1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
.file "libm_sincosf.s"
// Copyright (c) 2002 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2002 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/01/02 Initial version
// 02/18/02 Large arguments processing routine is excluded.
// External interface entry points are added
// 02/26/02 Added temporary return of results in r8, r9
// 03/13/02 Corrected restore of predicate registers
// 03/19/02 Added stack unwind around call to __libm_cisf_large
// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 02/11/04 cisf is moved to the separate file.
// 03/31/05 Reformatted delimiters between data tables
// API
//==============================================================
// 1) void sincosf(float, float*s, float*c)
// 2) __libm_sincosf - internal LIBM function, that accepts
// argument in f8 and returns cosine through f8, sine through f9
//
// Overview of operation
//==============================================================
//
// Step 1
// ======
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
// divide x by pi/2^k.
// Multiply by 2^k/pi.
// nfloat = Round result to integer (round-to-nearest)
//
// r = x - nfloat * pi/2^k
// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
// pi/2^k is stored as two numbers that when added make pi/2^k.
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
// HIGH part is rounded to zero, LOW - to nearest
//
// x = (nfloat * pi/2^k) + r
// r is small enough that we can use a polynomial approximation
// and is referred to as the reduced argument.
//
// Step 3
// ======
// Take the unreduced part and remove the multiples of 2pi.
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
//
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
// N * 2^(k+1)
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N2pi + M * pi/2^k
//
//
// Sin(x) = Sin((nfloat * pi/2^k) + r)
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
//
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
// = Sin(Mpi/2^k)
//
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
// = Cos(Mpi/2^k)
//
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
//
// Step 4
// ======
// 0 <= M < 2^(k+1)
// There are 2^(k+1) Sin entries in a table.
// There are 2^(k+1) Cos entries in a table.
//
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
//
//
// Step 5
// ======
// Calculate Cos(r) and Sin(r) by polynomial approximation.
//
// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
//
// and the coefficients q1, q2 and p1, p2 are stored in a table
//
//
// Calculate
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
// as follows
//
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
// rsq = r*r
//
//
// P = p1 + r^2p2
// Q = q1 + r^2q2
//
// rcub = r * rsq
// Sin(r) = r + rcub * P
// = r + r^3p1 + r^5p2 = Sin(r)
//
// P = r + rcub * P
//
// Answer = S[m] Cos(r) + C[m] P
//
// Cos(r) = 1 + rsq Q
// Cos(r) = 1 + r^2 Q
// Cos(r) = 1 + r^2 (q1 + r^2q2)
// Cos(r) = 1 + r^2q1 + r^4q2
//
// S[m] Cos(r) = S[m](1 + rsq Q)
// S[m] Cos(r) = S[m] + S[m] rsq Q
// S[m] Cos(r) = S[m] + s_rsq Q
// Q = S[m] + s_rsq Q
//
// Then,
//
// Answer = Q + C[m] P
// Registers used
//==============================================================
// general input registers:
// r14 -> r19
// r32 -> r49
// predicate registers used:
// p6 -> p14
// floating-point registers used
// f9 -> f15
// f32 -> f100
// Assembly macros
//==============================================================
cisf_Arg = f8
cisf_Sin_res = f9
cisf_Cos_res = f8
cisf_NORM_f8 = f10
cisf_W = f11
cisf_int_Nfloat = f12
cisf_Nfloat = f13
cisf_r = f14
cisf_r_exact = f68
cisf_rsq = f15
cisf_rcub = f32
cisf_Inv_Pi_by_16 = f33
cisf_Pi_by_16_hi = f34
cisf_Pi_by_16_lo = f35
cisf_Inv_Pi_by_64 = f36
cisf_Pi_by_64_hi = f37
cisf_Pi_by_64_lo = f38
cisf_P1 = f39
cisf_Q1 = f40
cisf_P2 = f41
cisf_Q2 = f42
cisf_P3 = f43
cisf_Q3 = f44
cisf_P4 = f45
cisf_Q4 = f46
cisf_P_temp1 = f47
cisf_P_temp2 = f48
cisf_Q_temp1 = f49
cisf_Q_temp2 = f50
cisf_P = f51
cisf_SIG_INV_PI_BY_16_2TO61 = f52
cisf_RSHF_2TO61 = f53
cisf_RSHF = f54
cisf_2TOM61 = f55
cisf_NFLOAT = f56
cisf_W_2TO61_RSH = f57
cisf_tmp = f58
cisf_Sm_sin = f59
cisf_Cm_sin = f60
cisf_Sm_cos = f61
cisf_Cm_cos = f62
cisf_srsq_sin = f63
cisf_srsq_cos = f64
cisf_Q_sin = f65
cisf_Q_cos = f66
cisf_Q = f67
/////////////////////////////////////////////////////////////
cisf_pResSin = r33
cisf_pResCos = r34
cisf_exp_limit = r35
cisf_r_signexp = r36
cisf_AD_beta_table = r37
cisf_r_sincos = r38
cisf_r_exp = r39
cisf_r_17_ones = r40
cisf_GR_sig_inv_pi_by_16 = r14
cisf_GR_rshf_2to61 = r15
cisf_GR_rshf = r16
cisf_GR_exp_2tom61 = r17
cisf_GR_n = r18
cisf_GR_n_sin = r19
cisf_GR_m_sin = r41
cisf_GR_32m_sin = r41
cisf_GR_n_cos = r42
cisf_GR_m_cos = r43
cisf_GR_32m_cos = r43
cisf_AD_2_sin = r44
cisf_AD_2_cos = r45
cisf_gr_tmp = r46
GR_SAVE_B0 = r47
GR_SAVE_GP = r48
rB0_SAVED = r49
GR_SAVE_PFS = r50
GR_SAVE_PR = r51
cisf_AD_1 = r52
RODATA
.align 16
// Pi/16 parts
LOCAL_OBJECT_START(double_cisf_pi)
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
LOCAL_OBJECT_END(double_cisf_pi)
// Coefficients for polynomials
LOCAL_OBJECT_START(double_cisf_pq_k4)
data8 0x3F810FABB668E9A2 // P2
data8 0x3FA552E3D6DE75C9 // Q2
data8 0xBFC555554447BC7F // P1
data8 0xBFDFFFFFC447610A // Q1
LOCAL_OBJECT_END(double_cisf_pq_k4)
// Sincos table (S[m], C[m])
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
data8 0x0000000000000000 // sin ( 0 Pi / 16 )
data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
//
data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
//
data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
//
data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
//
data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
//
data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
//
data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
//
data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
//
data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
data8 0x0000000000000000 // cos ( 8 Pi / 16 )
//
data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
//
data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
//
data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
//
data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
//
data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
//
data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
//
data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
//
data8 0x0000000000000000 // sin ( 16 Pi / 16 )
data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
//
data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
//
data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
//
data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
//
data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
//
data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
//
data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
//
data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
//
data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
data8 0x0000000000000000 // cos ( 24 Pi / 16 )
//
data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
//
data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
//
data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
//
data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
//
data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
//
data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
//
data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
//
data8 0x0000000000000000 // sin ( 32 Pi / 16 )
data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
.section .text
GLOBAL_IEEE754_ENTRY(sincosf)
// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
{ .mlx
alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0
movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
}
// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
{ .mlx
addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
};;
{ .mfi
ld8 cisf_AD_1 = [cisf_AD_1]
fnorm.s1 cisf_NORM_f8 = cisf_Arg
cmp.eq p13, p14 = r0, r0 // p13 set for sincos
}
// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
{ .mib
mov cisf_GR_exp_2tom61 = 0xffff-61
nop.i 0
br.cond.sptk _CISF_COMMON
};;
GLOBAL_IEEE754_END(sincosf)
GLOBAL_LIBM_ENTRY(__libm_sincosf)
{ .mlx
// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
alloc GR_SAVE_PFS = ar.pfs,0,21,0,0
movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
}
// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
{ .mlx
addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
movl cisf_GR_rshf_2to61 = 0x47b8000000000000
};;
// p14 set for __libm_sincos and cis
{ .mfi
ld8 cisf_AD_1 = [cisf_AD_1]
fnorm.s1 cisf_NORM_f8 = cisf_Arg
cmp.eq p14, p13 = r0, r0
}
// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
{ .mib
mov cisf_GR_exp_2tom61 = 0xffff-61
nop.i 0
nop.b 0
};;
_CISF_COMMON:
// Form two constants we need
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
// fcmp used to set denormal, and invalid on snans
{ .mfi
setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan
addl cisf_gr_tmp = -1, r0
}
// cisf_GR_rshf = 1.1000 2^63 for right shift
{ .mlx
setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61
movl cisf_GR_rshf = 0x43e8000000000000
};;
// Form another constant
// 2^-61 for scaling Nfloat
// 0x10017 is register_bias + 24.
// So if f8 >= 2^24, go to large args routine
{ .mmi
getf.exp cisf_r_signexp = cisf_Arg
setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61
mov cisf_exp_limit = 0x10017
};;
// Load the two pieces of pi/16
// Form another constant
// 1.1000...000 * 2^63, the right shift constant
{ .mmb
ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16
setf.d cisf_RSHF = cisf_GR_rshf
(p6) br.cond.spnt _CISF_SPECIAL_ARGS
};;
{ .mmi
ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16
setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set
nop.i 0
};;
// Start loading P, Q coefficients
{ .mmi
ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16
nop.m 0
dep.z cisf_r_exp = cisf_r_signexp, 0, 17
};;
// p10 is true if we must call routines to handle larger arguments
// p10 is true if f8 exp is >= 0x10017
{ .mmb
ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16
cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit
(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path
};;
// cisf_W = x * cisf_Inv_Pi_by_16
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
// rightmost bits of significand
{ .mfi
nop.m 0
fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
nop.i 0
};;
// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
{ .mfi
nop.m 0
fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
nop.i 0
};;
// N = (int)cisf_int_Nfloat
{ .mfi
getf.sig cisf_GR_n = cisf_W_2TO61_RSH
nop.f 0
nop.i 0
};;
// Add 2^(k-1) (which is in cisf_r_sincos) to N
// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
{ .mfi
add cisf_GR_n_cos = 0x8, cisf_GR_n
fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
nop.i 0
};;
//Get M (least k+1 bits of N)
{ .mmi
and cisf_GR_m_sin = 0x1f,cisf_GR_n
and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos
nop.i 0
};;
{ .mmi
shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1
shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1
nop.i 0
};;
// den. input to set uflow
{ .mmf
ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
fclass.m.unc p10,p0 = cisf_Arg,0x0b
};;
{ .mfi
nop.m 0
fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2
nop.i 0
}
{ .mfi
nop.m 0
fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag
nop.i 0
};;
{ .mmf
nop.m 0
nop.m 0
fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
};;
{ .mfi
nop.m 0
fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq
nop.i 0
}
{ .mfi
nop.m 0
fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
nop.i 0
};;
// If den. arg, force underflow to be set
{ .mfi
nop.m 0
(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg
nop.i 0
};;
//Final sin
{ .mfi
nop.m 0
fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin
nop.i 0
}
//Final cos
{ .mfb
nop.m 0
fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos
(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path
};;
{ .mmb
stfs [cisf_pResSin] = cisf_Sin_res
stfs [cisf_pResCos] = cisf_Cos_res
br.ret.sptk b0 // common exit for sincos main path
};;
_CISF_SPECIAL_ARGS:
// sinf(+/-0) = +/-0
// sinf(Inf) = NaN
// sinf(NaN) = NaN
{ .mfi
nop.m 999
fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
nop.i 999
};;
// cosf(+/-0) = 1.0
// cosf(Inf) = NaN
// cosf(NaN) = NaN
{ .mfb
nop.m 999
fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path
};;
{ .mmb
stfs [cisf_pResSin] = cisf_Sin_res
stfs [cisf_pResCos] = cisf_Cos_res
br.ret.sptk b0 // special exit for sincos main path
};;
// exit for sincos
// NOTE! r8 and r9 used only because of compiler issue
// connected with float point complex function arguments pass
// After fix of this issue this operations can be deleted
_CISF_RETURN:
{ .mmb
getf.s r8 = cisf_Cos_res
getf.s r9 = cisf_Sin_res
br.ret.sptk b0 // exit for sincos
};;
GLOBAL_LIBM_END(__libm_sincosf)
//// |x| > 2^24 path ///////
.proc _CISF_LARGE_ARGS
_CISF_LARGE_ARGS:
.prologue
{ .mfi
nop.m 0
nop.f 0
.save ar.pfs, GR_SAVE_PFS
mov GR_SAVE_PFS = ar.pfs
};;
{ .mfi
mov GR_SAVE_GP = gp
nop.f 0
.save b0, GR_SAVE_B0
mov GR_SAVE_B0 = b0
};;
.body
// Call of huge arguments sincos
{ .mib
nop.m 0
mov GR_SAVE_PR = pr
br.call.sptk b0 = __libm_sincos_large
};;
{ .mfi
mov gp = GR_SAVE_GP
nop.f 0
mov pr = GR_SAVE_PR, 0x1fffe
}
;;
{ .mfi
nop.m 0
nop.f 0
mov b0 = GR_SAVE_B0
}
;;
{ .mfi
nop.m 0
fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0
mov ar.pfs = GR_SAVE_PFS
}
// exit for |x| > 2^24 path (__libm_sincos and cis)
{ .mfb
nop.m 0
fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0
(p14) br.cond.sptk _CISF_RETURN
};;
{ .mmb
stfs [cisf_pResSin] = cisf_Sin_res
stfs [cisf_pResCos] = cisf_Cos_res
br.ret.sptk b0 // exit for sincos |x| > 2^24 path
};;
.endp _CISF_LARGE_ARGS
.type __libm_sincos_large#,@function
.global __libm_sincos_large#
|