1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
|
.file "libm_sincosl.s"
// Copyright (c) 2000 - 2004, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// History:
// 05/13/02 Initial version of sincosl (based on libm's sinl and cosl)
// 02/10/03 Reordered header: .section, .global, .proc, .align;
// used data8 for long double table values
// 10/13/03 Corrected .file name
// 02/11/04 cisl is moved to the separate file.
// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
//
//*********************************************************************
//
// Function: Combined sincosl routine with 3 different API's
//
// API's
//==============================================================
// 1) void sincosl(long double, long double*s, long double*c)
// 2) __libm_sincosl - internal LIBM function, that accepts
// argument in f8 and returns cosine through f8, sine through f9
//
//
//*********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input x and cosl return value),
// f9 (sinl returned)
// f32-f121
//
// General Purpose Registers:
// r32-r61
//
// Predicate Registers: p6-p15
//
//*********************************************************************
//
// IEEE Special Conditions:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions do not occur
// Underflow exceptions raised when appropriate for sincosl
// (No specialized error handling for this routine)
// Inexact raised when appropriate by algorithm
//
// sincosl(SNaN) = QNaN, QNaN
// sincosl(QNaN) = QNaN, QNaN
// sincosl(inf) = QNaN, QNaN
// sincosl(+/-0) = +/-0, 1
//
//*********************************************************************
//
// Mathematical Description
// ========================
//
// The computation of FSIN and FCOS performed in parallel.
//
// Arg = N pi/2 + alpha, |alpha| <= pi/4.
//
// cosl( Arg ) = sinl( (N+1) pi/2 + alpha ),
//
// therefore, the code for computing sine will produce cosine as long
// as 1 is added to N immediately after the argument reduction
// process.
//
// Let M = N if sine
// N+1 if cosine.
//
// Now, given
//
// Arg = M pi/2 + alpha, |alpha| <= pi/4,
//
// let I = M mod 4, or I be the two lsb of M when M is represented
// as 2's complement. I = [i_0 i_1]. Then
//
// sinl( Arg ) = (-1)^i_0 sinl( alpha ) if i_1 = 0,
// = (-1)^i_0 cosl( alpha ) if i_1 = 1.
//
// For example:
// if M = -1, I = 11
// sin ((-pi/2 + alpha) = (-1) cos (alpha)
// if M = 0, I = 00
// sin (alpha) = sin (alpha)
// if M = 1, I = 01
// sin (pi/2 + alpha) = cos (alpha)
// if M = 2, I = 10
// sin (pi + alpha) = (-1) sin (alpha)
// if M = 3, I = 11
// sin ((3/2)pi + alpha) = (-1) cos (alpha)
//
// The value of alpha is obtained by argument reduction and
// represented by two working precision numbers r and c where
//
// alpha = r + c accurately.
//
// The reduction method is described in a previous write up.
// The argument reduction scheme identifies 4 cases. For Cases 2
// and 4, because |alpha| is small, sinl(r+c) and cosl(r+c) can be
// computed very easily by 2 or 3 terms of the Taylor series
// expansion as follows:
//
// Case 2:
// -------
//
// sinl(r + c) = r + c - r^3/6 accurately
// cosl(r + c) = 1 - 2^(-67) accurately
//
// Case 4:
// -------
//
// sinl(r + c) = r + c - r^3/6 + r^5/120 accurately
// cosl(r + c) = 1 - r^2/2 + r^4/24 accurately
//
// The only cases left are Cases 1 and 3 of the argument reduction
// procedure. These two cases will be merged since after the
// argument is reduced in either cases, we have the reduced argument
// represented as r + c and that the magnitude |r + c| is not small
// enough to allow the usage of a very short approximation.
//
// The required calculation is either
//
// sinl(r + c) = sinl(r) + correction, or
// cosl(r + c) = cosl(r) + correction.
//
// Specifically,
//
// sinl(r + c) = sinl(r) + c sin'(r) + O(c^2)
// = sinl(r) + c cos (r) + O(c^2)
// = sinl(r) + c(1 - r^2/2) accurately.
// Similarly,
//
// cosl(r + c) = cosl(r) - c sinl(r) + O(c^2)
// = cosl(r) - c(r - r^3/6) accurately.
//
// We therefore concentrate on accurately calculating sinl(r) and
// cosl(r) for a working-precision number r, |r| <= pi/4 to within
// 0.1% or so.
//
// The greatest challenge of this task is that the second terms of
// the Taylor series
//
// r - r^3/3! + r^r/5! - ...
//
// and
//
// 1 - r^2/2! + r^4/4! - ...
//
// are not very small when |r| is close to pi/4 and the rounding
// errors will be a concern if simple polynomial accumulation is
// used. When |r| < 2^-3, however, the second terms will be small
// enough (6 bits or so of right shift) that a normal Horner
// recurrence suffices. Hence there are two cases that we consider
// in the accurate computation of sinl(r) and cosl(r), |r| <= pi/4.
//
// Case small_r: |r| < 2^(-3)
// --------------------------
//
// Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
// we have
//
// sinl(Arg) = (-1)^i_0 * sinl(r + c) if i_1 = 0
// = (-1)^i_0 * cosl(r + c) if i_1 = 1
//
// can be accurately approximated by
//
// sinl(Arg) = (-1)^i_0 * [sinl(r) + c] if i_1 = 0
// = (-1)^i_0 * [cosl(r) - c*r] if i_1 = 1
//
// because |r| is small and thus the second terms in the correction
// are unneccessary.
//
// Finally, sinl(r) and cosl(r) are approximated by polynomials of
// moderate lengths.
//
// sinl(r) = r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
// cosl(r) = 1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
//
// We can make use of predicates to selectively calculate
// sinl(r) or cosl(r) based on i_1.
//
// Case normal_r: 2^(-3) <= |r| <= pi/4
// ------------------------------------
//
// This case is more likely than the previous one if one considers
// r to be uniformly distributed in [-pi/4 pi/4]. Again,
//
// sinl(Arg) = (-1)^i_0 * sinl(r + c) if i_1 = 0
// = (-1)^i_0 * cosl(r + c) if i_1 = 1.
//
// Because |r| is now larger, we need one extra term in the
// correction. sinl(Arg) can be accurately approximated by
//
// sinl(Arg) = (-1)^i_0 * [sinl(r) + c(1-r^2/2)] if i_1 = 0
// = (-1)^i_0 * [cosl(r) - c*r*(1 - r^2/6)] i_1 = 1.
//
// Finally, sinl(r) and cosl(r) are approximated by polynomials of
// moderate lengths.
//
// sinl(r) = r + PP_1_hi r^3 + PP_1_lo r^3 +
// PP_2 r^5 + ... + PP_8 r^17
//
// cosl(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
//
// where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
// The crux in accurate computation is to calculate
//
// r + PP_1_hi r^3 or 1 + QQ_1 r^2
//
// accurately as two pieces: U_hi and U_lo. The way to achieve this
// is to obtain r_hi as a 10 sig. bit number that approximates r to
// roughly 8 bits or so of accuracy. (One convenient way is
//
// r_hi := frcpa( frcpa( r ) ).)
//
// This way,
//
// r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 +
// PP_1_hi (r^3 - r_hi^3)
// = [r + PP_1_hi r_hi^3] +
// [PP_1_hi (r - r_hi)
// (r^2 + r_hi r + r_hi^2) ]
// = U_hi + U_lo
//
// Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
// PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
// exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
// and that there is no more than 8 bit shift off between r and
// PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
// calculated without any error. Finally, the fact that
//
// |U_lo| <= 2^(-8) |U_hi|
//
// says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
// 8 extra bits of accuracy.
//
// Similarly,
//
// 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] +
// [QQ_1 (r - r_hi)(r + r_hi)]
// = U_hi + U_lo.
//
// Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
//
// If i_1 = 0, then
//
// U_hi := r + PP_1_hi * r_hi^3
// U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
// poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
// correction := c * ( 1 + C_1 r^2 )
//
// Else ...i_1 = 1
//
// U_hi := 1 + QQ_1 * r_hi * r_hi
// U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
// poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
// correction := -c * r * (1 + S_1 * r^2)
//
// End
//
// Finally,
//
// V := poly + ( U_lo + correction )
//
// / U_hi + V if i_0 = 0
// result := |
// \ (-U_hi) - V if i_0 = 1
//
// It is important that in the last step, negation of U_hi is
// performed prior to the subtraction which is to be performed in
// the user-set rounding mode.
//
//
// Algorithmic Description
// =======================
//
// The argument reduction algorithm shares the same code between FSIN and FCOS.
// The argument reduction description given
// previously is repeated below.
//
//
// Step 0. Initialization.
//
// Step 1. Check for exceptional and special cases.
//
// * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
// handling.
// * If |Arg| < 2^24, go to Step 2 for reduction of moderate
// arguments. This is the most likely case.
// * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
// arguments.
// * If |Arg| >= 2^63, go to Step 10 for special handling.
//
// Step 2. Reduction of moderate arguments.
//
// If |Arg| < pi/4 ...quick branch
// N_fix := N_inc (integer)
// r := Arg
// c := 0.0
// Branch to Step 4, Case_1_complete
// Else ...cf. argument reduction
// N := Arg * two_by_PI (fp)
// N_fix := fcvt.fx( N ) (int)
// N := fcvt.xf( N_fix )
// N_fix := N_fix + N_inc
// s := Arg - N * P_1 (first piece of pi/2)
// w := -N * P_2 (second piece of pi/2)
//
// If |s| >= 2^(-33)
// go to Step 3, Case_1_reduce
// Else
// go to Step 7, Case_2_reduce
// Endif
// Endif
//
// Step 3. Case_1_reduce.
//
// r := s + w
// c := (s - r) + w ...observe order
//
// Step 4. Case_1_complete
//
// ...At this point, the reduced argument alpha is
// ...accurately represented as r + c.
// If |r| < 2^(-3), go to Step 6, small_r.
//
// Step 5. Normal_r.
//
// Let [i_0 i_1] by the 2 lsb of N_fix.
// FR_rsq := r * r
// r_hi := frcpa( frcpa( r ) )
// r_lo := r - r_hi
//
// If i_1 = 0, then
// poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
// U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order
// U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
// correction := c + c*C_1*FR_rsq ...any order
// Else
// poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
// U_hi := 1 + QQ_1 * r_hi * r_hi ...any order
// U_lo := QQ_1 * r_lo * (r + r_hi)
// correction := -c*(r + S_1*FR_rsq*r) ...any order
// Endif
//
// V := poly + (U_lo + correction) ...observe order
//
// result := (i_0 == 0? 1.0 : -1.0)
//
// Last instruction in user-set rounding mode
//
// result := (i_0 == 0? result*U_hi + V :
// result*U_hi - V)
//
// Return
//
// Step 6. Small_r.
//
// ...Use flush to zero mode without causing exception
// Let [i_0 i_1] be the two lsb of N_fix.
//
// FR_rsq := r * r
//
// If i_1 = 0 then
// z := FR_rsq*FR_rsq; z := FR_rsq*z *r
// poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
// poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
// correction := c
// result := r
// Else
// z := FR_rsq*FR_rsq; z := FR_rsq*z
// poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
// poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
// correction := -c*r
// result := 1
// Endif
//
// poly := poly_hi + (z * poly_lo + correction)
//
// If i_0 = 1, result := -result
//
// Last operation. Perform in user-set rounding mode
//
// result := (i_0 == 0? result + poly :
// result - poly )
// Return
//
// Step 7. Case_2_reduce.
//
// ...Refer to the write up for argument reduction for
// ...rationale. The reduction algorithm below is taken from
// ...argument reduction description and integrated this.
//
// w := N*P_3
// U_1 := N*P_2 + w ...FMA
// U_2 := (N*P_2 - U_1) + w ...2 FMA
// ...U_1 + U_2 is N*(P_2+P_3) accurately
//
// r := s - U_1
// c := ( (s - r) - U_1 ) - U_2
//
// ...The mathematical sum r + c approximates the reduced
// ...argument accurately. Note that although compared to
// ...Case 1, this case requires much more work to reduce
// ...the argument, the subsequent calculation needed for
// ...any of the trigonometric function is very little because
// ...|alpha| < 1.01*2^(-33) and thus two terms of the
// ...Taylor series expansion suffices.
//
// If i_1 = 0 then
// poly := c + S_1 * r * r * r ...any order
// result := r
// Else
// poly := -2^(-67)
// result := 1.0
// Endif
//
// If i_0 = 1, result := -result
//
// Last operation. Perform in user-set rounding mode
//
// result := (i_0 == 0? result + poly :
// result - poly )
//
// Return
//
//
// Step 8. Pre-reduction of large arguments.
//
// ...Again, the following reduction procedure was described
// ...in the separate write up for argument reduction, which
// ...is tightly integrated here.
// N_0 := Arg * Inv_P_0
// N_0_fix := fcvt.fx( N_0 )
// N_0 := fcvt.xf( N_0_fix)
// Arg' := Arg - N_0 * P_0
// w := N_0 * d_1
// N := Arg' * two_by_PI
// N_fix := fcvt.fx( N )
// N := fcvt.xf( N_fix )
// N_fix := N_fix + N_inc
//
// s := Arg' - N * P_1
// w := w - N * P_2
//
// If |s| >= 2^(-14)
// go to Step 3
// Else
// go to Step 9
// Endif
//
// Step 9. Case_4_reduce.
//
// ...first obtain N_0*d_1 and -N*P_2 accurately
// U_hi := N_0 * d_1 V_hi := -N*P_2
// U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
//
// ...compute the contribution from N_0*d_1 and -N*P_3
// w := -N*P_3
// w := w + N_0*d_2
// t := U_lo + V_lo + w ...any order
//
// ...at this point, the mathematical value
// ...s + U_hi + V_hi + t approximates the true reduced argument
// ...accurately. Just need to compute this accurately.
//
// ...Calculate U_hi + V_hi accurately:
// A := U_hi + V_hi
// if |U_hi| >= |V_hi| then
// a := (U_hi - A) + V_hi
// else
// a := (V_hi - A) + U_hi
// endif
// ...order in computing "a" must be observed. This branch is
// ...best implemented by predicates.
// ...A + a is U_hi + V_hi accurately. Moreover, "a" is
// ...much smaller than A: |a| <= (1/2)ulp(A).
//
// ...Just need to calculate s + A + a + t
// C_hi := s + A t := t + a
// C_lo := (s - C_hi) + A
// C_lo := C_lo + t
//
// ...Final steps for reduction
// r := C_hi + C_lo
// c := (C_hi - r) + C_lo
//
// ...At this point, we have r and c
// ...And all we need is a couple of terms of the corresponding
// ...Taylor series.
//
// If i_1 = 0
// poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
// result := r
// Else
// poly := FR_rsq*(C_1 + FR_rsq*C_2)
// result := 1
// Endif
//
// If i_0 = 1, result := -result
//
// Last operation. Perform in user-set rounding mode
//
// result := (i_0 == 0? result + poly :
// result - poly )
// Return
//
// Large Arguments: For arguments above 2**63, a Payne-Hanek
// style argument reduction is used and pi_by_2 reduce is called.
//
RODATA
.align 64
LOCAL_OBJECT_START(FSINCOSL_CONSTANTS)
sincosl_table_p:
//data4 0x4E44152A, 0xA2F9836E, 0x00003FFE,0x00000000 // Inv_pi_by_2
//data4 0xCE81B9F1, 0xC84D32B0, 0x00004016,0x00000000 // P_0
//data4 0x2168C235, 0xC90FDAA2, 0x00003FFF,0x00000000 // P_1
//data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD,0x00000000 // P_2
//data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C,0x00000000 // P_3
//data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF,0x00000000 // d_1
//data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C,0x00000000 // d_2
data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2
data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
data8 0xC90FDAA22168C235, 0x00003FFF // P_1
data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
LOCAL_OBJECT_END(FSINCOSL_CONSTANTS)
LOCAL_OBJECT_START(sincosl_table_d)
//data4 0x2168C234, 0xC90FDAA2, 0x00003FFE,0x00000000 // pi_by_4
//data4 0x6EC6B45A, 0xA397E504, 0x00003FE7,0x00000000 // Inv_P_0
data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4
data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
data4 0x3E000000, 0xBE000000 // 2^-3 and -2^-3
data4 0x2F000000, 0xAF000000 // 2^-33 and -2^-33
data4 0x9E000000, 0x00000000 // -2^-67
data4 0x00000000, 0x00000000 // pad
LOCAL_OBJECT_END(sincosl_table_d)
LOCAL_OBJECT_START(sincosl_table_pp)
//data4 0xA21C0BC9, 0xCC8ABEBC, 0x00003FCE,0x00000000 // PP_8
//data4 0x720221DA, 0xD7468A05, 0x0000BFD6,0x00000000 // PP_7
//data4 0x640AD517, 0xB092382F, 0x00003FDE,0x00000000 // PP_6
//data4 0xD1EB75A4, 0xD7322B47, 0x0000BFE5,0x00000000 // PP_5
//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
//data4 0x00000000, 0xAAAA0000, 0x0000BFFC,0x00000000 // PP_1_hi
//data4 0xBAF69EEA, 0xB8EF1D2A, 0x00003FEC,0x00000000 // PP_4
//data4 0x0D03BB69, 0xD00D00D0, 0x0000BFF2,0x00000000 // PP_3
//data4 0x88888962, 0x88888888, 0x00003FF8,0x00000000 // PP_2
//data4 0xAAAB0000, 0xAAAAAAAA, 0x0000BFEC,0x00000000 // PP_1_lo
data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8
data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7
data8 0xB092382F640AD517, 0x00003FDE // PP_6
data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5
data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi
data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4
data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3
data8 0x8888888888888962, 0x00003FF8 // PP_2
data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo
LOCAL_OBJECT_END(sincosl_table_pp)
LOCAL_OBJECT_START(sincosl_table_qq)
//data4 0xC2B0FE52, 0xD56232EF, 0x00003FD2 // QQ_8
//data4 0x2B48DCA6, 0xC9C99ABA, 0x0000BFDA // QQ_7
//data4 0x9C716658, 0x8F76C650, 0x00003FE2 // QQ_6
//data4 0xFDA8D0FC, 0x93F27DBA, 0x0000BFE9 // QQ_5
//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC // S_1
//data4 0x00000000, 0x80000000, 0x0000BFFE,0x00000000 // QQ_1
//data4 0x0C6E5041, 0xD00D00D0, 0x00003FEF,0x00000000 // QQ_4
//data4 0x0B607F60, 0xB60B60B6, 0x0000BFF5,0x00000000 // QQ_3
//data4 0xAAAAAA9B, 0xAAAAAAAA, 0x00003FFA,0x00000000 // QQ_2
data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8
data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7
data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6
data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5
data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
data8 0x8000000000000000, 0x0000BFFE // QQ_1
data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4
data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3
data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2
LOCAL_OBJECT_END(sincosl_table_qq)
LOCAL_OBJECT_START(sincosl_table_c)
//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
//data4 0xAAAA719F, 0xAAAAAAAA, 0x00003FFA,0x00000000 // C_2
//data4 0x0356F994, 0xB60B60B6, 0x0000BFF5,0x00000000 // C_3
//data4 0xB2385EA9, 0xD00CFFD5, 0x00003FEF,0x00000000 // C_4
//data4 0x292A14CD, 0x93E4BD18, 0x0000BFE9,0x00000000 // C_5
data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2
data8 0xB60B60B60356F994, 0x0000BFF5 // C_3
data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4
data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5
LOCAL_OBJECT_END(sincosl_table_c)
LOCAL_OBJECT_START(sincosl_table_s)
//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
//data4 0x888868DB, 0x88888888, 0x00003FF8,0x00000000 // S_2
//data4 0x055EFD4B, 0xD00D00D0, 0x0000BFF2,0x00000000 // S_3
//data4 0x839730B9, 0xB8EF1C5D, 0x00003FEC,0x00000000 // S_4
//data4 0xE5B3F492, 0xD71EA3A4, 0x0000BFE5,0x00000000 // S_5
data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
data8 0x88888888888868DB, 0x00003FF8 // S_2
data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3
data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4
data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5
data4 0x38800000, 0xB8800000 // two**-14 and -two**-14
LOCAL_OBJECT_END(sincosl_table_s)
FR_Input_X = f8
FR_Result = f8
FR_ResultS = f9
FR_ResultC = f8
FR_r = f8
FR_c = f9
FR_norm_x = f9
FR_inv_pi_2to63 = f10
FR_rshf_2to64 = f11
FR_2tom64 = f12
FR_rshf = f13
FR_N_float_signif = f14
FR_abs_x = f15
FR_r6 = f32
FR_r7 = f33
FR_Pi_by_4 = f34
FR_Two_to_M14 = f35
FR_Neg_Two_to_M14 = f36
FR_Two_to_M33 = f37
FR_Neg_Two_to_M33 = f38
FR_Neg_Two_to_M67 = f39
FR_Inv_pi_by_2 = f40
FR_N_float = f41
FR_N_fix = f42
FR_P_1 = f43
FR_P_2 = f44
FR_P_3 = f45
FR_s = f46
FR_w = f47
FR_Z = f50
FR_A = f51
FR_a = f52
FR_t = f53
FR_U_1 = f54
FR_U_2 = f55
FR_C_1 = f56
FR_C_2 = f57
FR_C_3 = f58
FR_C_4 = f59
FR_C_5 = f60
FR_S_1 = f61
FR_S_2 = f62
FR_S_3 = f63
FR_S_4 = f64
FR_S_5 = f65
FR_r_hi = f68
FR_r_lo = f69
FR_rsq = f70
FR_r_cubed = f71
FR_C_hi = f72
FR_N_0 = f73
FR_d_1 = f74
FR_V_hi = f75
FR_V_lo = f76
FR_U_hi = f77
FR_U_lo = f78
FR_U_hiabs = f79
FR_V_hiabs = f80
FR_PP_8 = f81
FR_QQ_8 = f101
FR_PP_7 = f82
FR_QQ_7 = f102
FR_PP_6 = f83
FR_QQ_6 = f103
FR_PP_5 = f84
FR_QQ_5 = f104
FR_PP_4 = f85
FR_QQ_4 = f105
FR_PP_3 = f86
FR_QQ_3 = f106
FR_PP_2 = f87
FR_QQ_2 = f107
FR_QQ_1 = f108
FR_r_hi_sq = f88
FR_N_0_fix = f89
FR_Inv_P_0 = f90
FR_d_2 = f93
FR_P_0 = f95
FR_C_lo = f96
FR_PP_1 = f97
FR_PP_1_lo = f98
FR_ArgPrime = f99
FR_inexact = f100
FR_Neg_Two_to_M3 = f109
FR_Two_to_M3 = f110
FR_poly_hiS = f66
FR_poly_hiC = f112
FR_poly_loS = f67
FR_poly_loC = f113
FR_polyS = f92
FR_polyC = f114
FR_cS = FR_c
FR_cC = f115
FR_corrS = f91
FR_corrC = f116
FR_U_hiC = f117
FR_U_loC = f118
FR_VS = f75
FR_VC = f119
FR_FirstS = f120
FR_FirstC = f121
FR_U_hiS = FR_U_hi
FR_U_loS = FR_U_lo
FR_Tmp = f94
sincos_pResSin = r34
sincos_pResCos = r35
GR_exp_m2_to_m3= r36
GR_N_Inc = r37
GR_Cis = r38
GR_signexp_x = r40
GR_exp_x = r40
GR_exp_mask = r41
GR_exp_2_to_63 = r42
GR_exp_2_to_m3 = r43
GR_exp_2_to_24 = r44
GR_N_SignS = r45
GR_N_SignC = r46
GR_N_SinCos = r47
GR_sig_inv_pi = r48
GR_rshf_2to64 = r49
GR_exp_2tom64 = r50
GR_rshf = r51
GR_ad_p = r52
GR_ad_d = r53
GR_ad_pp = r54
GR_ad_qq = r55
GR_ad_c = r56
GR_ad_s = r57
GR_ad_ce = r58
GR_ad_se = r59
GR_ad_m14 = r60
GR_ad_s1 = r61
// For unwind support
GR_SAVE_B0 = r39
GR_SAVE_GP = r40
GR_SAVE_PFS = r41
.section .text
GLOBAL_IEEE754_ENTRY(sincosl)
{ .mlx ///////////////////////////// 1 /////////////////
alloc r32 = ar.pfs,3,27,2,0
movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
}
{ .mlx
mov GR_N_Inc = 0x0
movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
};;
{ .mfi ///////////////////////////// 2 /////////////////
addl GR_ad_p = @ltoff(FSINCOSL_CONSTANTS#), gp
fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test x natval, nan, inf
mov GR_exp_2_to_m3 = 0xffff - 3 // Exponent of 2^-3
}
{ .mfb
mov GR_Cis = 0x0
fnorm.s1 FR_norm_x = FR_Input_X // Normalize x
br.cond.sptk _COMMON_SINCOSL
};;
GLOBAL_IEEE754_END(sincosl)
GLOBAL_LIBM_ENTRY(__libm_sincosl)
{ .mlx ///////////////////////////// 1 /////////////////
alloc r32 = ar.pfs,3,27,2,0
movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
}
{ .mlx
mov GR_N_Inc = 0x0
movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
};;
{ .mfi ///////////////////////////// 2 /////////////////
addl GR_ad_p = @ltoff(FSINCOSL_CONSTANTS#), gp
fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test x natval, nan, inf
mov GR_exp_2_to_m3 = 0xffff - 3 // Exponent of 2^-3
}
{ .mfb
mov GR_Cis = 0x1
fnorm.s1 FR_norm_x = FR_Input_X // Normalize x
nop.b 0
};;
_COMMON_SINCOSL:
{ .mfi ///////////////////////////// 3 /////////////////
setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
nop.f 0
mov GR_exp_2tom64 = 0xffff - 64 // Scaling constant to compute N
}
{ .mlx
setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64)
movl GR_rshf = 0x43e8000000000000 // Form const 1.1000 * 2^63
};;
{ .mfi ///////////////////////////// 4 /////////////////
ld8 GR_ad_p = [GR_ad_p] // Point to Inv_pi_by_2
fclass.m p7, p0 = FR_Input_X, 0x0b // Test x denormal
nop.i 0
};;
{ .mfi ///////////////////////////// 5 /////////////////
getf.exp GR_signexp_x = FR_Input_X // Get sign and exponent of x
fclass.m p10, p0 = FR_Input_X, 0x007 // Test x zero
nop.i 0
}
{ .mib
mov GR_exp_mask = 0x1ffff // Exponent mask
nop.i 0
(p6) br.cond.spnt SINCOSL_SPECIAL // Branch if x natval, nan, inf
};;
{ .mfi ///////////////////////////// 6 /////////////////
setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float
nop.f 0
add GR_ad_d = 0x70, GR_ad_p // Point to constant table d
}
{ .mib
setf.d FR_rshf = GR_rshf // Form right shift const 1.1000 * 2^63
mov GR_exp_m2_to_m3 = 0x2fffc // Form -(2^-3)
(p7) br.cond.spnt SINCOSL_DENORMAL // Branch if x denormal
};;
SINCOSL_COMMON2:
{ .mfi ///////////////////////////// 7 /////////////////
and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test x unsupported type
mov GR_exp_2_to_63 = 0xffff + 63 // Exponent of 2^63
}
{ .mib
add GR_ad_pp = 0x40, GR_ad_d // Point to constant table pp
mov GR_exp_2_to_24 = 0xffff + 24 // Exponent of 2^24
(p10) br.cond.spnt SINCOSL_ZERO // Branch if x zero
};;
{ .mfi ///////////////////////////// 8 /////////////////
ldfe FR_Inv_pi_by_2 = [GR_ad_p], 16 // Load 2/pi
fcmp.eq.s0 p15, p0 = FR_Input_X, f0 // Dummy to set denormal
add GR_ad_qq = 0xa0, GR_ad_pp // Point to constant table qq
}
{ .mfi
ldfe FR_Pi_by_4 = [GR_ad_d], 16 // Load pi/4 for range test
nop.f 0
cmp.ge p10,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63
};;
{ .mfi ///////////////////////////// 9 /////////////////
ldfe FR_P_0 = [GR_ad_p], 16 // Load P_0 for pi/4 <= |x| < 2^63
fmerge.s FR_abs_x = f1, FR_norm_x // |x|
add GR_ad_c = 0x90, GR_ad_qq // Point to constant table c
}
{ .mfi
ldfe FR_Inv_P_0 = [GR_ad_d], 16 // Load 1/P_0 for pi/4 <= |x| < 2^63
nop.f 0
cmp.ge p7,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24
};;
{ .mfi ///////////////////////////// 10 /////////////////
ldfe FR_P_1 = [GR_ad_p], 16 // Load P_1 for pi/4 <= |x| < 2^63
nop.f 0
add GR_ad_s = 0x50, GR_ad_c // Point to constant table s
}
{ .mfi
ldfe FR_PP_8 = [GR_ad_pp], 16 // Load PP_8 for 2^-3 < |r| < pi/4
nop.f 0
nop.i 0
};;
{ .mfi ///////////////////////////// 11 /////////////////
ldfe FR_P_2 = [GR_ad_p], 16 // Load P_2 for pi/4 <= |x| < 2^63
nop.f 0
add GR_ad_ce = 0x40, GR_ad_c // Point to end of constant table c
}
{ .mfi
ldfe FR_QQ_8 = [GR_ad_qq], 16 // Load QQ_8 for 2^-3 < |r| < pi/4
nop.f 0
nop.i 0
};;
{ .mfi ///////////////////////////// 12 /////////////////
ldfe FR_QQ_7 = [GR_ad_qq], 16 // Load QQ_7 for 2^-3 < |r| < pi/4
fma.s1 FR_N_float_signif = FR_Input_X, FR_inv_pi_2to63, FR_rshf_2to64
add GR_ad_se = 0x40, GR_ad_s // Point to end of constant table s
}
{ .mib
ldfe FR_PP_7 = [GR_ad_pp], 16 // Load PP_7 for 2^-3 < |r| < pi/4
mov GR_ad_s1 = GR_ad_s // Save pointer to S_1
(p10) br.cond.spnt SINCOSL_ARG_TOO_LARGE // Branch if |x| >= 2^63
// Use Payne-Hanek Reduction
};;
{ .mfi ///////////////////////////// 13 /////////////////
ldfe FR_P_3 = [GR_ad_p], 16 // Load P_3 for pi/4 <= |x| < 2^63
fmerge.se FR_r = FR_norm_x, FR_norm_x // r = x, in case |x| < pi/4
add GR_ad_m14 = 0x50, GR_ad_s // Point to constant table m14
}
{ .mfb
ldfps FR_Two_to_M3, FR_Neg_Two_to_M3 = [GR_ad_d], 8
fma.s1 FR_rsq = FR_norm_x, FR_norm_x, f0 // rsq = x*x, in case |x| < pi/4
(p7) br.cond.spnt SINCOSL_LARGER_ARG // Branch if 2^24 <= |x| < 2^63
// Use pre-reduction
};;
{ .mmf ///////////////////////////// 14 /////////////////
ldfe FR_PP_6 = [GR_ad_pp], 16 // Load PP_6 for normal path
ldfe FR_QQ_6 = [GR_ad_qq], 16 // Load QQ_6 for normal path
fmerge.se FR_c = f0, f0 // c = 0 in case |x| < pi/4
};;
{ .mmf ///////////////////////////// 15 /////////////////
ldfe FR_PP_5 = [GR_ad_pp], 16 // Load PP_5 for normal path
ldfe FR_QQ_5 = [GR_ad_qq], 16 // Load QQ_5 for normal path
nop.f 0
};;
// Here if 0 < |x| < 2^24
{ .mfi ///////////////////////////// 17 /////////////////
ldfe FR_S_5 = [GR_ad_se], -16 // Load S_5 if i_1=0
fcmp.lt.s1 p6, p7 = FR_abs_x, FR_Pi_by_4 // Test |x| < pi/4
nop.i 0
}
{ .mfi
ldfe FR_C_5 = [GR_ad_ce], -16 // Load C_5 if i_1=1
fms.s1 FR_N_float = FR_N_float_signif, FR_2tom64, FR_rshf
nop.i 0
};;
{ .mmi ///////////////////////////// 18 /////////////////
ldfe FR_S_4 = [GR_ad_se], -16 // Load S_4 if i_1=0
ldfe FR_C_4 = [GR_ad_ce], -16 // Load C_4 if i_1=1
nop.i 0
};;
//
// N = Arg * 2/pi
// Check if Arg < pi/4
//
//
// Case 2: Convert integer N_fix back to normalized floating-point value.
// Case 1: p8 is only affected when p6 is set
//
//
// Grab the integer part of N and call it N_fix
//
{ .mfi ///////////////////////////// 19 /////////////////
(p7) ldfps FR_Two_to_M33, FR_Neg_Two_to_M33 = [GR_ad_d], 8
(p6) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // r^3 if |x| < pi/4
(p6) mov GR_N_Inc = 0x0 // N_IncS if |x| < pi/4
};;
// If |x| < pi/4, r = x and c = 0
// lf |x| < pi/4, is x < 2**(-3).
// r = Arg
// c = 0
{ .mmi ///////////////////////////// 20 /////////////////
(p7) getf.sig GR_N_Inc = FR_N_float_signif
nop.m 0
(p6) cmp.lt.unc p8,p0 = GR_exp_x, GR_exp_2_to_m3 // Is |x| < 2^-3
};;
//
// lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
// If |x| >= pi/4,
// Create the right N for |x| < pi/4 and otherwise
// Case 2: Place integer part of N in GP register
//
{ .mbb ///////////////////////////// 21 /////////////////
nop.m 0
(p8) br.cond.spnt SINCOSL_SMALL_R_0 // Branch if 0 < |x| < 2^-3
(p6) br.cond.spnt SINCOSL_NORMAL_R_0 // Branch if 2^-3 <= |x| < pi/4
};;
// Here if pi/4 <= |x| < 2^24
{ .mfi
ldfs FR_Neg_Two_to_M67 = [GR_ad_d], 8 // Load -2^-67
fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X // s = -N * P_1 + Arg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_w = FR_N_float, FR_P_2, f0 // w = N * P_2
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r = FR_s, f1, FR_w // r = s - w, assume |s| >= 2^-33
nop.i 0
};;
{ .mfi
nop.m 0
fcmp.lt.s1 p7, p6 = FR_s, FR_Two_to_M33
nop.i 0
};;
{ .mfi
nop.m 0
(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33 // p6 if |s| >= 2^-33, else p7
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_c = FR_s, f1, FR_r // c = s - r, for |s| >= 2^-33
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r, for |s| >= 2^-33
nop.i 0
};;
{ .mfi
nop.m 0
(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0
nop.i 0
};;
{ .mmf
ldfe FR_C_1 = [GR_ad_pp], 16 // Load C_1 if i_1=0
ldfe FR_S_1 = [GR_ad_qq], 16 // Load S_1 if i_1=1
frcpa.s1 FR_r_hi, p15 = f1, FR_r // r_hi = frcpa(r)
};;
{ .mfi
nop.m 0
(p6) fcmp.lt.unc.s1 p8, p13 = FR_r, FR_Two_to_M3 // If big s, test r with 2^-3
nop.i 0
};;
{ .mfi
nop.m 0
(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
nop.i 0
};;
//
// For big s: r = s - w: No futher reduction is necessary
// For small s: w = N * P_3 (change sign) More reduction
//
{ .mfi
nop.m 0
(p8) fcmp.gt.s1 p8, p13 = FR_r, FR_Neg_Two_to_M3 // If big s, p8 if |r| < 2^-3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
nop.i 0
};;
{ .mfi
nop.m 0
(p7) fms.s1 FR_r = FR_s, f1, FR_U_1
nop.i 0
};;
{ .mfi
nop.m 0
(p6) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // rcubed = r * rsq
nop.i 0
};;
{ .mfi
//
// For big s: Is |r| < 2**(-3)?
// For big s: c = S - r
// For small s: U_1 = N * P_2 + w
//
// If p8 is set, prepare to branch to Small_R.
// If p9 is set, prepare to branch to Normal_R.
// For big s, r is complete here.
//
//
// For big s: c = c + w (w has not been negated.)
// For small s: r = S - U_1
//
nop.m 0
(p6) fms.s1 FR_c = FR_c, f1, FR_w
nop.i 0
}
{ .mbb
nop.m 0
(p8) br.cond.spnt SINCOSL_SMALL_R_1 // Branch if |s|>=2^-33, |r| < 2^-3,
// and pi/4 <= |x| < 2^24
(p13) br.cond.sptk SINCOSL_NORMAL_R_1 // Branch if |s|>=2^-33, |r| >= 2^-3,
// and pi/4 <= |x| < 2^24
};;
SINCOSL_S_TINY:
//
// Here if |s| < 2^-33, and pi/4 <= |x| < 2^24
//
{ .mfi
and GR_N_SinCos = 0x1, GR_N_Inc
fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
tbit.z p8,p12 = GR_N_Inc, 0
};;
//
// For small s: U_2 = N * P_2 - U_1
// S_1 stored constant - grab the one stored with the
// coefficients.
//
{ .mfi
ldfe FR_S_1 = [GR_ad_s1], 16
fma.s1 FR_polyC = f0, f1, FR_Neg_Two_to_M67
sub GR_N_SignS = GR_N_Inc, GR_N_SinCos
}
{ .mfi
add GR_N_SignC = GR_N_Inc, GR_N_SinCos
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_s = FR_s, f1, FR_r
(p8) tbit.z.unc p10,p11 = GR_N_SignC, 1
}
{ .mfi
nop.m 0
fma.s1 FR_rsq = FR_r, FR_r, f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_U_2 = FR_U_2, f1, FR_w
(p8) tbit.z.unc p8,p9 = GR_N_SignS, 1
};;
{ .mfi
nop.m 0
fmerge.se FR_FirstS = FR_r, FR_r
(p12) tbit.z.unc p14,p15 = GR_N_SignC, 1
}
{ .mfi
nop.m 0
fma.s1 FR_FirstC = f0, f1, f1
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_c = FR_s, f1, FR_U_1
(p12) tbit.z.unc p12,p13 = GR_N_SignS, 1
};;
{ .mfi
nop.m 0
fma.s1 FR_r = FR_S_1, FR_r, f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s0 FR_S_1 = FR_S_1, FR_S_1, f0
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_c = FR_c, f1, FR_U_2
nop.i 0
};;
.pred.rel "mutex",p9,p15
{ .mfi
nop.m 0
(p9) fms.s0 FR_FirstS = f1, f0, FR_FirstS
nop.i 0
}
{ .mfi
nop.m 0
(p15) fms.s0 FR_FirstS = f1, f0, FR_FirstS
nop.i 0
};;
.pred.rel "mutex",p11,p13
{ .mfi
nop.m 0
(p11) fms.s0 FR_FirstC = f1, f0, FR_FirstC
nop.i 0
}
{ .mfi
nop.m 0
(p13) fms.s0 FR_FirstC = f1, f0, FR_FirstC
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_r, FR_rsq, FR_c
nop.i 0
};;
.pred.rel "mutex",p8,p9
{ .mfi
nop.m 0
(p8) fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
nop.i 0
}
{ .mfi
nop.m 0
(p9) fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
nop.i 0
};;
.pred.rel "mutex",p10,p11
{ .mfi
nop.m 0
(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
nop.i 0
}
{ .mfi
nop.m 0
(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
nop.i 0
};;
.pred.rel "mutex",p12,p13
{ .mfi
nop.m 0
(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
nop.i 0
}
{ .mfi
nop.m 0
(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
nop.i 0
};;
.pred.rel "mutex",p14,p15
{ .mfi
nop.m 0
(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
nop.i 0
}
{ .mfb
cmp.eq p10, p0 = 0x1, GR_Cis
(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
(p10) br.ret.sptk b0
};;
{ .mmb // exit for sincosl
stfe [sincos_pResSin] = FR_ResultS
stfe [sincos_pResCos] = FR_ResultC
br.ret.sptk b0
};;
SINCOSL_LARGER_ARG:
//
// Here if 2^24 <= |x| < 2^63
//
{ .mfi
ldfe FR_d_1 = [GR_ad_p], 16 // Load d_1 for |x| >= 2^24 path
fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0 // N_0 = Arg * Inv_P_0
nop.i 0
};;
{ .mmi
ldfps FR_Two_to_M14, FR_Neg_Two_to_M14 = [GR_ad_m14]
nop.m 0
nop.i 0
};;
{ .mfi
ldfe FR_d_2 = [GR_ad_p], 16 // Load d_2 for |x| >= 2^24 path
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
fcvt.fx.s1 FR_N_0_fix = FR_N_0 // N_0_fix = integer part of N_0
nop.i 0
};;
{ .mfi
nop.m 0
fcvt.xf FR_N_0 = FR_N_0_fix // Make N_0 the integer part
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X // Arg'=-N_0*P_0+Arg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_w = FR_N_0, FR_d_1, f0 // w = N_0 * d_1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0 // N = A' * 2/pi
nop.i 0
};;
{ .mfi
nop.m 0
fcvt.fx.s1 FR_N_fix = FR_N_float // N_fix is the integer part
nop.i 0
};;
{ .mfi
nop.m 0
fcvt.xf FR_N_float = FR_N_fix
nop.i 0
};;
{ .mfi
getf.sig GR_N_Inc = FR_N_fix // N is the integer part of
// the reduced-reduced argument
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime // s = -N*P_1 + Arg'
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w // w = -N*P_2 + w
nop.i 0
};;
//
// For |s| > 2**(-14) r = S + w (r complete)
// Else U_hi = N_0 * d_1
//
{ .mfi
nop.m 0
fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
nop.i 0
};;
{ .mfi
nop.m 0
(p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14 // p9 if |s| < 2^-14
nop.i 0
};;
//
// Either S <= -2**(-14) or S >= 2**(-14)
// or -2**(-14) < s < 2**(-14)
//
{ .mfi
nop.m 0
(p9) fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
nop.i 0
};;
{ .mfi
nop.m 0
(p8) fma.s1 FR_r = FR_s, f1, FR_w
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 FR_w = FR_N_float, FR_P_3, f0
nop.i 0
};;
//
// We need abs of both U_hi and V_hi - don't
// worry about switched sign of V_hi.
//
// Big s: finish up c = (S - r) + w (c complete)
// Case 4: A = U_hi + V_hi
// Note: Worry about switched sign of V_hi, so subtract instead of add.
//
{ .mfi
nop.m 0
(p9) fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
nop.i 0
}
{ .mfi
nop.m 0
(p9) fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
nop.i 0
};;
{ .mfi
nop.m 0
(p9) fmerge.s FR_V_hiabs = f0, FR_V_hi
nop.i 0
}
{ .mfi
nop.m 0
(p9) fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi // For small s: U_lo=N_0*d_1-U_hi
nop.i 0
};;
//
// For big s: Is |r| < 2**(-3)
// For big s: if p12 set, prepare to branch to Small_R.
// For big s: If p13 set, prepare to branch to Normal_R.
//
{ .mfi
nop.m 0
(p9) fmerge.s FR_U_hiabs = f0, FR_U_hi
nop.i 0
}
{ .mfi
nop.m 0
(p8) fms.s1 FR_c = FR_s, f1, FR_r // For big s: c = S - r
nop.i 0
};;
//
// For small S: V_hi = N * P_2
// w = N * P_3
// Note the product does not include the (-) as in the writeup
// so (-) missing for V_hi and w.
//
{ .mfi
nop.m 0
(p8) fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
nop.i 0
};;
{ .mfi
nop.m 0
(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
nop.i 0
};;
{ .mfi
nop.m 0
(p8) fma.s1 FR_c = FR_c, f1, FR_w
nop.i 0
}
{ .mfb
nop.m 0
(p9) fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
(p12) br.cond.spnt SINCOSL_SMALL_R // Branch if |r| < 2^-3
// and 2^24 <= |x| < 2^63
};;
{ .mib
nop.m 0
nop.i 0
(p13) br.cond.sptk SINCOSL_NORMAL_R // Branch if |r| >= 2^-3
// and 2^24 <= |x| < 2^63
};;
SINCOSL_LARGER_S_TINY:
// Here if |s| < 2^-14, and 2^24 <= |x| < 2^63
//
// Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true.
// The remaining stuff is for Case 4.
// Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
// Note: the (-) is still missing for V_lo.
// Small s: w = w + N_0 * d_2
// Note: the (-) is now incorporated in w.
//
{ .mfi
and GR_N_SinCos = 0x1, GR_N_Inc
fcmp.ge.unc.s1 p6, p7 = FR_U_hiabs, FR_V_hiabs
tbit.z p8,p12 = GR_N_Inc, 0
}
{ .mfi
nop.m 0
fma.s1 FR_t = FR_U_lo, f1, FR_V_lo // C_hi = S + A
nop.i 0
};;
{ .mfi
sub GR_N_SignS = GR_N_Inc, GR_N_SinCos
(p6) fms.s1 FR_a = FR_U_hi, f1, FR_A
add GR_N_SignC = GR_N_Inc, GR_N_SinCos
}
{ .mfi
nop.m 0
(p7) fma.s1 FR_a = FR_V_hi, f1, FR_A
nop.i 0
};;
{ .mmf
ldfe FR_C_1 = [GR_ad_c], 16
ldfe FR_S_1 = [GR_ad_s], 16
fma.s1 FR_C_hi = FR_s, f1, FR_A
};;
{ .mmi
ldfe FR_C_2 = [GR_ad_c], 64
ldfe FR_S_2 = [GR_ad_s], 64
(p8) tbit.z.unc p10,p11 = GR_N_SignC, 1
};;
//
// r and c have been computed.
// Make sure ftz mode is set - should be automatic when using wre
// |r| < 2**(-3)
// Get [i_0,i_1] - two lsb of N_fix.
//
// For larger u than v: a = U_hi - A
// Else a = V_hi - A (do an add to account for missing (-) on V_hi
//
{ .mfi
nop.m 0
fma.s1 FR_t = FR_t, f1, FR_w // t = t + w
(p8) tbit.z.unc p8,p9 = GR_N_SignS, 1
}
{ .mfi
nop.m 0
(p6) fms.s1 FR_a = FR_a, f1, FR_V_hi
nop.i 0
};;
//
// If u > v: a = (U_hi - A) + V_hi
// Else a = (V_hi - A) + U_hi
// In each case account for negative missing from V_hi.
//
{ .mfi
nop.m 0
fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
(p12) tbit.z.unc p14,p15 = GR_N_SignC, 1
}
{ .mfi
nop.m 0
(p7) fms.s1 FR_a = FR_U_hi, f1, FR_a
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_C_lo = FR_C_lo, f1, FR_A // C_lo = (S - C_hi) + A
(p12) tbit.z.unc p12,p13 = GR_N_SignS, 1
}
{ .mfi
nop.m 0
fma.s1 FR_t = FR_t, f1, FR_a // t = t + a
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_C_lo = FR_C_lo, f1, FR_t // C_lo = C_lo + t
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_rsq = FR_r, FR_r, f0
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_c = FR_C_hi, f1, FR_r
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_FirstS = f0, f1, FR_r
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_FirstC = f0, f1, f1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_rsq, FR_S_2, FR_S_1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_C_2, FR_C_1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_c = FR_c, f1, FR_C_lo
nop.i 0
};;
.pred.rel "mutex",p9,p15
{ .mfi
nop.m 0
(p9) fms.s0 FR_FirstS = f1, f0, FR_FirstS
nop.i 0
}
{ .mfi
nop.m 0
(p15) fms.s0 FR_FirstS = f1, f0, FR_FirstS
nop.i 0
};;
.pred.rel "mutex",p11,p13
{ .mfi
nop.m 0
(p11) fms.s0 FR_FirstC = f1, f0, FR_FirstC
nop.i 0
}
{ .mfi
nop.m 0
(p13) fms.s0 FR_FirstC = f1, f0, FR_FirstC
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_r_cubed, FR_polyS, FR_c
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_polyC, f0
nop.i 0
};;
.pred.rel "mutex",p8,p9
{ .mfi
nop.m 0
(p8) fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
nop.i 0
}
{ .mfi
nop.m 0
(p9) fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
nop.i 0
};;
.pred.rel "mutex",p10,p11
{ .mfi
nop.m 0
(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
nop.i 0
}
{ .mfi
nop.m 0
(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
nop.i 0
};;
.pred.rel "mutex",p12,p13
{ .mfi
nop.m 0
(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
nop.i 0
}
{ .mfi
nop.m 0
(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
nop.i 0
};;
.pred.rel "mutex",p14,p15
{ .mfi
nop.m 0
(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
nop.i 0
}
{ .mfb
cmp.eq p10, p0 = 0x1, GR_Cis
(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
(p10) br.ret.sptk b0
};;
{ .mmb // exit for sincosl
stfe [sincos_pResSin] = FR_ResultS
stfe [sincos_pResCos] = FR_ResultC
br.ret.sptk b0
};;
SINCOSL_SMALL_R:
//
// Here if |r| < 2^-3
//
// Enter with r, c, and N_Inc computed
//
{ .mfi
nop.m 0
fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r
nop.i 0
};;
{ .mmi
ldfe FR_S_5 = [GR_ad_se], -16 // Load S_5
ldfe FR_C_5 = [GR_ad_ce], -16 // Load C_5
nop.i 0
};;
{ .mmi
ldfe FR_S_4 = [GR_ad_se], -16 // Load S_4
ldfe FR_C_4 = [GR_ad_ce], -16 // Load C_4
nop.i 0
};;
SINCOSL_SMALL_R_0:
// Entry point for 2^-3 < |x| < pi/4
SINCOSL_SMALL_R_1:
// Entry point for pi/4 < |x| < 2^24 and |r| < 2^-3
{ .mfi
ldfe FR_S_3 = [GR_ad_se], -16 // Load S_3
fma.s1 FR_r6 = FR_rsq, FR_rsq, f0 // Z = rsq * rsq
tbit.z p7,p11 = GR_N_Inc, 0
}
{ .mfi
ldfe FR_C_3 = [GR_ad_ce], -16 // Load C_3
nop.f 0
and GR_N_SinCos = 0x1, GR_N_Inc
};;
{ .mfi
ldfe FR_S_2 = [GR_ad_se], -16 // Load S_2
fnma.s1 FR_cC = FR_c, FR_r, f0 // c = -c * r
sub GR_N_SignS = GR_N_Inc, GR_N_SinCos
}
{ .mfi
ldfe FR_C_2 = [GR_ad_ce], -16 // Load C_2
nop.f 0
add GR_N_SignC = GR_N_Inc, GR_N_SinCos
};;
{ .mmi
ldfe FR_S_1 = [GR_ad_se], -16 // Load S_1
ldfe FR_C_1 = [GR_ad_ce], -16 // Load C_1
(p7) tbit.z.unc p9,p10 = GR_N_SignC, 1
};;
{ .mfi
nop.m 0
fma.s1 FR_r7 = FR_r6, FR_r, f0 // Z = Z * r
(p7) tbit.z.unc p7,p8 = GR_N_SignS, 1
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_loS = FR_rsq, FR_S_5, FR_S_4 // poly_lo=rsq*S_5+S_4
(p11) tbit.z.unc p13,p14 = GR_N_SignC, 1
}
{ .mfi
nop.m 0
fma.s1 FR_poly_loC = FR_rsq, FR_C_5, FR_C_4 // poly_lo=rsq*C_5+C_4
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_hiS = FR_rsq, FR_S_2, FR_S_1 // poly_hi=rsq*S_2+S_1
(p11) tbit.z.unc p11,p12 = GR_N_SignS, 1
}
{ .mfi
nop.m 0
fma.s1 FR_poly_hiC = FR_rsq, FR_C_2, FR_C_1 // poly_hi=rsq*C_2+C_1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s0 FR_FirstS = FR_r, f1, f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s0 FR_FirstC = f1, f1, f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r6 = FR_r6, FR_rsq, f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r7 = FR_r7, FR_rsq, f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_loS = FR_rsq, FR_poly_loS, FR_S_3 // p_lo=p_lo*rsq+S_3
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_poly_loC = FR_rsq, FR_poly_loC, FR_C_3 // p_lo=p_lo*rsq+C_3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s0 FR_inexact = FR_S_4, FR_S_4, f0 // Dummy op to set inexact
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_hiS = FR_poly_hiS, FR_rsq, f0 // p_hi=p_hi*rsq
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_poly_hiC = FR_poly_hiC, FR_rsq, f0 // p_hi=p_hi*rsq
nop.i 0
};;
.pred.rel "mutex",p8,p14
{ .mfi
nop.m 0
(p8) fms.s0 FR_FirstS = f1, f0, FR_FirstS
nop.i 0
}
{ .mfi
nop.m 0
(p14) fms.s0 FR_FirstS = f1, f0, FR_FirstS
nop.i 0
};;
.pred.rel "mutex",p10,p12
{ .mfi
nop.m 0
(p10) fms.s0 FR_FirstC = f1, f0, FR_FirstC
nop.i 0
}
{ .mfi
nop.m 0
(p12) fms.s0 FR_FirstC = f1, f0, FR_FirstC
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_r7, FR_poly_loS, FR_cS // poly=Z*poly_lo+c
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_r6, FR_poly_loC, FR_cC // poly=Z*poly_lo+c
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_hiS = FR_r, FR_poly_hiS, f0 // p_hi=r*p_hi
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_polyS, f1, FR_poly_hiS
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_polyC, f1, FR_poly_hiC
nop.i 0
};;
.pred.rel "mutex",p7,p8
{ .mfi
nop.m 0
(p7) fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
nop.i 0
}
{ .mfi
nop.m 0
(p8) fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
nop.i 0
};;
.pred.rel "mutex",p9,p10
{ .mfi
nop.m 0
(p9) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
nop.i 0
}
{ .mfi
nop.m 0
(p10) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
nop.i 0
};;
.pred.rel "mutex",p11,p12
{ .mfi
nop.m 0
(p11) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
nop.i 0
}
{ .mfi
nop.m 0
(p12) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
nop.i 0
};;
.pred.rel "mutex",p13,p14
{ .mfi
nop.m 0
(p13) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
nop.i 0
}
{ .mfb
cmp.eq p15, p0 = 0x1, GR_Cis
(p14) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
(p15) br.ret.sptk b0
};;
{ .mmb // exit for sincosl
stfe [sincos_pResSin] = FR_ResultS
stfe [sincos_pResCos] = FR_ResultC
br.ret.sptk b0
};;
SINCOSL_NORMAL_R:
//
// Here if 2^-3 <= |r| < pi/4
// THIS IS THE MAIN PATH
//
// Enter with r, c, and N_Inc having been computed
//
{ .mfi
ldfe FR_PP_6 = [GR_ad_pp], 16 // Load PP_6
fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r
nop.i 0
}
{ .mfi
ldfe FR_QQ_6 = [GR_ad_qq], 16 // Load QQ_6
nop.f 0
nop.i 0
};;
{ .mmi
ldfe FR_PP_5 = [GR_ad_pp], 16 // Load PP_5
ldfe FR_QQ_5 = [GR_ad_qq], 16 // Load QQ_5
nop.i 0
};;
SINCOSL_NORMAL_R_0:
// Entry for 2^-3 < |x| < pi/4
.pred.rel "mutex",p9,p10
{ .mmf
ldfe FR_C_1 = [GR_ad_pp], 16 // Load C_1
ldfe FR_S_1 = [GR_ad_qq], 16 // Load S_1
frcpa.s1 FR_r_hi, p6 = f1, FR_r // r_hi = frcpa(r)
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // rcubed = r * rsq
nop.i 0
};;
SINCOSL_NORMAL_R_1:
// Entry for pi/4 <= |x| < 2^24
.pred.rel "mutex",p9,p10
{ .mmf
ldfe FR_PP_1 = [GR_ad_pp], 16 // Load PP_1_hi
ldfe FR_QQ_1 = [GR_ad_qq], 16 // Load QQ_1
frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi // r_hi = frpca(frcpa(r))
};;
{ .mfi
ldfe FR_PP_4 = [GR_ad_pp], 16 // Load PP_4
fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_6 // poly = rsq*poly+PP_6
and GR_N_SinCos = 0x1, GR_N_Inc
}
{ .mfi
ldfe FR_QQ_4 = [GR_ad_qq], 16 // Load QQ_4
fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_6 // poly = rsq*poly+QQ_6
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_corrS = FR_C_1, FR_rsq, f0 // corr = C_1 * rsq
sub GR_N_SignS = GR_N_Inc, GR_N_SinCos
}
{ .mfi
nop.m 0
fma.s1 FR_corrC = FR_S_1, FR_r_cubed, FR_r // corr = S_1 * r^3 + r
add GR_N_SignC = GR_N_Inc, GR_N_SinCos
};;
{ .mfi
ldfe FR_PP_3 = [GR_ad_pp], 16 // Load PP_3
fma.s1 FR_r_hi_sq = FR_r_hi, FR_r_hi, f0 // r_hi_sq = r_hi * r_hi
tbit.z p7,p11 = GR_N_Inc, 0
}
{ .mfi
ldfe FR_QQ_3 = [GR_ad_qq], 16 // Load QQ_3
fms.s1 FR_r_lo = FR_r, f1, FR_r_hi // r_lo = r - r_hi
nop.i 0
};;
{ .mfi
ldfe FR_PP_2 = [GR_ad_pp], 16 // Load PP_2
fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_5 // poly = rsq*poly+PP_5
(p7) tbit.z.unc p9,p10 = GR_N_SignC, 1
}
{ .mfi
ldfe FR_QQ_2 = [GR_ad_qq], 16 // Load QQ_2
fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_5 // poly = rsq*poly+QQ_5
nop.i 0
};;
{ .mfi
ldfe FR_PP_1_lo = [GR_ad_pp], 16 // Load PP_1_lo
fma.s1 FR_corrS = FR_corrS, FR_c, FR_c // corr = corr * c + c
(p7) tbit.z.unc p7,p8 = GR_N_SignS, 1
}
{ .mfi
nop.m 0
fnma.s1 FR_corrC = FR_corrC, FR_c, f0 // corr = -corr * c
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_U_loS = FR_r, FR_r_hi, FR_r_hi_sq // U_lo = r*r_hi+r_hi_sq
(p11) tbit.z.unc p13,p14 = GR_N_SignC, 1
}
{ .mfi
nop.m 0
fma.s1 FR_U_loC = FR_r_hi, f1, FR_r // U_lo = r_hi + r
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_U_hiS = FR_r_hi, FR_r_hi_sq, f0 // U_hi = r_hi*r_hi_sq
(p11) tbit.z.unc p11,p12 = GR_N_SignS, 1
}
{ .mfi
nop.m 0
fma.s1 FR_U_hiC = FR_QQ_1, FR_r_hi_sq, f1 // U_hi = QQ_1*r_hi_sq+1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_4 // poly = poly*rsq+PP_4
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_4 // poly = poly*rsq+QQ_4
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_U_loS = FR_r, FR_r, FR_U_loS // U_lo = r * r + U_lo
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_U_loC = FR_r_lo, FR_U_loC, f0 // U_lo = r_lo * U_lo
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_U_hiS = FR_PP_1, FR_U_hiS, f0 // U_hi = PP_1 * U_hi
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_3 // poly = poly*rsq+PP_3
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_3 // poly = poly*rsq+QQ_3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_U_loS = FR_r_lo, FR_U_loS, f0 // U_lo = r_lo * U_lo
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_U_loC = FR_QQ_1,FR_U_loC, f0 // U_lo = QQ_1 * U_lo
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_U_hiS = FR_r, f1, FR_U_hiS // U_hi = r + U_hi
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_2 // poly = poly*rsq+PP_2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_2 // poly = poly*rsq+QQ_2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_U_loS = FR_PP_1, FR_U_loS, f0 // U_lo = PP_1 * U_lo
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_1_lo // poly =poly*rsq+PP1lo
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_polyC, f0 // poly = poly*rsq
nop.i 0
};;
.pred.rel "mutex",p8,p14
{ .mfi
nop.m 0
(p8) fms.s0 FR_U_hiS = f1, f0, FR_U_hiS
nop.i 0
}
{ .mfi
nop.m 0
(p14) fms.s0 FR_U_hiS = f1, f0, FR_U_hiS
nop.i 0
};;
.pred.rel "mutex",p10,p12
{ .mfi
nop.m 0
(p10) fms.s0 FR_U_hiC = f1, f0, FR_U_hiC
nop.i 0
}
{ .mfi
nop.m 0
(p12) fms.s0 FR_U_hiC = f1, f0, FR_U_hiC
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_VS = FR_U_loS, f1, FR_corrS // V = U_lo + corr
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_VC = FR_U_loC, f1, FR_corrC // V = U_lo + corr
nop.i 0
};;
{ .mfi
nop.m 0
fma.s0 FR_inexact = FR_PP_5, FR_PP_4, f0 // Dummy op to set inexact
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_polyS = FR_r_cubed, FR_polyS, f0 // poly = poly*r^3
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_polyC = FR_rsq, FR_polyC, f0 // poly = poly*rsq
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_VS = FR_polyS, f1, FR_VS // V = poly + V
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_VC = FR_polyC, f1, FR_VC // V = poly + V
nop.i 0
};;
.pred.rel "mutex",p7,p8
{ .mfi
nop.m 0
(p7) fma.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
nop.i 0
}
{ .mfi
nop.m 0
(p8) fms.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
nop.i 0
};;
.pred.rel "mutex",p9,p10
{ .mfi
nop.m 0
(p9) fma.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
nop.i 0
}
{ .mfi
nop.m 0
(p10) fms.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
nop.i 0
};;
.pred.rel "mutex",p11,p12
{ .mfi
nop.m 0
(p11) fma.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
nop.i 0
}
{ .mfi
nop.m 0
(p12) fms.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
nop.i 0
};;
.pred.rel "mutex",p13,p14
{ .mfi
nop.m 0
(p13) fma.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
nop.i 0
}
{ .mfb
cmp.eq p15, p0 = 0x1, GR_Cis
(p14) fms.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
(p15) br.ret.sptk b0
};;
{ .mmb // exit for sincosl
stfe [sincos_pResSin] = FR_ResultS
stfe [sincos_pResCos] = FR_ResultC
br.ret.sptk b0
};;
SINCOSL_ZERO:
{ .mfi
nop.m 0
fmerge.s FR_ResultS = FR_Input_X, FR_Input_X // If sin, result = input
nop.i 0
}
{ .mfb
cmp.eq p15, p0 = 0x1, GR_Cis
fma.s0 FR_ResultC = f1, f1, f0 // If cos, result=1.0
(p15) br.ret.sptk b0
};;
{ .mmb // exit for sincosl
stfe [sincos_pResSin] = FR_ResultS
stfe [sincos_pResCos] = FR_ResultC
br.ret.sptk b0
};;
SINCOSL_DENORMAL:
{ .mmb
getf.exp GR_signexp_x = FR_norm_x // Get sign and exponent of x
nop.m 999
br.cond.sptk SINCOSL_COMMON2 // Return to common code
}
;;
SINCOSL_SPECIAL:
//
// Path for Arg = +/- QNaN, SNaN, Inf
// Invalid can be raised. SNaNs
// become QNaNs
//
{ .mfi
cmp.eq p15, p0 = 0x1, GR_Cis
fmpy.s0 FR_ResultS = FR_Input_X, f0
nop.i 0
}
{ .mfb
nop.m 0
fmpy.s0 FR_ResultC = FR_Input_X, f0
(p15) br.ret.sptk b0
};;
{ .mmb // exit for sincosl
stfe [sincos_pResSin] = FR_ResultS
stfe [sincos_pResCos] = FR_ResultC
br.ret.sptk b0
};;
GLOBAL_LIBM_END(__libm_sincosl)
// *******************************************************************
// *******************************************************************
// *******************************************************************
//
// Special Code to handle very large argument case.
// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
// The interface is custom:
// On input:
// (Arg or x) is in f8
// On output:
// r is in f8
// c is in f9
// N is in r8
// Be sure to allocate at least 2 GP registers as output registers for
// __libm_pi_by_2_reduce. This routine uses r62-63. These are used as
// scratch registers within the __libm_pi_by_2_reduce routine (for speed).
//
// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
// use this to eliminate save/restore of key fp registers in this calling
// function.
//
// *******************************************************************
// *******************************************************************
// *******************************************************************
LOCAL_LIBM_ENTRY(__libm_callout)
SINCOSL_ARG_TOO_LARGE:
.prologue
{ .mfi
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
};;
{ .mmi
setf.exp FR_Two_to_M3 = GR_exp_2_to_m3 // Form 2^-3
mov GR_SAVE_GP=gp // Save gp
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
//
// Call argument reduction with x in f8
// Returns with N in r8, r in f8, c in f9
// Assumes f71-127 are preserved across the call
//
{ .mib
setf.exp FR_Neg_Two_to_M3 = GR_exp_m2_to_m3 // Form -(2^-3)
nop.i 0
br.call.sptk b0=__libm_pi_by_2_reduce#
};;
{ .mfi
mov GR_N_Inc = r8
fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mfi
mov gp = GR_SAVE_GP // Restore gp
(p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
};;
{ .mbb
nop.m 0
(p6) br.cond.spnt SINCOSL_SMALL_R // Branch if |r|< 2^-3 for |x| >= 2^63
br.cond.sptk SINCOSL_NORMAL_R // Branch if |r|>=2^-3 for |x| >= 2^63
};;
LOCAL_LIBM_END(__libm_callout)
.type __libm_pi_by_2_reduce#,@function
.global __libm_pi_by_2_reduce#
|