1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
|
.file "sinhl.s"
// Copyright (c) 2000 - 2002, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 10/12/00 Update to set denormal operand and underflow flags
// 01/22/01 Fixed to set inexact flag for small args. Fixed incorrect
// call to __libm_error_support for 710.476 < x < 11357.2166.
// 05/02/01 Reworked to improve speed of all paths
// 05/20/02 Cleaned up namespace and sf0 syntax
// 12/04/02 Improved performance
//
// API
//==============================================================
// long double = sinhl(long double)
// input floating point f8
// output floating point f8
//
// Registers used
//==============================================================
// general registers:
// r14 -> r40
// predicate registers used:
// p6 -> p11
// floating-point registers used:
// f9 -> f15; f32 -> f90;
// f8 has input, then output
//
// Overview of operation
//==============================================================
// There are seven paths
// 1. 0 < |x| < 0.25 SINH_BY_POLY
// 2. 0.25 <=|x| < 32 SINH_BY_TBL
// 3. 32 <= |x| < 11357.21655 SINH_BY_EXP (merged path with SINH_BY_TBL)
// 4. |x| >= 11357.21655 SINH_HUGE
// 5. x=0 Done with early exit
// 6. x=inf,nan Done with early exit
// 7. x=denormal SINH_DENORM
//
// For double extended we get overflow for x >= 400c b174 ddc0 31ae c0ea
// >= 11357.21655
//
//
// 1. SINH_BY_POLY 0 < |x| < 0.25
// ===============
// Evaluate sinh(x) by a 13th order polynomial
// Care is take for the order of multiplication; and P_1 is not exactly 1/3!,
// P_2 is not exactly 1/5!, etc.
// sinh(x) = sign * (series(e^x) - series(e^-x))/2
// = sign * (ax + ax^3/3! + ax^5/5! + ax^7/7! + ax^9/9! + ax^11/11!
// + ax^13/13!)
// = sign * (ax + ax * ( ax^2 * (1/3! + ax^4 * (1/7! + ax^4*1/11!)) )
// + ax * ( ax^4 * (1/5! + ax^4 * (1/9! + ax^4*1/13!)) ))
// = sign * (ax + ax*p_odd + (ax*p_even))
// = sign * (ax + Y_lo)
// sinh(x) = sign * (Y_hi + Y_lo)
// Note that ax = |x|
//
// 2. SINH_BY_TBL 0.25 <= |x| < 32.0
// =============
// sinh(x) = sinh(B+R)
// = sinh(B)cosh(R) + cosh(B)sinh(R)
//
// ax = |x| = M*log2/64 + R
// B = M*log2/64
// M = 64*N + j
// We will calculate M and get N as (M-j)/64
// The division is a shift.
// exp(B) = exp(N*log2 + j*log2/64)
// = 2^N * 2^(j*log2/64)
// sinh(B) = 1/2(e^B -e^-B)
// = 1/2(2^N * 2^(j*log2/64) - 2^-N * 2^(-j*log2/64))
// sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64))
// cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64))
// 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
// Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
//
// R = ax - M*log2/64
// R = ax - M*log2_by_64_hi - M*log2_by_64_lo
// exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
// = 1 + p_odd + p_even
// where the p_even uses the A coefficients and the p_even uses
// the B coefficients
//
// So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
// cosh(R) = 1 + p_even
// sinh(B) = S_hi + S_lo
// cosh(B) = C_hi
// sinh(x) = sinh(B)cosh(R) + cosh(B)sinh(R)
//
// 3. SINH_BY_EXP 32.0 <= |x| < 11357.21655 ( 400c b174 ddc0 31ae c0ea )
// ==============
// Can approximate result by exp(x)/2 in this region.
// Y_hi = Tjhi
// Y_lo = Tjhi * (p_odd + p_even) + Tjlo
// sinh(x) = Y_hi + Y_lo
//
// 4. SINH_HUGE |x| >= 11357.21655 ( 400c b174 ddc0 31ae c0ea )
// ============
// Set error tag and call error support
//
//
// Assembly macros
//==============================================================
r_ad5 = r14
r_rshf_2to57 = r15
r_exp_denorm = r15
r_ad_mJ_lo = r15
r_ad_J_lo = r16
r_2Nm1 = r17
r_2mNm1 = r18
r_exp_x = r18
r_ad_J_hi = r19
r_ad2o = r19
r_ad_mJ_hi = r20
r_mj = r21
r_ad2e = r22
r_ad3 = r23
r_ad1 = r24
r_Mmj = r24
r_rshf = r25
r_M = r25
r_N = r25
r_jshf = r26
r_exp_2tom57 = r26
r_j = r26
r_exp_mask = r27
r_signexp_x = r28
r_signexp_sgnx_0_5 = r28
r_exp_0_25 = r29
r_sig_inv_ln2 = r30
r_exp_32 = r30
r_exp_huge = r30
r_ad4 = r31
GR_SAVE_PFS = r34
GR_SAVE_B0 = r35
GR_SAVE_GP = r36
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT = r39
GR_Parameter_TAG = r40
f_ABS_X = f9
f_X2 = f10
f_X4 = f11
f_tmp = f14
f_RSHF = f15
f_Inv_log2by64 = f32
f_log2by64_lo = f33
f_log2by64_hi = f34
f_A1 = f35
f_A2 = f36
f_A3 = f37
f_Rcub = f38
f_M_temp = f39
f_R_temp = f40
f_Rsq = f41
f_R = f42
f_M = f43
f_B1 = f44
f_B2 = f45
f_B3 = f46
f_peven_temp1 = f47
f_peven_temp2 = f48
f_peven = f49
f_podd_temp1 = f50
f_podd_temp2 = f51
f_podd = f52
f_poly65 = f53
f_poly6543 = f53
f_poly6to1 = f53
f_poly43 = f54
f_poly21 = f55
f_X3 = f56
f_INV_LN2_2TO63 = f57
f_RSHF_2TO57 = f58
f_2TOM57 = f59
f_smlst_oflow_input = f60
f_pre_result = f61
f_huge = f62
f_spos = f63
f_sneg = f64
f_Tjhi = f65
f_Tjlo = f66
f_Tmjhi = f67
f_Tmjlo = f68
f_S_hi = f69
f_SC_hi_temp = f70
f_S_lo_temp1 = f71
f_S_lo_temp2 = f72
f_S_lo_temp3 = f73
f_S_lo_temp4 = f73
f_S_lo = f74
f_C_hi = f75
f_Y_hi = f77
f_Y_lo_temp = f78
f_Y_lo = f79
f_NORM_X = f80
f_P1 = f81
f_P2 = f82
f_P3 = f83
f_P4 = f84
f_P5 = f85
f_P6 = f86
f_Tjhi_spos = f87
f_Tjlo_spos = f88
f_huge = f89
f_signed_hi_lo = f90
// Data tables
//==============================================================
// DO NOT CHANGE ORDER OF THESE TABLES
RODATA
.align 16
LOCAL_OBJECT_START(sinh_arg_reduction)
// data8 0xB8AA3B295C17F0BC, 0x00004005 // 64/log2 -- signif loaded with setf
data8 0xB17217F7D1000000, 0x00003FF8 // log2/64 high part
data8 0xCF79ABC9E3B39804, 0x00003FD0 // log2/64 low part
data8 0xb174ddc031aec0ea, 0x0000400c // Smallest x to overflow (11357.21655)
LOCAL_OBJECT_END(sinh_arg_reduction)
LOCAL_OBJECT_START(sinh_p_table)
data8 0xB08AF9AE78C1239F, 0x00003FDE // P6
data8 0xB8EF1D28926D8891, 0x00003FEC // P4
data8 0x8888888888888412, 0x00003FF8 // P2
data8 0xD732377688025BE9, 0x00003FE5 // P5
data8 0xD00D00D00D4D39F2, 0x00003FF2 // P3
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // P1
LOCAL_OBJECT_END(sinh_p_table)
LOCAL_OBJECT_START(sinh_ab_table)
data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC // A1
data8 0x88888888884ECDD5, 0x00003FF8 // A2
data8 0xD00D0C6DCC26A86B, 0x00003FF2 // A3
data8 0x8000000000000002, 0x00003FFE // B1
data8 0xAAAAAAAAAA402C77, 0x00003FFA // B2
data8 0xB60B6CC96BDB144D, 0x00003FF5 // B3
LOCAL_OBJECT_END(sinh_ab_table)
LOCAL_OBJECT_START(sinh_j_hi_table)
data8 0xB504F333F9DE6484, 0x00003FFE
data8 0xB6FD91E328D17791, 0x00003FFE
data8 0xB8FBAF4762FB9EE9, 0x00003FFE
data8 0xBAFF5AB2133E45FB, 0x00003FFE
data8 0xBD08A39F580C36BF, 0x00003FFE
data8 0xBF1799B67A731083, 0x00003FFE
data8 0xC12C4CCA66709456, 0x00003FFE
data8 0xC346CCDA24976407, 0x00003FFE
data8 0xC5672A115506DADD, 0x00003FFE
data8 0xC78D74C8ABB9B15D, 0x00003FFE
data8 0xC9B9BD866E2F27A3, 0x00003FFE
data8 0xCBEC14FEF2727C5D, 0x00003FFE
data8 0xCE248C151F8480E4, 0x00003FFE
data8 0xD06333DAEF2B2595, 0x00003FFE
data8 0xD2A81D91F12AE45A, 0x00003FFE
data8 0xD4F35AABCFEDFA1F, 0x00003FFE
data8 0xD744FCCAD69D6AF4, 0x00003FFE
data8 0xD99D15C278AFD7B6, 0x00003FFE
data8 0xDBFBB797DAF23755, 0x00003FFE
data8 0xDE60F4825E0E9124, 0x00003FFE
data8 0xE0CCDEEC2A94E111, 0x00003FFE
data8 0xE33F8972BE8A5A51, 0x00003FFE
data8 0xE5B906E77C8348A8, 0x00003FFE
data8 0xE8396A503C4BDC68, 0x00003FFE
data8 0xEAC0C6E7DD24392F, 0x00003FFE
data8 0xED4F301ED9942B84, 0x00003FFE
data8 0xEFE4B99BDCDAF5CB, 0x00003FFE
data8 0xF281773C59FFB13A, 0x00003FFE
data8 0xF5257D152486CC2C, 0x00003FFE
data8 0xF7D0DF730AD13BB9, 0x00003FFE
data8 0xFA83B2DB722A033A, 0x00003FFE
data8 0xFD3E0C0CF486C175, 0x00003FFE
data8 0x8000000000000000, 0x00003FFF // Center of table
data8 0x8164D1F3BC030773, 0x00003FFF
data8 0x82CD8698AC2BA1D7, 0x00003FFF
data8 0x843A28C3ACDE4046, 0x00003FFF
data8 0x85AAC367CC487B15, 0x00003FFF
data8 0x871F61969E8D1010, 0x00003FFF
data8 0x88980E8092DA8527, 0x00003FFF
data8 0x8A14D575496EFD9A, 0x00003FFF
data8 0x8B95C1E3EA8BD6E7, 0x00003FFF
data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF
data8 0x8EA4398B45CD53C0, 0x00003FFF
data8 0x9031DC431466B1DC, 0x00003FFF
data8 0x91C3D373AB11C336, 0x00003FFF
data8 0x935A2B2F13E6E92C, 0x00003FFF
data8 0x94F4EFA8FEF70961, 0x00003FFF
data8 0x96942D3720185A00, 0x00003FFF
data8 0x9837F0518DB8A96F, 0x00003FFF
data8 0x99E0459320B7FA65, 0x00003FFF
data8 0x9B8D39B9D54E5539, 0x00003FFF
data8 0x9D3ED9A72CFFB751, 0x00003FFF
data8 0x9EF5326091A111AE, 0x00003FFF
data8 0xA0B0510FB9714FC2, 0x00003FFF
data8 0xA27043030C496819, 0x00003FFF
data8 0xA43515AE09E6809E, 0x00003FFF
data8 0xA5FED6A9B15138EA, 0x00003FFF
data8 0xA7CD93B4E965356A, 0x00003FFF
data8 0xA9A15AB4EA7C0EF8, 0x00003FFF
data8 0xAB7A39B5A93ED337, 0x00003FFF
data8 0xAD583EEA42A14AC6, 0x00003FFF
data8 0xAF3B78AD690A4375, 0x00003FFF
data8 0xB123F581D2AC2590, 0x00003FFF
data8 0xB311C412A9112489, 0x00003FFF
data8 0xB504F333F9DE6484, 0x00003FFF
LOCAL_OBJECT_END(sinh_j_hi_table)
LOCAL_OBJECT_START(sinh_j_lo_table)
data4 0x1EB2FB13
data4 0x1CE2CBE2
data4 0x1DDC3CBC
data4 0x1EE9AA34
data4 0x9EAEFDC1
data4 0x9DBF517B
data4 0x1EF88AFB
data4 0x1E03B216
data4 0x1E78AB43
data4 0x9E7B1747
data4 0x9EFE3C0E
data4 0x9D36F837
data4 0x9DEE53E4
data4 0x9E24AE8E
data4 0x1D912473
data4 0x1EB243BE
data4 0x1E669A2F
data4 0x9BBC610A
data4 0x1E761035
data4 0x9E0BE175
data4 0x1CCB12A1
data4 0x1D1BFE90
data4 0x1DF2F47A
data4 0x1EF22F22
data4 0x9E3F4A29
data4 0x1EC01A5B
data4 0x1E8CAC3A
data4 0x9DBB3FAB
data4 0x1EF73A19
data4 0x9BB795B5
data4 0x1EF84B76
data4 0x9EF5818B
data4 0x00000000 // Center of table
data4 0x1F77CACA
data4 0x1EF8A91D
data4 0x1E57C976
data4 0x9EE8DA92
data4 0x1EE85C9F
data4 0x1F3BF1AF
data4 0x1D80CA1E
data4 0x9D0373AF
data4 0x9F167097
data4 0x1EB70051
data4 0x1F6EB029
data4 0x1DFD6D8E
data4 0x9EB319B0
data4 0x1EBA2BEB
data4 0x1F11D537
data4 0x1F0D5A46
data4 0x9E5E7BCA
data4 0x9F3AAFD1
data4 0x9E86DACC
data4 0x9F3EDDC2
data4 0x1E496E3D
data4 0x9F490BF6
data4 0x1DD1DB48
data4 0x1E65EBFB
data4 0x9F427496
data4 0x1F283C4A
data4 0x1F4B0047
data4 0x1F130152
data4 0x9E8367C0
data4 0x9F705F90
data4 0x1EFB3C53
data4 0x1F32FB13
LOCAL_OBJECT_END(sinh_j_lo_table)
.section .text
GLOBAL_IEEE754_ENTRY(sinhl)
{ .mlx
getf.exp r_signexp_x = f8 // Get signexp of x, must redo if unorm
movl r_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
}
{ .mlx
addl r_ad1 = @ltoff(sinh_arg_reduction), gp
movl r_rshf_2to57 = 0x4778000000000000 // 1.10000 2^(63+57)
}
;;
{ .mfi
ld8 r_ad1 = [r_ad1]
fmerge.s f_ABS_X = f0,f8
mov r_exp_0_25 = 0x0fffd // Form exponent for 0.25
}
{ .mfi
nop.m 0
fnorm.s1 f_NORM_X = f8
mov r_exp_2tom57 = 0xffff-57
}
;;
{ .mfi
setf.d f_RSHF_2TO57 = r_rshf_2to57 // Form const 1.100 * 2^120
fclass.m p10,p0 = f8, 0x0b // Test for denorm
mov r_exp_mask = 0x1ffff
}
{ .mlx
setf.sig f_INV_LN2_2TO63 = r_sig_inv_ln2 // Form 1/ln2 * 2^63
movl r_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
}
;;
{ .mfi
nop.m 0
fclass.m p7,p0 = f8, 0x07 // Test if x=0
nop.i 0
}
{ .mfi
setf.exp f_2TOM57 = r_exp_2tom57 // Form 2^-57 for scaling
nop.f 0
add r_ad3 = 0x90, r_ad1 // Point to ab_table
}
;;
{ .mfi
setf.d f_RSHF = r_rshf // Form right shift const 1.100 * 2^63
fclass.m p6,p0 = f8, 0xe3 // Test if x nan, inf
add r_ad4 = 0x2f0, r_ad1 // Point to j_hi_table midpoint
}
{ .mib
add r_ad2e = 0x20, r_ad1 // Point to p_table
nop.i 0
(p10) br.cond.spnt SINH_DENORM // Branch if x denorm
}
;;
// Common path -- return here from SINH_DENORM if x is unnorm
SINH_COMMON:
{ .mfi
ldfe f_smlst_oflow_input = [r_ad2e],16
nop.f 0
add r_ad5 = 0x580, r_ad1 // Point to j_lo_table midpoint
}
{ .mib
ldfe f_log2by64_hi = [r_ad1],16
and r_exp_x = r_exp_mask, r_signexp_x
(p7) br.ret.spnt b0 // Exit if x=0
}
;;
// Get the A coefficients for SINH_BY_TBL
{ .mfi
ldfe f_A1 = [r_ad3],16
fcmp.lt.s1 p8,p9 = f8,f0 // Test for x<0
cmp.lt p7,p0 = r_exp_x, r_exp_0_25 // Test x < 0.25
}
{ .mfb
add r_ad2o = 0x30, r_ad2e // Point to p_table odd coeffs
(p6) fma.s0 f8 = f8,f1,f0 // Result for x nan, inf
(p6) br.ret.spnt b0 // Exit for x nan, inf
}
;;
// Calculate X2 = ax*ax for SINH_BY_POLY
{ .mfi
ldfe f_log2by64_lo = [r_ad1],16
nop.f 0
nop.i 0
}
{ .mfb
ldfe f_A2 = [r_ad3],16
fma.s1 f_X2 = f_NORM_X, f_NORM_X, f0
(p7) br.cond.spnt SINH_BY_POLY
}
;;
// Here if |x| >= 0.25
SINH_BY_TBL:
// ******************************************************
// STEP 1 (TBL and EXP) - Argument reduction
// ******************************************************
// Get the following constants.
// Inv_log2by64
// log2by64_hi
// log2by64_lo
// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
// put them in an exponent.
// f_spos = 2^(N-1) and f_sneg = 2^(-N-1)
// 0xffff + (N-1) = 0xffff +N -1
// 0xffff - (N +1) = 0xffff -N -1
// Calculate M and keep it as integer and floating point.
// M = round-to-integer(x*Inv_log2by64)
// f_M = M = truncate(ax/(log2/64))
// Put the integer representation of M in r_M
// and the floating point representation of M in f_M
// Get the remaining A,B coefficients
{ .mmi
ldfe f_A3 = [r_ad3],16
nop.m 0
nop.i 0
}
;;
.pred.rel "mutex",p8,p9
// Use constant (1.100*2^(63-6)) to get rounded M into rightmost significand
// |x| * 64 * 1/ln2 * 2^(63-6) + 1.1000 * 2^(63+(63-6))
{ .mfi
(p8) mov r_signexp_sgnx_0_5 = 0x2fffe // signexp of -0.5
fma.s1 f_M_temp = f_ABS_X, f_INV_LN2_2TO63, f_RSHF_2TO57
(p9) mov r_signexp_sgnx_0_5 = 0x0fffe // signexp of +0.5
}
;;
// Test for |x| >= overflow limit
{ .mfi
ldfe f_B1 = [r_ad3],16
fcmp.ge.s1 p6,p0 = f_ABS_X, f_smlst_oflow_input
nop.i 0
}
;;
{ .mfi
ldfe f_B2 = [r_ad3],16
nop.f 0
mov r_exp_32 = 0x10004
}
;;
// Subtract RSHF constant to get rounded M as a floating point value
// M_temp * 2^(63-6) - 2^63
{ .mfb
ldfe f_B3 = [r_ad3],16
fms.s1 f_M = f_M_temp, f_2TOM57, f_RSHF
(p6) br.cond.spnt SINH_HUGE // Branch if result will overflow
}
;;
{ .mfi
getf.sig r_M = f_M_temp
nop.f 0
cmp.ge p7,p6 = r_exp_x, r_exp_32 // Test if x >= 32
}
;;
// Calculate j. j is the signed extension of the six lsb of M. It
// has a range of -32 thru 31.
// Calculate R
// ax - M*log2by64_hi
// R = (ax - M*log2by64_hi) - M*log2by64_lo
{ .mfi
nop.m 0
fnma.s1 f_R_temp = f_M, f_log2by64_hi, f_ABS_X
and r_j = 0x3f, r_M
}
;;
{ .mii
nop.m 0
shl r_jshf = r_j, 0x2 // Shift j so can sign extend it
;;
sxt1 r_jshf = r_jshf
}
;;
{ .mii
nop.m 0
shr r_j = r_jshf, 0x2 // Now j has range -32 to 31
nop.i 0
}
;;
{ .mmi
shladd r_ad_J_hi = r_j, 4, r_ad4 // pointer to Tjhi
sub r_Mmj = r_M, r_j // M-j
sub r_mj = r0, r_j // Form -j
}
;;
// The TBL and EXP branches are merged and predicated
// If TBL, p6 true, 0.25 <= |x| < 32
// If EXP, p7 true, 32 <= |x| < overflow_limit
//
// N = (M-j)/64
{ .mfi
ldfe f_Tjhi = [r_ad_J_hi]
fnma.s1 f_R = f_M, f_log2by64_lo, f_R_temp
shr r_N = r_Mmj, 0x6 // N = (M-j)/64
}
{ .mfi
shladd r_ad_mJ_hi = r_mj, 4, r_ad4 // pointer to Tmjhi
nop.f 0
shladd r_ad_mJ_lo = r_mj, 2, r_ad5 // pointer to Tmjlo
}
;;
{ .mfi
sub r_2mNm1 = r_signexp_sgnx_0_5, r_N // signexp sgnx*2^(-N-1)
nop.f 0
shladd r_ad_J_lo = r_j, 2, r_ad5 // pointer to Tjlo
}
{ .mfi
ldfe f_Tmjhi = [r_ad_mJ_hi]
nop.f 0
add r_2Nm1 = r_signexp_sgnx_0_5, r_N // signexp sgnx*2^(N-1)
}
;;
{ .mmf
ldfs f_Tmjlo = [r_ad_mJ_lo]
setf.exp f_sneg = r_2mNm1 // Form sgnx * 2^(-N-1)
nop.f 0
}
;;
{ .mmf
ldfs f_Tjlo = [r_ad_J_lo]
setf.exp f_spos = r_2Nm1 // Form sgnx * 2^(N-1)
nop.f 0
}
;;
// ******************************************************
// STEP 2 (TBL and EXP)
// ******************************************************
// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
{ .mmf
nop.m 0
nop.m 0
fma.s1 f_Rsq = f_R, f_R, f0
}
;;
// Calculate p_even
// B_2 + Rsq *B_3
// B_1 + Rsq * (B_2 + Rsq *B_3)
// p_even = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
{ .mfi
nop.m 0
fma.s1 f_peven_temp1 = f_Rsq, f_B3, f_B2
nop.i 0
}
// Calculate p_odd
// A_2 + Rsq *A_3
// A_1 + Rsq * (A_2 + Rsq *A_3)
// podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
{ .mfi
nop.m 0
fma.s1 f_podd_temp1 = f_Rsq, f_A3, f_A2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 f_Rcub = f_Rsq, f_R, f0
nop.i 0
}
;;
//
// If TBL,
// Calculate S_hi and S_lo, and C_hi
// SC_hi_temp = sneg * Tmjhi
// S_hi = spos * Tjhi - SC_hi_temp
// S_hi = spos * Tjhi - (sneg * Tmjhi)
// C_hi = spos * Tjhi + SC_hi_temp
// C_hi = spos * Tjhi + (sneg * Tmjhi)
{ .mfi
nop.m 0
(p6) fma.s1 f_SC_hi_temp = f_sneg, f_Tmjhi, f0
nop.i 0
}
;;
// If TBL,
// S_lo_temp3 = sneg * Tmjlo
// S_lo_temp4 = spos * Tjlo - S_lo_temp3
// S_lo_temp4 = spos * Tjlo -(sneg * Tmjlo)
{ .mfi
nop.m 0
(p6) fma.s1 f_S_lo_temp3 = f_sneg, f_Tmjlo, f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 f_peven_temp2 = f_Rsq, f_peven_temp1, f_B1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 f_podd_temp2 = f_Rsq, f_podd_temp1, f_A1
nop.i 0
}
;;
// If EXP,
// Compute sgnx * 2^(N-1) * Tjhi and sgnx * 2^(N-1) * Tjlo
{ .mfi
nop.m 0
(p7) fma.s1 f_Tjhi_spos = f_Tjhi, f_spos, f0
nop.i 0
}
{ .mfi
nop.m 0
(p7) fma.s1 f_Tjlo_spos = f_Tjlo, f_spos, f0
nop.i 0
}
;;
{ .mfi
nop.m 0
(p6) fms.s1 f_S_hi = f_spos, f_Tjhi, f_SC_hi_temp
nop.i 0
}
;;
{ .mfi
nop.m 0
(p6) fma.s1 f_C_hi = f_spos, f_Tjhi, f_SC_hi_temp
nop.i 0
}
{ .mfi
nop.m 0
(p6) fms.s1 f_S_lo_temp4 = f_spos, f_Tjlo, f_S_lo_temp3
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 f_peven = f_Rsq, f_peven_temp2, f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 f_podd = f_podd_temp2, f_Rcub, f_R
nop.i 0
}
;;
// If TBL,
// S_lo_temp1 = spos * Tjhi - S_hi
// S_lo_temp2 = -sneg * Tmjlo + S_lo_temp1
// S_lo_temp2 = -sneg * Tmjlo + (spos * Tjhi - S_hi)
{ .mfi
nop.m 0
(p6) fms.s1 f_S_lo_temp1 = f_spos, f_Tjhi, f_S_hi
nop.i 0
}
;;
{ .mfi
nop.m 0
(p6) fnma.s1 f_S_lo_temp2 = f_sneg, f_Tmjhi, f_S_lo_temp1
nop.i 0
}
;;
// If EXP,
// Y_hi = sgnx * 2^(N-1) * Tjhi
// Y_lo = sgnx * 2^(N-1) * Tjhi * (p_odd + p_even) + sgnx * 2^(N-1) * Tjlo
{ .mfi
nop.m 0
(p7) fma.s1 f_Y_lo_temp = f_peven, f1, f_podd
nop.i 0
}
;;
// If TBL,
// S_lo = S_lo_temp4 + S_lo_temp2
{ .mfi
nop.m 0
(p6) fma.s1 f_S_lo = f_S_lo_temp4, f1, f_S_lo_temp2
nop.i 0
}
;;
// If TBL,
// Y_hi = S_hi
// Y_lo = C_hi*p_odd + (S_hi*p_even + S_lo)
{ .mfi
nop.m 0
(p6) fma.s1 f_Y_lo_temp = f_S_hi, f_peven, f_S_lo
nop.i 0
}
;;
{ .mfi
nop.m 0
(p7) fma.s1 f_Y_lo = f_Tjhi_spos, f_Y_lo_temp, f_Tjlo_spos
nop.i 0
}
;;
// Dummy multiply to generate inexact
{ .mfi
nop.m 0
fmpy.s0 f_tmp = f_B2, f_B2
nop.i 0
}
{ .mfi
nop.m 0
(p6) fma.s1 f_Y_lo = f_C_hi, f_podd, f_Y_lo_temp
nop.i 0
}
;;
// f8 = answer = Y_hi + Y_lo
{ .mfi
nop.m 0
(p7) fma.s0 f8 = f_Y_lo, f1, f_Tjhi_spos
nop.i 0
}
;;
// f8 = answer = Y_hi + Y_lo
{ .mfb
nop.m 0
(p6) fma.s0 f8 = f_Y_lo, f1, f_S_hi
br.ret.sptk b0 // Exit for SINH_BY_TBL and SINH_BY_EXP
}
;;
// Here if 0 < |x| < 0.25
SINH_BY_POLY:
{ .mmf
ldfe f_P6 = [r_ad2e],16
ldfe f_P5 = [r_ad2o],16
nop.f 0
}
;;
{ .mmi
ldfe f_P4 = [r_ad2e],16
ldfe f_P3 = [r_ad2o],16
nop.i 0
}
;;
{ .mmi
ldfe f_P2 = [r_ad2e],16
ldfe f_P1 = [r_ad2o],16
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 f_X3 = f_NORM_X, f_X2, f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 f_X4 = f_X2, f_X2, f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 f_poly65 = f_X2, f_P6, f_P5
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 f_poly43 = f_X2, f_P4, f_P3
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 f_poly21 = f_X2, f_P2, f_P1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 f_poly6543 = f_X4, f_poly65, f_poly43
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 f_poly6to1 = f_X4, f_poly6543, f_poly21
nop.i 0
}
;;
// Dummy multiply to generate inexact
{ .mfi
nop.m 0
fmpy.s0 f_tmp = f_P6, f_P6
nop.i 0
}
{ .mfb
nop.m 0
fma.s0 f8 = f_poly6to1, f_X3, f_NORM_X
br.ret.sptk b0 // Exit SINH_BY_POLY
}
;;
// Here if x denorm or unorm
SINH_DENORM:
// Determine if x really a denorm and not a unorm
{ .mmf
getf.exp r_signexp_x = f_NORM_X
mov r_exp_denorm = 0x0c001 // Real denorms have exp < this
fmerge.s f_ABS_X = f0, f_NORM_X
}
;;
{ .mfi
nop.m 0
fcmp.eq.s0 p10,p0 = f8, f0 // Set denorm flag
nop.i 0
}
;;
// Set p8 if really a denorm
{ .mmi
and r_exp_x = r_exp_mask, r_signexp_x
;;
cmp.lt p8,p9 = r_exp_x, r_exp_denorm
nop.i 0
}
;;
// Identify denormal operands.
{ .mfb
nop.m 0
(p8) fcmp.ge.unc.s1 p6,p7 = f8, f0 // Test sign of denorm
(p9) br.cond.sptk SINH_COMMON // Return to main path if x unorm
}
;;
{ .mfi
nop.m 0
(p6) fma.s0 f8 = f8,f8,f8 // If x +denorm, result=x+x^2
nop.i 0
}
{ .mfb
nop.m 0
(p7) fnma.s0 f8 = f8,f8,f8 // If x -denorm, result=x-x^2
br.ret.sptk b0 // Exit if x denorm
}
;;
// Here if |x| >= overflow limit
SINH_HUGE:
// for SINH_HUGE, put 24000 in exponent; take sign from input
{ .mmi
mov r_exp_huge = 0x15dbf
;;
setf.exp f_huge = r_exp_huge
nop.i 0
}
;;
.pred.rel "mutex",p8,p9
{ .mfi
alloc r32 = ar.pfs,0,5,4,0
(p8) fnma.s1 f_signed_hi_lo = f_huge, f1, f1
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 f_signed_hi_lo = f_huge, f1, f1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s0 f_pre_result = f_signed_hi_lo, f_huge, f0
mov GR_Parameter_TAG = 126
}
;;
GLOBAL_IEEE754_END(sinhl)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfe [GR_Parameter_Y] = f_pre_result // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|