1
// Branch to embedded sqrt(x) if y=0.5
//
{ .mfi
add GR_P_ptr1 = 0x6b0, GR_table_base // Constants_log_80_P, P8, NEAR path
fcmp.eq.s0 p12, p0 = FR_Input_X, FR_Input_Y // Dummy to set denormal
add GR_P_ptr2 = 0x700, GR_table_base // Constants_log_80_P, P4, NEAR path
}
{ .mfb
cmp.eq p15, p14 = r0, r0 // Assume result safe (no over/under)
fsub.s1 FR_Delta = FR_Input_Y,f1 // Delta = y - 1.0
(p11) br.cond.spnt POWL_64_SQRT // Branch if y=0.5
}
;;
//
// Computes ln( x ) to extra precision
// Input FR 1: FR_X
// Output FR 2: FR_Y_hi
// Output FR 3: FR_Y_lo
// Output PR 1: PR_Safe
//
{ .mfi
and GR_M = GR_exp_mask, GR_M // Mask to get exponent of W
nop.f 999
extr.u GR_Index3 = GR_X_2, 1, 5 // Get index3
}
;;
{ .mmi
shladd GR_Table_Ptr1 = GR_Index3,2,GR_Table_Ptr1 // Ptr to H_3
shladd GR_Index3 = GR_Index3,4,GR_Table_Ptr // Ptr to G_3
sub GR_M = GR_M, GR_exp_bias // Get true exponent of W
}
;;
{ .mib
ldfs FR_G_3 = [GR_Index3],-12 // Load G_3
cmp.gt p7, p14 = -8, GR_M // Test if |x-1| < 2^-8
(p7) br.cond.spnt LOGL80_NEAR // Branch if |x-1| < 2^-8
}
;;
// Here if |x-1| >= 2^-8
{ .mmf
ldfs FR_H_3 = [GR_Table_Ptr1] // Load H_3
nop.m 999
nop.f 999
}
;;
{ .mfi
ldfe FR_h_3 = [GR_Index3] // Load h_3
fmerge.se FR_S = f1,FR_Z // S = merge of 1.0 and signif(Z)
nop.i 999
}
{ .mfi
add GR_Table_Ptr = 0x740, GR_table_base // Constants_log_80_Q
fmpy.s1 FR_G = FR_G_1, FR_G_2 // G = G_1 * G_2
nop.i 999
}
;;
//
// Begin Loading Q's - load log2_hi part
//
{ .mfi
ldfe FR_log2_hi = [GR_Table_Ptr],16 // Load log2_hi
fadd.s1 FR_H = FR_H_1, FR_H_2 // H = H_1 + H_2
nop.i 999
};;
//
// h = h_1 + h_2
//
{ .mfi
ldfe FR_log2_lo = [GR_Table_Ptr],16 // Load log2_lo
fadd.s1 FR_h = FR_h_1, FR_h_2 // h = h_1 + h_2
nop.i 999
}
;;
{ .mfi
ldfe FR_Q_6 = [GR_Table_Ptr],16 // Load Q_6
fcvt.xf FR_float_N = FR_float_N
nop.i 999
}
;;
{ .mfi
ldfe FR_Q_5 = [GR_Table_Ptr],16 // Load Q_5
nop.f 999
nop.i 999
}
;;
//
// G = G_1 * G_2 * G_3
//
{ .mfi
ldfe FR_Q_4 = [GR_Table_Ptr],16 // Load Q_4
fmpy.s1 FR_G = FR_G, FR_G_3
nop.i 999
}
;;
//
// H = H_1 + H_2 + H_3
//
{ .mfi
ldfe FR_Q_3 = [GR_Table_Ptr],16 // Load Q_3
fadd.s1 FR_H = FR_H, FR_H_3
nop.i 999
}
;;
//
// Y_lo = poly + Y_lo
//
// h = h_1 + h_2 + h_3
//
{ .mfi
ldfe FR_Q_2 = [GR_Table_Ptr],16 // Load Q_2
fadd.s1 FR_h = FR_h, FR_h_3
nop.i 999
}
;;
//
// GS_hi = G*S
// r = G*S -1
//
{ .mfi
ldfe FR_Q_1 = [GR_Table_Ptr],16 // Load Q_1
fmpy.s1 FR_GS_hi = FR_G, FR_S
nop.i 999
}
{ .mfi
nop.m 999
fms.s1 FR_r = FR_G, FR_S, f1
nop.i 999
}
;;
//
// poly_lo = Q_5 + r * Q_6
//
{ .mfi
getf.exp GR_Delta_Exp = FR_Delta // Get signexp of y-1 for exp calc
fma.s1 FR_poly_lo = FR_r, FR_Q_6, FR_Q_5
nop.i 999
}
//
// r_cor = GS_hi -1
//
{ .mfi
nop.m 999
fsub.s1 FR_r_cor = FR_GS_hi, f1
nop.i 999
}
;;
//
// GS_lo = G*S - GS_hi
//
{ .mfi
nop.m 999
fms.s1 FR_GS_lo = FR_G, FR_S, FR_GS_hi
nop.i 999
}
;;
//
// rsq = r * r
//
{ .mfi
nop.m 999
fmpy.s1 FR_rsq = FR_r, FR_r
nop.i 999
}
//
// G = float_N*log2_hi + H
//
{ .mfi
nop.m 999
fma.s1 FR_G = FR_float_N, FR_log2_hi, FR_H
nop.i 999
}
;;
//
// Y_lo = float_N*log2_lo + h
//
{ .mfi
nop.m 999
fma.s1 FR_Y_lo = FR_float_N, FR_log2_lo, FR_h
nop.i 999
}
;;
//
// poly_lo = Q_4 + r * poly_lo
// r_cor = r_cor - r
//
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_4
nop.i 999
}
{ .mfi
nop.m 999
fsub.s1 FR_r_cor = FR_r_cor, FR_r
nop.i 999
}
;;
//
// poly_hi = r * Q_2 + Q_1
// Y_hi = G + r
//
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_r, FR_Q_2, FR_Q_1
nop.i 999
}
{ .mfi
nop.m 999
fadd.s1 FR_Y_hi = FR_G, FR_r
nop.i 999
}
;;
//
// poly_lo = Q_3 + r * poly_lo
// r_cor = r_cor + GS_lo
//
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_3
nop.i 999
}
{ .mfi
nop.m 999
fadd.s1 FR_r_cor = FR_r_cor, FR_GS_lo
nop.i 999
}
;;
//
// Y_lo = G - Y_hi
//
{ .mfi
nop.m 999
fsub.s1 FR_Y_lo_2 = FR_G, FR_Y_hi
nop.i 999
}
;;
//
// r_cor = r_cor + Y_lo
// poly = poly_hi + rsq * poly_lo
//
{ .mfi
add GR_Table_Ptr = 0x0, GR_table_base // Constants_exp_64_Arg
fadd.s1 FR_r_cor = FR_r_cor, FR_Y_lo
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_rsq, FR_poly_lo, FR_poly
nop.i 999
}
;;
//
// Load L_hi
// Load L_lo
// all long before they are needed.
// They are used in LOGL_RETURN PATH
//
// Y_lo = Y_lo + r
// poly = rsq * poly + r_cor
//
{ .mfi
ldfe FR_L_hi = [GR_Table_Ptr],16 // Load L_hi
fadd.s1 FR_Y_lo = FR_Y_lo_2, FR_r
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_rsq, FR_poly, FR_r_cor
nop.i 999
}
;;
{ .mfb
ldfe FR_L_lo = [GR_Table_Ptr],16 // Load L_lo
fadd.s1 FR_Y_lo = FR_Y_lo, FR_poly
br.cond.sptk LOGL_RETURN // Branch to common code
}
;;
LOGL80_NEAR:
// Here if |x-1| < 2^-8
//
// Branch LOGL80_NEAR
//
{ .mmf
ldfe FR_P_8 = [GR_P_ptr1],16 // Load P_8
ldfe FR_P_4 = [GR_P_ptr2],16 // Load P_4
fmpy.s1 FR_Wsq = FR_W, FR_W
}
;;
{ .mmi
ldfe FR_P_7 = [GR_P_ptr1],16 // Load P_7
ldfe FR_P_3 = [GR_P_ptr2],16 // Load P_3
nop.i 999
}
;;
{ .mmi
ldfe FR_P_6 = [GR_P_ptr1],16 // Load P_6
ldfe FR_P_2 = [GR_P_ptr2],16 // Load P_2
nop.i 999
}
;;
{ .mmi
ldfe FR_P_5 = [GR_P_ptr1],16 // Load P_5
ldfe FR_P_1 = [GR_P_ptr2],16 // Load P_1
nop.i 999
}
;;
{ .mfi
getf.exp GR_Delta_Exp = FR_Delta // Get signexp of y-1 for exp calc
fmpy.s1 FR_W4 = FR_Wsq, FR_Wsq
nop.i 999
}
{ .mfi
add GR_Table_Ptr = 0x0, GR_table_base // Constants_exp_64_Arg
fmpy.s1 FR_W3 = FR_Wsq, FR_W
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_half_W = FR_Half, FR_W
nop.i 999
}
;;
{ .mfi
ldfe FR_L_hi = [GR_Table_Ptr],16
fma.s1 FR_poly_lo = FR_W, FR_P_8,FR_P_7
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_W, FR_P_4, FR_P_3
nop.i 999
}
;;
{ .mfi
ldfe FR_L_lo = [GR_Table_Ptr],16
fnma.s1 FR_Y_hi = FR_W, FR_half_W, FR_W
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_6
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_W, FR_poly, FR_P_2
nop.i 999
}
;;
{ .mfi
nop.m 999
fsub.s1 FR_Y_lo = FR_W, FR_Y_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_5
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_W, FR_poly, FR_P_1
nop.i 999
}
;;
{ .mfi
nop.m 999
fnma.s1 FR_Y_lo = FR_W, FR_half_W, FR_Y_lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_poly_lo, FR_W4, FR_poly
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_Y_lo = FR_poly, FR_W3, FR_Y_lo
nop.i 999
}
;;
LOGL_RETURN:
// Common code for completion of both logx paths
//
// L_hi, L_lo already loaded.
//
//
// kernel_log_80 computed ln(X)
// and return logX_hi and logX_lo as results.
// PR_pow_Safe set as well.
//
//
// Compute Y * (logX_hi + logX_lo)
// P_hi -> X
// P_lo -> X_cor
// (Manipulate names so that inputs are in
// the place kernel_exp expects them)
//
// This function computes exp( x + x_cor)
// Input FR 1: FR_X
// Input FR 2: FR_X_cor
// Output FR 3: FR_Y_hi
// Output FR 4: FR_Y_lo
// Output FR 5: FR_Scale
// Output PR 1: PR_Safe
//
// P15 is True
//
// Load constants used in computing N using right-shift technique
{ .mlx
mov GR_exp_2tom51 = 0xffff-51
movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
}
{ .mlx
add GR_Special_Exp = -50,GR_exp_bias
movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
}
;;
//
// Point to Table of W1s
// Point to Table of W2s
//
{ .mmi
add GR_W1_ptr = 0x2b0, GR_table_base // Constants_exp_64_W1
add GR_W2_ptr = 0x4b0, GR_table_base // Constants_exp_64_W2
cmp.le p6,p0= GR_Delta_Exp,GR_Special_Exp
};;
// Form two constants we need
// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
// 1.1000..000 * 2^(63+63-12) to right shift int(N) into the significand
{ .mfi
setf.sig FR_INV_LN2_2TO63 = GR_sig_inv_ln2 // form 1/ln2 * 2^63
nop.f 999
and GR_Delta_Exp=GR_Delta_Exp,GR_exp_mask // Get exponent of y-1
}
{ .mlx
setf.d FR_RSHF_2TO51 = GR_rshf_2to51 // Form const 1.1000 * 2^(63+51)
movl GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_X_lo = FR_Input_Y, FR_logx_lo // logx_lo is Y_lo
cmp.eq p15, p0= r0, r0 // Set p15, assume safe
};;
{ .mmi
setf.exp FR_2TOM51 = GR_exp_2tom51 // Form 2^-51 for scaling float_N
setf.d FR_RSHF = GR_rshf // Form right shift const 1.1000 * 2^63
add GR_Table_Ptr1 = 0x50, GR_table_base // Constants_exp_64_P for
// EXPL_SMALL path
}
;;
{ .mmi
ldfe FR_P_6 = [GR_Table_Ptr1],16 // Load P_6 for EXPL_SMALL path
;;
ldfe FR_P_5 = [GR_Table_Ptr1],16 // Load P_5 for EXPL_SMALL path
nop.i 999
}
;;
{ .mfi
ldfe FR_P_4 = [GR_Table_Ptr1],16 // Load P_4 for EXPL_SMALL path
fma.s1 FR_P_hi = FR_Input_Y, FR_logx_hi,FR_X_lo // logx_hi ix Y_hi
nop.i 999
}
;;
{ .mmi
ldfe FR_P_3 = [GR_Table_Ptr1],16 // Load P_3 for EXPL_SMALL path
;;
ldfe FR_P_2 = [GR_Table_Ptr1],16 // Load P_2 for EXPL_SMALL path
nop.i 999
}
;;
// N = X * Inv_log2_by_2^12
// By adding 1.10...0*2^63 we shift and get round_int(N_signif) in significand.
// We actually add 1.10...0*2^51 to X * Inv_log2 to do the same thing.
{ .mfi
ldfe FR_P_1 = [GR_Table_Ptr1] // Load P_1 for EXPL_SMALL path
fma.s1 FR_N = FR_X, FR_INV_LN2_2TO63, FR_RSHF_2TO51
nop.i 999
}
{ .mfb
nop.m 999
fms.s1 FR_P_lo= FR_Input_Y, FR_logx_hi, FR_P_hi // P_hi is X
(p6) br.cond.spnt POWL_Y_ALMOST_1 // Branch if |y-1| < 2^-50
}
;;
{ .mmi
getf.exp GR_Expo_X = FR_X
add GR_T1_ptr = 0x0b0, GR_table_base // Constants_exp_64_T1
add GR_T2_ptr = 0x1b0, GR_table_base // Constants_exp_64_T2
}
;;
// float_N = round_int(N)
// The signficand of N contains the rounded integer part of X * 2^12/ln2,
// as a twos complement number in the lower bits (that is, it may be negative).
// That twos complement number (called N) is put into GR_N_fix.
// Since N is scaled by 2^51, it must be multiplied by 2^-51
// before the shift constant 1.10000 * 2^63 is subtracted to yield float_N.
// Thus, float_N contains the floating point version of N
{ .mfi
add GR_Table_Ptr = 0x20, GR_table_base // Constants_exp_64_A
fms.s1 FR_float_N = FR_N, FR_2TOM51, FR_RSHF // Form float_N
nop.i 999
}
// Create low part of Y(ln(x)_hi + ln(x)_lo) as P_lo
{ .mfi
mov GR_Big_Pos_Exp = 0x3ffe // 16382, largest safe exponent
fadd.s1 FR_P_lo = FR_P_lo, FR_X_lo
mov GR_Big_Neg_Exp = -0x3ffd // -16381 smallest safe exponent
};;
{ .mfi
nop.m 999
fmpy.s1 FR_rsq = FR_X, FR_X // rsq = X*X for EXPL_SMALL path
mov GR_vsm_expo = -70 // Exponent for very small path
}
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_P_6, FR_X, FR_P_5 // poly_lo for EXPL_SMALL path
add GR_temp = 0x1,r0 // For tiny signif if small path
}
;;
//
// If expo_X < -6 goto exp_small
//
{ .mmi
getf.sig GR_N_fix = FR_N
ldfe FR_A_3 = [GR_Table_Ptr],16 // Load A_3
and GR_Expo_X = GR_Expo_X, GR_exp_mask // Get exponent of X
}
;;
{ .mfi
ldfe FR_A_2 = [GR_Table_Ptr],16 // Load A_2
nop.f 999
sub GR_Expo_X = GR_Expo_X, GR_exp_bias // Get true exponent of X
}
;;
//
// If -6 > Expo_X, set P9 and branch
//
{ .mfb
cmp.gt p9, p0 = -6, GR_Expo_X
fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_X // r = X - L_hi * float_N
(p9) br.cond.spnt EXPL_SMALL // Branch if |X| < 2^-6
}
;;
//
// If 14 <= Expo_X, set P10
//
{ .mib
cmp.le p10, p0 = 14, GR_Expo_X
nop.i 999
(p10) br.cond.spnt EXPL_HUGE // Branch if |X| >= 2^14
}
;;
//
// Load single T1
// Load single T2
// W_1_p1 = W_1 + 1
//
{ .mmi
nop.m 999
nop.m 999
extr.u GR_M1 = GR_N_fix, 6, 6 // Extract index M_1
}
;;
//
// k = extr.u(N_fix,0,6)
//
{ .mmi
shladd GR_W1_ptr = GR_M1,3,GR_W1_ptr // Point to W1
shladd GR_T1_ptr = GR_M1,2,GR_T1_ptr // Point to T1
extr.u GR_M2 = GR_N_fix, 0, 6 // Extract index M_2
}
;;
// N_fix is only correct up to 50 bits because of our right shift technique.
// Actually in the normal path we will have restricted K to about 14 bits.
// Somewhat arbitrarily we extract 32 bits.
{ .mmi
ldfd FR_W1 = [GR_W1_ptr]
shladd GR_W2_ptr = GR_M2,3,GR_W2_ptr // Point to W2
extr GR_k = GR_N_fix, 12, 32 // Extract k
}
;;
{ .mfi
ldfs FR_T1 = [GR_T1_ptr]
fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r
shladd GR_T2_ptr = GR_M2,2,GR_T2_ptr // Point to T2
}
{ .mfi
add GR_exp_bias_p_k = GR_exp_bias, GR_k
nop.f 999
cmp.gt p14,p15 = GR_k,GR_Big_Pos_Exp
}
;;
//
// if k < big_neg_exp, set p14 and Safe=False
//
{ .mmi
ldfs FR_T2 = [GR_T2_ptr]
(p15) cmp.lt p14,p15 = GR_k,GR_Big_Neg_Exp
nop.i 999
}
;;
{ .mmi
setf.exp FR_Scale = GR_exp_bias_p_k
ldfd FR_W2 = [GR_W2_ptr]
nop.i 999
}
;;
{ .mfi
ldfe FR_A_1 = [GR_Table_Ptr],16
fadd.s1 FR_r = FR_r, FR_X_cor
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 FR_W_1_p1 = FR_W1, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_r, FR_A_3, FR_A_2
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 FR_rsq = FR_r, FR_r
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_T = FR_T1, FR_T2
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_W = FR_W2, FR_W_1_p1, FR_W1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_TMP1 = FR_Scale, FR_Sgn, f0
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_r, FR_poly, FR_A_1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_TMP2 = FR_T, f1, f0 // TMP2 = Y_hi = T
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 FR_Wp1 = FR_W, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_rsq, FR_poly,FR_r
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_Tscale = FR_T, FR_TMP1, f0 // Scale * Sgn * T
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_Y_lo = FR_Wp1, FR_poly, FR_W
nop.i 999
}
;;
{ .mfb
nop.m 999
fmpy.s1 FR_TMP3 = FR_Y_lo, FR_Tscale
br.cond.sptk POWL_64_SHARED
}
;;
EXPL_SMALL:
// Here if |ylogx| < 2^-6
//
// Begin creating lsb to perturb final result
//
{ .mfi
setf.sig FR_temp = GR_temp
fma.s1 FR_poly_lo = FR_poly_lo, FR_X, FR_P_4
cmp.lt p12, p0 = GR_Expo_X, GR_vsm_expo // Test |ylogx| < 2^-70
}
{ .mfi
nop.m 999
fma.s1 FR_poly_hi = FR_P_2, FR_X, FR_P_1
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_TMP2 = f1, f1
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 FR_TMP1 = FR_Sgn, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_r4 = FR_rsq, FR_rsq
(p12) cmp.eq p15, p0 = r0, r0 // Set safe if |ylogx| < 2^-70
}
{ .mfb
nop.m 999
(p12) fmpy.s1 FR_TMP3 = FR_Sgn, FR_X
(p12) br.cond.spnt POWL_64_SHARED // Branch if |ylogx| < 2^-70
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_poly_lo, FR_X, FR_P_3
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, FR_X
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_Y_lo = FR_poly_lo, FR_r4, FR_poly_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_TMP3 = FR_Y_lo, FR_TMP1 // Add sign info
nop.i 999
}
;;
//
// Toggle on last bit of Y_lo
// Set lsb of Y_lo to 1
//
{ .mfi
nop.m 999
for FR_temp = FR_Y_lo,FR_temp
nop.i 999
}
;;
{ .mfb
nop.m 999
fmerge.se FR_TMP3 = FR_TMP3,FR_temp
br.cond.sptk POWL_64_SHARED
}
;;
EXPL_HUGE:
// Here if |ylogx| >= 2^14
{ .mfi
mov GR_temp = 0x0A1DC // If X < 0, exponent -24100
fcmp.gt.s1 p12, p13 = FR_X, f0 // Test X > 0
cmp.eq p14, p15 = r0, r0 // Set Safe to false
}
;;
{ .mmi
(p12) mov GR_Mask = 0x15DC0 // If X > 0, exponent +24000
(p13) mov GR_Mask = 0x0A240 // If X < 0, exponent -24000
nop.i 999
}
;;
{ .mmf
setf.exp FR_TMP2 = GR_Mask // Form Y_hi = TMP2
(p13) setf.exp FR_Y_lo = GR_temp // If X < 0, Y_lo = 2^-24100
(p12) mov FR_Y_lo = f1 // IF X > 0, Y_lo = 1.0
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_TMP1 = FR_TMP2, FR_Sgn // TMP1 = Y_hi * Sgn
nop.i 999
}
;;
{ .mfb
nop.m 999
fmpy.s1 FR_TMP3 = FR_Y_lo,FR_TMP1 // TMP3 = Y_lo * (Y_hi * Sgn)
br.cond.sptk POWL_64_SHARED
}
;;
POWL_Y_ALMOST_1:
// Here if delta = |y-1| < 2^-50
//
// x**(1 + delta) = x * e (ln(x)*delta) = x ( 1 + ln(x) * delta)
//
// Computation will be safe for 2^-16381 <= x < 2^16383
{ .mfi
mov GR_exp_ynear1_oflow = 0xffff + 16383
fma.s1 FR_TMP1 = FR_Input_X,FR_Delta,f0
and GR_exp_x = GR_exp_mask, GR_signexp_x
}
;;
{ .mfi
cmp.lt p15, p14 = GR_exp_x, GR_exp_ynear1_oflow
fma.s1 FR_TMP2 = FR_logx_hi,f1,FR_X_lo
mov GR_exp_ynear1_uflow = 0xffff - 16381
}
;;
{ .mfb
(p15) cmp.ge p15, p14 = GR_exp_x, GR_exp_ynear1_uflow
fma.s1 FR_TMP3 = FR_Input_X,f1,f0
br.cond.sptk POWL_64_SHARED
};;
POWL_64_SQUARE:
//
// Here if x not zero and y=2.
//
// Setup for multipath code
//
{ .mfi
mov GR_exp_square_oflow = 0xffff + 8192 // Exponent where x*x overflows
fmerge.se FR_TMP1 = FR_Input_X, FR_Input_X
and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
}
;;
{ .mfi
cmp.lt p15, p14 = GR_exp_x, GR_exp_square_oflow // Decide safe/unsafe
fmerge.se FR_TMP2 = FR_Input_X, FR_Input_X
mov GR_exp_square_uflow = 0xffff - 8191 // Exponent where x*x underflows
}
;;
{ .mfi
(p15) cmp.ge p15, p14 = GR_exp_x, GR_exp_square_uflow // Decide safe/unsafe
fma.s1 FR_TMP3 = f0,f0,f0
nop.i 999
}
;;
//
// This is the shared path that will set overflow and underflow.
//
POWL_64_SHARED:
//
// Return if no danger of over or underflow.
//
{ .mfb
nop.m 999
fma.s0 FR_Result = FR_TMP1, FR_TMP2, FR_TMP3
(p15) br.ret.sptk b0 // Main path return if certain no over/underflow
}
;;
//
// S0 user supplied status
// S2 user supplied status + WRE + TD (Overflows)
// S2 user supplied status + FZ + TD (Underflows)
//
//
// If (Safe) is true, then
// Compute result using user supplied status field.
// No overflow or underflow here, but perhaps inexact.
// Return
// Else
// Determine if overflow or underflow was raised.
// Fetch +/- overflow threshold for IEEE double extended
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x41 // For underflow test, set S2=User+TD+FTZ
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s2 FR_Result_small = FR_TMP1, FR_TMP2, FR_TMP3
nop.i 999
}
;;
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x42 // For overflow test, set S2=User+TD+WRE
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s2 FR_Result_big = FR_TMP1, FR_TMP2,FR_TMP3
nop.i 999
}
;;
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x40 // Reset S2=User
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p11, p0 = FR_Result_small, 0x00F // Test small result unorm/zero
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.ge.s1 p8, p0 = FR_Result_big , FR_Big // Test >= + oflow threshold
nop.i 999
}
;;
{ .mfb
(p11) mov GR_Parameter_TAG = 19 // Set tag for underflow
fcmp.le.s1 p9, p0 = FR_Result_big, FR_NBig // Test <= - oflow threshold
(p11) br.cond.spnt __libm_error_region // Branch if pow underflowed
}
;;
{ .mfb
(p8) mov GR_Parameter_TAG = 18 // Set tag for overflow
nop.f 999
(p8) br.cond.spnt __libm_error_region // Branch if pow +overflow
}
;;
{ .mbb
(p9) mov GR_Parameter_TAG = 18 // Set tag for overflow
(p9) br.cond.spnt __libm_error_region // Branch if pow -overflow
br.ret.sptk b0 // Branch if result really ok
}
;;
POWL_64_SPECIAL:
// Here if x or y is NatVal, nan, inf, or zero
{ .mfi
nop.m 999
fcmp.eq.s1 p15, p0 = FR_Input_X, f1 // Test x=+1
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p8, p0 = FR_Input_X, 0x143 // Test x natval, snan
nop.i 999
}
;;
{ .mfi
nop.m 999
(p15) fcmp.eq.unc.s0 p6,p0 = FR_Input_Y, f0 // If x=1, flag invalid if y=SNaN
nop.i 999
}
{ .mfb
nop.m 999
(p15) fmpy.s0 FR_Result = f1,f1 // If x=1, result=1
(p15) br.ret.spnt b0 // Exit if x=1
}
;;
{ .mfi
nop.m 999
fclass.m p6, p0 = FR_Input_Y, 0x007 // Test y zero
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p9, p0 = FR_Input_Y, 0x143 // Test y natval, snan
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p10, p0 = FR_Input_X, 0x083 // Test x qnan
nop.i 999
}
{ .mfi
nop.m 999
(p8) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X // If x=snan, result=qnan
(p6) cmp.ne p8,p0 = r0,r0 // Don't exit if x=snan, y=0 ==> result=+1
}
;;
{ .mfi
nop.m 999
(p6) fclass.m.unc p15, p0 = FR_Input_X,0x007 // Test x=0, y=0
nop.i 999
}
{ .mfb
nop.m 999
(p9) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X // If y=snan, result=qnan
(p8) br.ret.spnt b0 // Exit if x=snan, y not 0,
// result=qnan
}
;;
{ .mfi
nop.m 999
fcmp.eq.s1 p7, p0 = FR_Input_Y, f1 // Test y +1.0
nop.i 999
}
{ .mfb
nop.m 999
(p10) fmpy.s0 FR_Result = FR_Input_X, f0 // If x=qnan, result=qnan
(p9) br.ret.spnt b0 // Exit if y=snan, result=qnan
}
;;
{ .mfi
nop.m 999
(p6) fclass.m.unc p8, p0 = FR_Input_X,0x0C3 // Test x=nan, y=0
nop.i 999
}
;;
{ .mfi
nop.m 999
(p6) fcmp.eq.s0 p9,p0 = FR_Input_X, f0 // If y=0, flag if x denormal
nop.i 999
}
{ .mfi
nop.m 999
(p6) fadd.s0 FR_Result = f1, f0 // If y=0, result=1
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p11, p0 = FR_Input_Y, 0x083 // Test y qnan
nop.i 999
}
{ .mfb
(p15) mov GR_Parameter_TAG = 20 // Error tag for x=0, y=0
(p7) fmpy.s0 FR_Result = FR_Input_X,f1 // If y=1, result=x
(p15) br.cond.spnt __libm_error_region // Branch if x=0, y=0, result=1
}
;;
{ .mfb
(p8) mov GR_Parameter_TAG = 23 // Error tag for x=nan, y=0
fclass.m p14, p0 = FR_Input_Y, 0x023 // Test y inf
(p8) br.cond.spnt __libm_error_region // Branch if x=snan, y=0,
// result=1
}
;;
{ .mfb
nop.m 999
fclass.m p13, p0 = FR_Input_X, 0x023 // Test x inf
(p6) br.ret.spnt b0 // Exit y=0, x not nan or 0,
// result=1
}
;;
{ .mfb
nop.m 999
(p14) fcmp.eq.unc.s1 p0,p14 = FR_Input_X,f0 // Test x not 0, y=inf
(p7) br.ret.spnt b0 // Exit y=1, x not snan,
// result=x
}
;;
{ .mfb
nop.m 999
(p10) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X // If x=qnan, y not snan,
// result=qnan
(p10) br.ret.spnt b0 // Exit x=qnan, y not snan,
// result=qnan
}
;;
{ .mfb
nop.m 999
(p11) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X // If y=qnan, x not nan or 1,
// result=qnan
(p11) br.ret.spnt b0 // Exit y=qnan, x not nan or 1,
// result=qnan
}
;;
{ .mbb
nop.m 999
(p14) br.cond.spnt POWL_64_Y_IS_INF // Branch if y=inf, x not 1 or nan
(p13) br.cond.spnt POWL_64_X_IS_INF // Branch if x=inf, y not 1 or nan
}
;;
POWL_64_X_IS_ZERO:
// Here if x=0, y not nan or 1 or inf or 0
// There is logic starting here to determine if y is an integer when x = 0.
// If 0 < |y| < 1 then clearly y is not an integer.
// If |y| > 1, then the significand of y is shifted left by the size of
// the exponent of y. This preserves the lsb of the integer part + the
// fractional bits. The lsb of the integer can be tested to determine if
// the integer is even or odd. The fractional bits can be tested. If zero,
// then y is an integer.
//
{ .mfi
and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent of y
nop.f 999
and GR_y_sign = GR_sign_mask,GR_signexp_y // Get sign of y
}
;;
//
// Maybe y is < 1 already, so
// can never be an integer.
//
{ .mfi
cmp.lt p9, p8 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1
nop.f 999
sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent of y
}
;;
//
// Shift significand of y looking for nonzero bits
// For y > 1, shift signif_y exp_y bits to the left
// For y < 1, turn on 4 low order bits of significand of y
// so that the fraction will always be non-zero
//
{ .mmi
(p9) or GR_exp_y= 0xF,GR_signif_y // Force nonzero fraction if y<1
;;
nop.m 999
(p8) shl GR_exp_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
// Wait 4 cycles to use result
}
;;
{ .mmi
nop.m 999
;;
nop.m 999
nop.i 999
}
;;
{ .mmi
nop.m 999
;;
nop.m 999
shl GR_fraction_y= GR_exp_y,1 // Shift left 1 to get fraction
}
;;
//
// Integer part of y shifted off.
// Get y's low even or odd bit - y might not be an int.
//
{ .mii
cmp.eq p13,p0 = GR_fraction_y, r0 // Test for y integer
cmp.eq p8,p0 = GR_y_sign, r0 // Test for y > 0
;;
(p13) tbit.nz.unc p13,p0 = GR_exp_y, 63 // Test if y an odd integer
}
;;
{ .mfi
(p13) cmp.eq.unc p13,p14 = GR_y_sign, r0 // Test y pos odd integer
(p8) fcmp.eq.s0 p12,p0 = FR_Input_Y, f0 // If x=0 and y>0 flag if y denormal
nop.i 999
}
;;
//
// Return +/-0 when x=+/-0 and y is positive odd integer
//
{ .mfb
nop.m 999
(p13) mov FR_Result = FR_Input_X // If x=0, y pos odd int, result=x
(p13) br.ret.spnt b0 // Exit x=0, y pos odd int, result=x
}
;;
//
// Return +/-inf when x=+/-0 and y is negative odd int
//
{ .mfb
(p14) mov GR_Parameter_TAG = 21
(p14) frcpa.s0 FR_Result, p0 = f1, FR_Input_X // Result +-inf, set Z flag
(p14) br.cond.spnt __libm_error_region
}
;;
//
// Return +0 when x=+/-0 and y positive and not an odd integer
//
{ .mfb
nop.m 999
(p8) mov FR_Result = f0 // If x=0, y>0 and not odd integer, result=+0
(p8) br.ret.sptk b0 // Exit x=0, y>0 and not odd integer, result=+0
}
;;
//
// Return +inf when x=+/-0 and y is negative and not odd int
//
{ .mfb
mov GR_Parameter_TAG = 21
frcpa.s0 FR_Result, p10 = f1,f0 // Result +inf, raise Z flag
br.cond.sptk __libm_error_region
}
;;
POWL_64_X_IS_INF:
//
// Here if x=inf, y not 1 or nan
//
{ .mfi
and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent y
fclass.m p13, p0 = FR_Input_X,0x022 // Test x=-inf
nop.i 999
}
;;
{ .mfi
and GR_y_sign = GR_sign_mask,GR_signexp_y // Get sign of y
fcmp.eq.s0 p9,p0 = FR_Input_Y, f0 // Dummy to set flag if y denorm
nop.i 999
}
;;
//
// Maybe y is < 1 already, so
// isn't an int.
//
{ .mfi
(p13) cmp.lt.unc p9, p8 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1 if x=-inf
fclass.m p11, p0 = FR_Input_X,0x021 // Test x=+inf
sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent y
}
;;
//
// Shift significand of y looking for nonzero bits
// For y > 1, shift signif_y exp_y bits to the left
// For y < 1, turn on 4 low order bits of significand of y
// so that the fraction will always be non-zero
//
{ .mmi
(p9) or GR_exp_y= 0xF,GR_signif_y // Force nonzero fraction if y<1
;;
(p11) cmp.eq.unc p14,p12 = GR_y_sign, r0 // Test x=+inf, y>0
(p8) shl GR_exp_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
// Wait 4 cycles to use result
}
;;
//
// Return +inf for x=+inf, y > 0
// Return +0 for x=+inf, y < 0
//
{ .mfi
nop.m 999
(p12) mov FR_Result = f0 // If x=+inf, y<0, result=+0
nop.i 999
}
{ .mfb
nop.m 999
(p14) fma.s0 FR_Result = FR_Input_X,f1,f0 // If x=+inf, y>0, result=+inf
(p11) br.ret.sptk b0 // Exit x=+inf
}
;;
//
// Here only if x=-inf. Wait until can use result of shl...
//
{ .mmi
nop.m 999
;;
nop.m 999
nop.i 999
}
;;
{ .mfi
cmp.eq p8,p9 = GR_y_sign, r0 // Test y pos
nop.f 999
shl GR_fraction_y = GR_exp_y,1 // Shift left 1 to get fraction
}
;;
{ .mmi
cmp.eq p13,p0 = GR_fraction_y, r0 // Test y integer
;;
nop.m 999
(p13) tbit.nz.unc p13,p0 = GR_exp_y, 63 // Test y odd integer
}
;;
//
// Is y even or odd?
//
{ .mii
(p13) cmp.eq.unc p14,p10 = GR_y_sign, r0 // Test x=-inf, y pos odd int
(p13) cmp.ne.and p8,p9 = r0,r0 // If y odd int, turn off p8,p9
nop.i 999
}
;;
//
// Return -0 for x = -inf and y < 0 and odd int.
// Return -Inf for x = -inf and y > 0 and odd int.
//
{ .mfi
nop.m 999
(p10) fmerge.ns FR_Result = f0, f0 // If x=-inf, y neg odd int, result=-0
nop.i 999
}
{ .mfi
nop.m 999
(p14) fmpy.s0 FR_Result = FR_Input_X,f1 // If x=-inf, y pos odd int, result=-inf
nop.i 999
}
;;
//
// Return Inf for x = -inf and y > 0 not an odd int.
// Return +0 for x = -inf and y < 0 not an odd int.
//
.pred.rel "mutex",p8,p9
{ .mfi
nop.m 999
(p8) fmerge.ns FR_Result = FR_Input_X, FR_Input_X // If x=-inf, y>0 not odd int
// result=+inf
nop.i 999
}
{ .mfb
nop.m 999
(p9) fmpy.s0 FR_Result = f0,f0 // If x=-inf, y<0 not odd int
// result=+0
br.ret.sptk b0 // Exit for x=-inf
}
;;
POWL_64_Y_IS_INF:
// Here if y=inf, x not 1 or nan
//
// For y = +Inf and |x| < 1 returns 0
// For y = +Inf and |x| > 1 returns Inf
// For y = -Inf and |x| < 1 returns Inf
// For y = -Inf and |x| > 1 returns 0
// For y = Inf and |x| = 1 returns 1
//
{ .mfi
nop.m 999
fclass.m p8, p0 = FR_Input_Y, 0x021 // Test y=+inf
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p9, p0 = FR_Input_Y, 0x022 // Test y=-inf
nop.i 999
}
;;
{ .mfi
nop.m 999
fabs FR_X = FR_Input_X // Form |x|
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.eq.s0 p10,p0 = FR_Input_X, f0 // flag if x denormal
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fcmp.lt.unc.s1 p6, p0 = FR_X, f1 // Test y=+inf, |x|<1
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fcmp.gt.unc.s1 p7, p0 = FR_X, f1 // Test y=+inf, |x|>1
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fcmp.lt.unc.s1 p12, p0 = FR_X, f1 // Test y=-inf, |x|<1
nop.i 999
}
{ .mfi
nop.m 999
(p6) fmpy.s0 FR_Result = f0,f0 // If y=+inf, |x|<1, result=+0
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fcmp.gt.unc.s1 p13, p0 = FR_X, f1 // Test y=-inf, |x|>1
nop.i 999
}
{ .mfi
nop.m 999
(p7) fmpy.s0 FR_Result = FR_Input_Y, f1 // If y=+inf, |x|>1, result=+inf
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.eq.s1 p14, p0 = FR_X, f1 // Test y=inf, |x|=1
nop.i 999
}
{ .mfi
nop.m 999
(p12) fnma.s0 FR_Result = FR_Input_Y, f1, f0 // If y=-inf, |x|<1, result=+inf
nop.i 999
}
;;
{ .mfi
nop.m 999
(p13) mov FR_Result = f0 // If y=-inf, |x|>1, result=+0
nop.i 999
}
;;
{ .mfb
nop.m 999
(p14) fmpy.s0 FR_Result = f1,f1 // If y=inf, |x|=1, result=+1
br.ret.sptk b0 // Common return for y=inf
}
;;
// Here if x or y denorm/unorm
POWL_DENORM:
{ .mmi
getf.sig GR_signif_Z = FR_norm_X // Get significand of x
;;
getf.exp GR_signexp_y = FR_norm_Y // Get sign and exp of y
nop.i 999
}
;;
{ .mfi
getf.sig GR_signif_y = FR_norm_Y // Get significand of y
nop.f 999
nop.i 999
}
;;
{ .mib
getf.exp GR_signexp_x = FR_norm_X // Get sign and exp of x
extr.u GR_Index1 = GR_signif_Z, 59, 4 // Extract upper 4 signif bits of x
br.cond.sptk POWL_COMMON // Branch back to main path
}
;;
POWL_64_UNSUPPORT:
//
// Raise exceptions for specific
// values - pseudo NaN and
// infinities.
// Return NaN and raise invalid
//
{ .mfb
nop.m 999
fmpy.s0 FR_Result = FR_Input_X,f0
br.ret.sptk b0
}
;;
POWL_64_XNEG:
//
// Raise invalid for x < 0 and
// y not an integer
//
{ .mfi
nop.m 999
frcpa.s0 FR_Result, p8 = f0, f0
mov GR_Parameter_TAG = 22
}
{ .mib
nop.m 999
nop.i 999
br.cond.sptk __libm_error_region
}
;;
POWL_64_SQRT:
{ .mfi
nop.m 999
frsqrta.s0 FR_Result,p10 = FR_save_Input_X
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f62=FR_Half,FR_save_Input_X,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f63=FR_Result,FR_Result,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnma.s1 f32=f63,f62,FR_Half
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f33=f32,FR_Result,FR_Result
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f34=f33,f62,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnma.s1 f35=f34,f33,FR_Half
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f63=f35,f33,f33
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f32=FR_save_Input_X,f63,f0
nop.i 999
}
{ .mfi
nop.m 999
(p10) fma.s1 FR_Result=f63,f62,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f33=f11,f63,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnma.s1 f34=f32,f32,FR_save_Input_X
nop.i 999
}
{ .mfi
nop.m 999
(p10) fnma.s1 f35=FR_Result,f63,FR_Half
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f62=f33,f34,f32
nop.i 999
}
{ .mfi
nop.m 999
(p10) fma.s1 f63=f33,f35,f33
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnma.s1 f32=f62,f62,FR_save_Input_X
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p10) fma.s0 FR_Result=f32,f63,f62
br.ret.sptk b0 // Exit for x > 0, y = 0.5
}
;;
GLOBAL_LIBM_END(powl)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = FR_Input_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = FR_save_Input_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfe [GR_Parameter_Y] = FR_Result // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region#)
.type __libm_error_support#,@function
.global __libm_error_support#
|