1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
|
.file "atanl.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//
//*********************************************************************
//
// History
// 02/02/00 (hand-optimized)
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 03/13/01 Fixed flags when denormal raised on intermediate result
// 01/08/02 Improved speed.
// 02/06/02 Corrected .section statement
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align;
// used data8 for long double table values
// 03/31/05 Reformatted delimiters between data tables
//
//*********************************************************************
//
// Function: atanl(x) = inverse tangent(x), for double extended x values
// Function: atan2l(y,x) = atan(y/x), for double extended y, x values
//
// API
//
// long double atanl (long double x)
// long double atan2l (long double y, long double x)
//
//*********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
// f9 (Input for atan2l)
// f10-f15, f32-f83
//
// General Purpose Registers:
// r32-r51
// r49-r52 (Arguments to error support for 0,0 case)
//
// Predicate Registers: p6-p15
//
//*********************************************************************
//
// IEEE Special Conditions:
//
// Denormal fault raised on denormal inputs
// Underflow exceptions may occur
// Special error handling for the y=0 and x=0 case
// Inexact raised when appropriate by algorithm
//
// atanl(SNaN) = QNaN
// atanl(QNaN) = QNaN
// atanl(+/-0) = +/- 0
// atanl(+/-Inf) = +/-pi/2
//
// atan2l(Any NaN for x or y) = QNaN
// atan2l(+/-0,x) = +/-0 for x > 0
// atan2l(+/-0,x) = +/-pi for x < 0
// atan2l(+/-0,+0) = +/-0
// atan2l(+/-0,-0) = +/-pi
// atan2l(y,+/-0) = pi/2 y > 0
// atan2l(y,+/-0) = -pi/2 y < 0
// atan2l(+/-y, Inf) = +/-0 for finite y > 0
// atan2l(+/-Inf, x) = +/-pi/2 for finite x
// atan2l(+/-y, -Inf) = +/-pi for finite y > 0
// atan2l(+/-Inf, Inf) = +/-pi/4
// atan2l(+/-Inf, -Inf) = +/-3pi/4
//
//*********************************************************************
//
// Mathematical Description
// ---------------------------
//
// The function ATANL( Arg_Y, Arg_X ) returns the "argument"
// or the "phase" of the complex number
//
// Arg_X + i Arg_Y
//
// or equivalently, the angle in radians from the positive
// x-axis to the line joining the origin and the point
// (Arg_X,Arg_Y)
//
//
// (Arg_X, Arg_Y) x
// \
// \
// \
// \
// \ angle between is ATANL(Arg_Y,Arg_X)
// \
// ------------------> X-axis
// Origin
//
// Moreover, this angle is reported in the range [-pi,pi] thus
//
// -pi <= ATANL( Arg_Y, Arg_X ) <= pi.
//
// From the geometry, it is easy to define ATANL when one of
// Arg_X or Arg_Y is +-0 or +-inf:
//
//
// \ Y |
// X \ | +0 | -0 | +inf | -inf | finite non-zero
// \ | | | | |
// ______________________________________________________
// | | | |
// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2
// | qNaN | | |
// --------------------------------------------------------
// | | | | |
// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0
// --------------------------------------------------------
// | | | | |
// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi
// --------------------------------------------------------
// finite | X>0? | pi/2 | -pi/2 | normal case
// non-zero| sign(Y)*0: | | |
// | sign(Y)*pi | | |
//
//
// One must take note that ATANL is NOT the arctangent of the
// value Arg_Y/Arg_X; but rather ATANL and arctan are related
// in a slightly more complicated way as follows:
//
// Let U := max(|Arg_X|, |Arg_Y|); V := min(|Arg_X|, |Arg_Y|);
// sign_X be the sign bit of Arg_X, i.e., sign_X is 0 or 1;
// s_X be the sign of Arg_X, i.e., s_X = (-1)^sign_X;
//
// sign_Y be the sign bit of Arg_Y, i.e., sign_Y is 0 or 1;
// s_Y be the sign of Arg_Y, i.e., s_Y = (-1)^sign_Y;
//
// swap be 0 if |Arg_X| >= |Arg_Y| and 1 otherwise.
//
// Then, ATANL(Arg_Y, Arg_X) =
//
// / arctan(V/U) \ sign_X = 0 & swap = 0
// | pi/2 - arctan(V/U) | sign_X = 0 & swap = 1
// s_Y * | |
// | pi - arctan(V/U) | sign_X = 1 & swap = 0
// \ pi/2 + arctan(V/U) / sign_X = 1 & swap = 1
//
//
// This relationship also suggest that the algorithm's major
// task is to calculate arctan(V/U) for 0 < V <= U; and the
// final Result is given by
//
// s_Y * { (P_hi + P_lo) + sigma * arctan(V/U) }
//
// where
//
// (P_hi,P_lo) represents M(sign_X,swap)*(pi/2) accurately
//
// M(sign_X,swap) = 0 for sign_X = 0 and swap = 0
// 1 for swap = 1
// 2 for sign_X = 1 and swap = 0
//
// and
//
// sigma = { (sign_X XOR swap) : -1.0 : 1.0 }
//
// = (-1) ^ ( sign_X XOR swap )
//
// Both (P_hi,P_lo) and sigma can be stored in a table and fetched
// using (sign_X,swap) as an index. (P_hi, P_lo) can be stored as a
// double-precision, and single-precision pair; and sigma can
// obviously be just a single-precision number.
//
// In the algorithm we propose, arctan(V/U) is calculated to high accuracy
// as A_hi + A_lo. Consequently, the Result ATANL( Arg_Y, Arg_X ) is
// given by
//
// s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
//
// We now discuss the calculation of arctan(V/U) for 0 < V <= U.
//
// For (V/U) < 2^(-3), we use a simple polynomial of the form
//
// z + z^3*(P_1 + z^2*(P_2 + z^2*(P_3 + ... + P_8)))
//
// where z = V/U.
//
// For the sake of accuracy, the first term "z" must approximate V/U to
// extra precision. For z^3 and higher power, a working precision
// approximation to V/U suffices. Thus, we obtain:
//
// z_hi + z_lo = V/U to extra precision and
// z = V/U to working precision
//
// The value arctan(V/U) is delivered as two pieces (A_hi, A_lo)
//
// (A_hi,A_lo) = (z_hi, z^3*(P_1 + ... + P_8) + z_lo).
//
//
// For 2^(-3) <= (V/U) <= 1, we use a table-driven approach.
// Consider
//
// (V/U) = 2^k * 1.b_1 b_2 .... b_63 b_64 b_65 ....
//
// Define
//
// z_hi = 2^k * 1.b_1 b_2 b_3 b_4 1
//
// then
// / \
// | (V/U) - z_hi |
// arctan(V/U) = arctan(z_hi) + acrtan| -------------- |
// | 1 + (V/U)*z_hi |
// \ /
//
// / \
// | V - z_hi*U |
// = arctan(z_hi) + acrtan| -------------- |
// | U + V*z_hi |
// \ /
//
// = arctan(z_hi) + acrtan( V' / U' )
//
//
// where
//
// V' = V - U*z_hi; U' = U + V*z_hi.
//
// Let
//
// w_hi + w_lo = V'/U' to extra precision and
// w = V'/U' to working precision
//
// then we can approximate arctan(V'/U') by
//
// arctan(V'/U') = w_hi + w_lo
// + w^3*(Q_1 + w^2*(Q_2 + w^2*(Q_3 + w^2*Q_4)))
//
// = w_hi + w_lo + poly
//
// Finally, arctan(z_hi) is calculated beforehand and stored in a table
// as Tbl_hi, Tbl_lo. Thus,
//
// (A_hi, A_lo) = (Tbl_hi, w_hi+(poly+(w_lo+Tbl_lo)))
//
// This completes the mathematical description.
//
//
// Algorithm
// -------------
//
// Step 0. Check for unsupported format.
//
// If
// ( expo(Arg_X) not zero AND msb(Arg_X) = 0 ) OR
// ( expo(Arg_Y) not zero AND msb(Arg_Y) = 0 )
//
// then one of the arguments is unsupported. Generate an
// invalid and return qNaN.
//
// Step 1. Initialize
//
// Normalize Arg_X and Arg_Y and set the following
//
// sign_X := sign_bit(Arg_X)
// s_Y := (sign_bit(Arg_Y)==0? 1.0 : -1.0)
// swap := (|Arg_X| >= |Arg_Y|? 0 : 1 )
// U := max( |Arg_X|, |Arg_Y| )
// V := min( |Arg_X|, |Arg_Y| )
//
// execute: frcpa E, pred, V, U
// If pred is 0, go to Step 5 for special cases handling.
//
// Step 2. Decide on branch.
//
// Q := E * V
// If Q < 2^(-3) go to Step 4 for simple polynomial case.
//
// Step 3. Table-driven algorithm.
//
// Q is represented as
//
// 2^(-k) * 1.b_1 b_2 b_3 ... b_63; k = 0,-1,-2,-3
//
// and that if k = 0, b_1 = b_2 = b_3 = b_4 = 0.
//
// Define
//
// z_hi := 2^(-k) * 1.b_1 b_2 b_3 b_4 1
//
// (note that there are 49 possible values of z_hi).
//
// ...We now calculate V' and U'. While V' is representable
// ...as a 64-bit number because of cancellation, U' is
// ...not in general a 64-bit number. Obtaining U' accurately
// ...requires two working precision numbers
//
// U_prime_hi := U + V * z_hi ...WP approx. to U'
// U_prime_lo := ( U - U_prime_hi ) + V*z_hi ...observe order
// V_prime := V - U * z_hi ...this is exact
//
// C_hi := frcpa (1.0, U_prime_hi) ...C_hi approx 1/U'_hi
//
// loop 3 times
// C_hi := C_hi + C_hi*(1.0 - C_hi*U_prime_hi)
//
// ...at this point C_hi is (1/U_prime_hi) to roughly 64 bits
//
// w_hi := V_prime * C_hi ...w_hi is V_prime/U_prime to
// ...roughly working precision
//
// ...note that we want w_hi + w_lo to approximate
// ...V_prime/(U_prime_hi + U_prime_lo) to extra precision
// ...but for now, w_hi is good enough for the polynomial
// ...calculation.
//
// wsq := w_hi*w_hi
// poly := w_hi*wsq*(Q_1 + wsq*(Q_2 + wsq*(Q_3 + wsq*Q_4)))
//
// Fetch
// (Tbl_hi, Tbl_lo) = atan(z_hi) indexed by (k,b_1,b_2,b_3,b_4)
// ...Tbl_hi is a double-precision number
// ...Tbl_lo is a single-precision number
//
// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
// ...as discussed previous. Again; the implementation can
// ...chose to fetch P_hi and P_lo from a table indexed by
// ...(sign_X, swap).
// ...P_hi is a double-precision number;
// ...P_lo is a single-precision number.
//
// ...calculate w_lo so that w_hi + w_lo is V'/U' accurately
// w_lo := ((V_prime - w_hi*U_prime_hi) -
// w_hi*U_prime_lo) * C_hi ...observe order
//
//
// ...Ready to deliver arctan(V'/U') as A_hi, A_lo
// A_hi := Tbl_hi
// A_lo := w_hi + (poly + (Tbl_lo + w_lo)) ...observe order
//
// ...Deliver final Result
// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
//
// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
// ...sigma can be obtained by a table lookup using
// ...(sign_X,swap) as index and stored as single precision
// ...sigma should be calculated earlier
//
// P_hi := s_Y*P_hi
// A_hi := s_Y*A_hi
//
// Res_hi := P_hi + sigma*A_hi ...this is exact because
// ...both P_hi and Tbl_hi
// ...are double-precision
// ...and |Tbl_hi| > 2^(-4)
// ...P_hi is either 0 or
// ...between (1,4)
//
// Res_lo := sigma*A_lo + P_lo
//
// Return Res_hi + s_Y*Res_lo in user-defined rounding control
//
// Step 4. Simple polynomial case.
//
// ...E and Q are inherited from Step 2.
//
// A_hi := Q ...Q is inherited from Step 2 Q approx V/U
//
// loop 3 times
// E := E + E2(1.0 - E*U1
// ...at this point E approximates 1/U to roughly working precision
//
// z := V * E ...z approximates V/U to roughly working precision
// zsq := z * z
// z4 := zsq * zsq; z8 := z4 * z4
//
// poly1 := P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
// poly2 := zsq*(P_1 + zsq*(P_2 + zsq*P_3))
//
// poly := poly1 + z8*poly2
//
// z_lo := (V - A_hi*U)*E
//
// A_lo := z*poly + z_lo
// ...A_hi, A_lo approximate arctan(V/U) accurately
//
// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
// ...one can store the M(sign_X,swap) as single precision
// ...values
//
// ...Deliver final Result
// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
//
// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
// ...sigma can be obtained by a table lookup using
// ...(sign_X,swap) as index and stored as single precision
// ...sigma should be calculated earlier
//
// P_hi := s_Y*P_hi
// A_hi := s_Y*A_hi
//
// Res_hi := P_hi + sigma*A_hi ...need to compute
// ...P_hi + sigma*A_hi
// ...exactly
//
// tmp := (P_hi - Res_hi) + sigma*A_hi
//
// Res_lo := s_Y*(sigma*A_lo + P_lo) + tmp
//
// Return Res_hi + Res_lo in user-defined rounding control
//
// Step 5. Special Cases
//
// These are detected early in the function by fclass instructions.
//
// We are in one of those special cases when X or Y is 0,+-inf or NaN
//
// If one of X and Y is NaN, return X+Y (which will generate
// invalid in case one is a signaling NaN). Otherwise,
// return the Result as described in the table
//
//
//
// \ Y |
// X \ | +0 | -0 | +inf | -inf | finite non-zero
// \ | | | | |
// ______________________________________________________
// | | | |
// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2
// | qNaN | | |
// --------------------------------------------------------
// | | | | |
// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0
// --------------------------------------------------------
// | | | | |
// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi
// --------------------------------------------------------
// finite | X>0? | pi/2 | -pi/2 |
// non-zero| sign(Y)*0: | | | N/A
// | sign(Y)*pi | | |
//
//
ArgY_orig = f8
Result = f8
FR_RESULT = f8
ArgX_orig = f9
ArgX = f10
FR_X = f10
ArgY = f11
FR_Y = f11
s_Y = f12
U = f13
V = f14
E = f15
Q = f32
z_hi = f33
U_prime_hi = f34
U_prime_lo = f35
V_prime = f36
C_hi = f37
w_hi = f38
w_lo = f39
wsq = f40
poly = f41
Tbl_hi = f42
Tbl_lo = f43
P_hi = f44
P_lo = f45
A_hi = f46
A_lo = f47
sigma = f48
Res_hi = f49
Res_lo = f50
Z = f52
zsq = f53
z4 = f54
z8 = f54
poly1 = f55
poly2 = f56
z_lo = f57
tmp = f58
P_1 = f59
Q_1 = f60
P_2 = f61
Q_2 = f62
P_3 = f63
Q_3 = f64
P_4 = f65
Q_4 = f66
P_5 = f67
P_6 = f68
P_7 = f69
P_8 = f70
U_hold = f71
TWO_TO_NEG3 = f72
C_hi_hold = f73
E_hold = f74
M = f75
ArgX_abs = f76
ArgY_abs = f77
Result_lo = f78
A_temp = f79
FR_temp = f80
Xsq = f81
Ysq = f82
tmp_small = f83
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
GR_SAVE_GP = r35
sign_X = r36
sign_Y = r37
swap = r38
table_ptr1 = r39
table_ptr2 = r40
k = r41
lookup = r42
exp_ArgX = r43
exp_ArgY = r44
exponent_Q = r45
significand_Q = r46
special = r47
sp_exp_Q = r48
sp_exp_4sig_Q = r49
table_base = r50
int_temp = r51
GR_Parameter_X = r49
GR_Parameter_Y = r50
GR_Parameter_RESULT = r51
GR_Parameter_TAG = r52
GR_temp = r52
RODATA
.align 16
LOCAL_OBJECT_START(Constants_atan)
// double pi/2
data8 0x3FF921FB54442D18
// single lo_pi/2, two**(-3)
data4 0x248D3132, 0x3E000000
data8 0xAAAAAAAAAAAAAAA3, 0xBFFD // P_1
data8 0xCCCCCCCCCCCC54B2, 0x3FFC // P_2
data8 0x9249249247E4D0C2, 0xBFFC // P_3
data8 0xE38E38E058870889, 0x3FFB // P_4
data8 0xBA2E895B290149F8, 0xBFFB // P_5
data8 0x9D88E6D4250F733D, 0x3FFB // P_6
data8 0x884E51FFFB8745A0, 0xBFFB // P_7
data8 0xE1C7412B394396BD, 0x3FFA // P_8
data8 0xAAAAAAAAAAAAA52F, 0xBFFD // Q_1
data8 0xCCCCCCCCC75B60D3, 0x3FFC // Q_2
data8 0x924923AD011F1940, 0xBFFC // Q_3
data8 0xE36F716D2A5F89BD, 0x3FFB // Q_4
//
// Entries Tbl_hi (double precision)
// B = 1+Index/16+1/32 Index = 0
// Entries Tbl_lo (single precision)
// B = 1+Index/16+1/32 Index = 0
//
data8 0x3FE9A000A935BD8E
data4 0x23ACA08F, 0x00000000
//
// Entries Tbl_hi (double precision) Index = 0,1,...,15
// B = 2^(-1)*(1+Index/16+1/32)
// Entries Tbl_lo (single precision)
// Index = 0,1,...,15 B = 2^(-1)*(1+Index/16+1/32)
//
data8 0x3FDE77EB7F175A34
data4 0x238729EE, 0x00000000
data8 0x3FE0039C73C1A40B
data4 0x249334DB, 0x00000000
data8 0x3FE0C6145B5B43DA
data4 0x22CBA7D1, 0x00000000
data8 0x3FE1835A88BE7C13
data4 0x246310E7, 0x00000000
data8 0x3FE23B71E2CC9E6A
data4 0x236210E5, 0x00000000
data8 0x3FE2EE628406CBCA
data4 0x2462EAF5, 0x00000000
data8 0x3FE39C391CD41719
data4 0x24B73EF3, 0x00000000
data8 0x3FE445065B795B55
data4 0x24C11260, 0x00000000
data8 0x3FE4E8DE5BB6EC04
data4 0x242519EE, 0x00000000
data8 0x3FE587D81F732FBA
data4 0x24D4346C, 0x00000000
data8 0x3FE6220D115D7B8D
data4 0x24ED487B, 0x00000000
data8 0x3FE6B798920B3D98
data4 0x2495FF1E, 0x00000000
data8 0x3FE748978FBA8E0F
data4 0x223D9531, 0x00000000
data8 0x3FE7D528289FA093
data4 0x242B0411, 0x00000000
data8 0x3FE85D69576CC2C5
data4 0x2335B374, 0x00000000
data8 0x3FE8E17AA99CC05D
data4 0x24C27CFB, 0x00000000
//
// Entries Tbl_hi (double precision) Index = 0,1,...,15
// B = 2^(-2)*(1+Index/16+1/32)
// Entries Tbl_lo (single precision)
// Index = 0,1,...,15 B = 2^(-2)*(1+Index/16+1/32)
//
data8 0x3FD025FA510665B5
data4 0x24263482, 0x00000000
data8 0x3FD1151A362431C9
data4 0x242C8DC9, 0x00000000
data8 0x3FD2025567E47C95
data4 0x245CF9BA, 0x00000000
data8 0x3FD2ED987A823CFE
data4 0x235C892C, 0x00000000
data8 0x3FD3D6D129271134
data4 0x2389BE52, 0x00000000
data8 0x3FD4BDEE586890E6
data4 0x24436471, 0x00000000
data8 0x3FD5A2E0175E0F4E
data4 0x2389DBD4, 0x00000000
data8 0x3FD685979F5FA6FD
data4 0x2476D43F, 0x00000000
data8 0x3FD7660752817501
data4 0x24711774, 0x00000000
data8 0x3FD84422B8DF95D7
data4 0x23EBB501, 0x00000000
data8 0x3FD91FDE7CD0C662
data4 0x23883A0C, 0x00000000
data8 0x3FD9F93066168001
data4 0x240DF63F, 0x00000000
data8 0x3FDAD00F5422058B
data4 0x23FE261A, 0x00000000
data8 0x3FDBA473378624A5
data4 0x23A8CD0E, 0x00000000
data8 0x3FDC76550AAD71F8
data4 0x2422D1D0, 0x00000000
data8 0x3FDD45AEC9EC862B
data4 0x2344A109, 0x00000000
//
// Entries Tbl_hi (double precision) Index = 0,1,...,15
// B = 2^(-3)*(1+Index/16+1/32)
// Entries Tbl_lo (single precision)
// Index = 0,1,...,15 B = 2^(-3)*(1+Index/16+1/32)
//
data8 0x3FC068D584212B3D
data4 0x239874B6, 0x00000000
data8 0x3FC1646541060850
data4 0x2335E774, 0x00000000
data8 0x3FC25F6E171A535C
data4 0x233E36BE, 0x00000000
data8 0x3FC359E8EDEB99A3
data4 0x239680A3, 0x00000000
data8 0x3FC453CEC6092A9E
data4 0x230FB29E, 0x00000000
data8 0x3FC54D18BA11570A
data4 0x230C1418, 0x00000000
data8 0x3FC645BFFFB3AA73
data4 0x23F0564A, 0x00000000
data8 0x3FC73DBDE8A7D201
data4 0x23D4A5E1, 0x00000000
data8 0x3FC8350BE398EBC7
data4 0x23D4ADDA, 0x00000000
data8 0x3FC92BA37D050271
data4 0x23BCB085, 0x00000000
data8 0x3FCA217E601081A5
data4 0x23BC841D, 0x00000000
data8 0x3FCB1696574D780B
data4 0x23CF4A8E, 0x00000000
data8 0x3FCC0AE54D768466
data4 0x23BECC90, 0x00000000
data8 0x3FCCFE654E1D5395
data4 0x2323DCD2, 0x00000000
data8 0x3FCDF110864C9D9D
data4 0x23F53F3A, 0x00000000
data8 0x3FCEE2E1451D980C
data4 0x23CCB11F, 0x00000000
//
data8 0x400921FB54442D18, 0x3CA1A62633145C07 // PI two doubles
data8 0x3FF921FB54442D18, 0x3C91A62633145C07 // PI_by_2 two dbles
data8 0x3FE921FB54442D18, 0x3C81A62633145C07 // PI_by_4 two dbles
data8 0x4002D97C7F3321D2, 0x3C9A79394C9E8A0A // 3PI_by_4 two dbles
LOCAL_OBJECT_END(Constants_atan)
.section .text
GLOBAL_IEEE754_ENTRY(atanl)
// Use common code with atan2l after setting x=1.0
{ .mfi
alloc r32 = ar.pfs, 0, 17, 4, 0
fma.s1 Ysq = ArgY_orig, ArgY_orig, f0 // Form y*y
nop.i 999
}
{ .mfi
addl table_ptr1 = @ltoff(Constants_atan#), gp // Address of table pointer
fma.s1 Xsq = f1, f1, f0 // Form x*x
nop.i 999
}
;;
{ .mfi
ld8 table_ptr1 = [table_ptr1] // Get table pointer
fnorm.s1 ArgY = ArgY_orig
nop.i 999
}
{ .mfi
nop.m 999
fnorm.s1 ArgX = f1
nop.i 999
}
;;
{ .mfi
getf.exp sign_X = f1 // Get signexp of x
fmerge.s ArgX_abs = f0, f1 // Form |x|
nop.i 999
}
{ .mfi
nop.m 999
fnorm.s1 ArgX_orig = f1
nop.i 999
}
;;
{ .mfi
getf.exp sign_Y = ArgY_orig // Get signexp of y
fmerge.s ArgY_abs = f0, ArgY_orig // Form |y|
mov table_base = table_ptr1 // Save base pointer to tables
}
;;
{ .mfi
ldfd P_hi = [table_ptr1],8 // Load double precision hi part of pi
fclass.m p8,p0 = ArgY_orig, 0x1e7 // Test y natval, nan, inf, zero
nop.i 999
}
;;
{ .mfi
ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
nop.f 999
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 M = f1, f1, f0 // Set M = 1.0
nop.i 999
}
;;
//
// Check for everything - if false, then must be pseudo-zero
// or pseudo-nan (IA unsupporteds).
//
{ .mfb
nop.m 999
fclass.m p0,p12 = f1, 0x1FF // Test x unsupported
(p8) br.cond.spnt ATANL_Y_SPECIAL // Branch if y natval, nan, inf, zero
}
;;
// U = max(ArgX_abs,ArgY_abs)
// V = min(ArgX_abs,ArgY_abs)
{ .mfi
nop.m 999
fcmp.ge.s1 p6,p7 = Xsq, Ysq // Test for |x| >= |y| using squares
nop.i 999
}
{ .mfb
nop.m 999
fma.s1 V = ArgX_abs, f1, f0 // Set V assuming |x| < |y|
br.cond.sptk ATANL_COMMON // Branch to common code
}
;;
GLOBAL_IEEE754_END(atanl)
GLOBAL_IEEE754_ENTRY(atan2l)
{ .mfi
alloc r32 = ar.pfs, 0, 17, 4, 0
fma.s1 Ysq = ArgY_orig, ArgY_orig, f0 // Form y*y
nop.i 999
}
{ .mfi
addl table_ptr1 = @ltoff(Constants_atan#), gp // Address of table pointer
fma.s1 Xsq = ArgX_orig, ArgX_orig, f0 // Form x*x
nop.i 999
}
;;
{ .mfi
ld8 table_ptr1 = [table_ptr1] // Get table pointer
fnorm.s1 ArgY = ArgY_orig
nop.i 999
}
{ .mfi
nop.m 999
fnorm.s1 ArgX = ArgX_orig
nop.i 999
}
;;
{ .mfi
getf.exp sign_X = ArgX_orig // Get signexp of x
fmerge.s ArgX_abs = f0, ArgX_orig // Form |x|
nop.i 999
}
;;
{ .mfi
getf.exp sign_Y = ArgY_orig // Get signexp of y
fmerge.s ArgY_abs = f0, ArgY_orig // Form |y|
mov table_base = table_ptr1 // Save base pointer to tables
}
;;
{ .mfi
ldfd P_hi = [table_ptr1],8 // Load double precision hi part of pi
fclass.m p8,p0 = ArgY_orig, 0x1e7 // Test y natval, nan, inf, zero
nop.i 999
}
;;
{ .mfi
ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
fclass.m p9,p0 = ArgX_orig, 0x1e7 // Test x natval, nan, inf, zero
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 M = f1, f1, f0 // Set M = 1.0
nop.i 999
}
;;
//
// Check for everything - if false, then must be pseudo-zero
// or pseudo-nan (IA unsupporteds).
//
{ .mfb
nop.m 999
fclass.m p0,p12 = ArgX_orig, 0x1FF // Test x unsupported
(p8) br.cond.spnt ATANL_Y_SPECIAL // Branch if y natval, nan, inf, zero
}
;;
// U = max(ArgX_abs,ArgY_abs)
// V = min(ArgX_abs,ArgY_abs)
{ .mfi
nop.m 999
fcmp.ge.s1 p6,p7 = Xsq, Ysq // Test for |x| >= |y| using squares
nop.i 999
}
{ .mfb
nop.m 999
fma.s1 V = ArgX_abs, f1, f0 // Set V assuming |x| < |y|
(p9) br.cond.spnt ATANL_X_SPECIAL // Branch if x natval, nan, inf, zero
}
;;
// Now common code for atanl and atan2l
ATANL_COMMON:
{ .mfi
nop.m 999
fclass.m p0,p13 = ArgY_orig, 0x1FF // Test y unsupported
shr sign_X = sign_X, 17 // Get sign bit of x
}
{ .mfi
nop.m 999
fma.s1 U = ArgY_abs, f1, f0 // Set U assuming |x| < |y|
adds table_ptr1 = 176, table_ptr1 // Point to Q4
}
;;
{ .mfi
(p6) add swap = r0, r0 // Set swap=0 if |x| >= |y|
(p6) frcpa.s1 E, p0 = ArgY_abs, ArgX_abs // Compute E if |x| >= |y|
shr sign_Y = sign_Y, 17 // Get sign bit of y
}
{ .mfb
nop.m 999
(p6) fma.s1 V = ArgY_abs, f1, f0 // Set V if |x| >= |y|
(p12) br.cond.spnt ATANL_UNSUPPORTED // Branch if x unsupported
}
;;
// Set p8 if y >=0
// Set p9 if y < 0
// Set p10 if |x| >= |y| and x >=0
// Set p11 if |x| >= |y| and x < 0
{ .mfi
cmp.eq p8, p9 = 0, sign_Y // Test for y >= 0
(p7) frcpa.s1 E, p0 = ArgX_abs, ArgY_abs // Compute E if |x| < |y|
(p7) add swap = 1, r0 // Set swap=1 if |x| < |y|
}
{ .mfb
(p6) cmp.eq.unc p10, p11 = 0, sign_X // If |x| >= |y|, test for x >= 0
(p6) fma.s1 U = ArgX_abs, f1, f0 // Set U if |x| >= |y|
(p13) br.cond.spnt ATANL_UNSUPPORTED // Branch if y unsupported
}
;;
//
// if p8, s_Y = 1.0
// if p9, s_Y = -1.0
//
.pred.rel "mutex",p8,p9
{ .mfi
nop.m 999
(p8) fadd.s1 s_Y = f0, f1 // If y >= 0 set s_Y = 1.0
nop.i 999
}
{ .mfi
nop.m 999
(p9) fsub.s1 s_Y = f0, f1 // If y < 0 set s_Y = -1.0
nop.i 999
}
;;
.pred.rel "mutex",p10,p11
{ .mfi
nop.m 999
(p10) fsub.s1 M = M, f1 // If |x| >= |y| and x >=0, set M=0
nop.i 999
}
{ .mfi
nop.m 999
(p11) fadd.s1 M = M, f1 // If |x| >= |y| and x < 0, set M=2.0
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
nop.i 999
}
// *************************************************
// ********************* STEP2 *********************
// *************************************************
//
// Q = E * V
//
{ .mfi
nop.m 999
fmpy.s1 Q = E, V
nop.i 999
}
;;
{ .mfi
nop.m 999
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (1) if POLY path
nop.i 999
}
;;
// Create a single precision representation of the signexp of Q with the
// 4 most significant bits of the significand followed by a 1 and then 18 0's
{ .mfi
nop.m 999
fmpy.s1 P_hi = M, P_hi
dep.z special = 0x1, 18, 1 // Form 0x0000000000040000
}
{ .mfi
nop.m 999
fmpy.s1 P_lo = M, P_lo
add table_ptr2 = 32, table_ptr1
}
;;
{ .mfi
nop.m 999
fma.s1 A_temp = Q, f1, f0 // Set A_temp if POLY path
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 E = E, E_hold, E // E = E + E*E_hold (1) if POLY path
nop.i 999
}
;;
//
// Is Q < 2**(-3)?
// swap = xor(swap,sign_X)
//
{ .mfi
nop.m 999
fcmp.lt.s1 p9, p0 = Q, TWO_TO_NEG3 // Test Q < 2^-3
xor swap = sign_X, swap
}
;;
// P_hi = s_Y * P_hi
{ .mmf
getf.exp exponent_Q = Q // Get signexp of Q
cmp.eq.unc p7, p6 = 0x00000, swap
fmpy.s1 P_hi = s_Y, P_hi
}
;;
//
// if (PR_1) sigma = -1.0
// if (PR_2) sigma = 1.0
//
{ .mfi
getf.sig significand_Q = Q // Get significand of Q
(p6) fsub.s1 sigma = f0, f1
nop.i 999
}
{ .mfb
(p9) add table_ptr1 = 128, table_base // Point to P8 if POLY path
(p7) fadd.s1 sigma = f0, f1
(p9) br.cond.spnt ATANL_POLY // Branch to POLY if 0 < Q < 2^-3
}
;;
//
// *************************************************
// ******************** STEP3 **********************
// *************************************************
//
// lookup = b_1 b_2 b_3 B_4
//
{ .mmi
nop.m 999
nop.m 999
andcm k = 0x0003, exponent_Q // k=0,1,2,3 for exp_Q=0,-1,-2,-3
}
;;
//
// Generate sign_exp_Q b_1 b_2 b_3 b_4 1 0 0 0 ... 0 in single precision
// representation. Note sign of Q is always 0.
//
{ .mfi
cmp.eq p8, p9 = 0x0000, k // Test k=0
nop.f 999
extr.u lookup = significand_Q, 59, 4 // Extract b_1 b_2 b_3 b_4 for index
}
{ .mfi
sub sp_exp_Q = 0x7f, k // Form single prec biased exp of Q
nop.f 999
sub k = k, r0, 1 // Decrement k
}
;;
// Form pointer to B index table
{ .mfi
ldfe Q_4 = [table_ptr1], -16 // Load Q_4
nop.f 999
(p9) shl k = k, 8 // k = 0, 256, or 512
}
{ .mfi
(p9) shladd table_ptr2 = lookup, 4, table_ptr2
nop.f 999
shladd sp_exp_4sig_Q = sp_exp_Q, 4, lookup // Shift and add in 4 high bits
}
;;
{ .mmi
(p8) add table_ptr2 = -16, table_ptr2 // Pointer if original k was 0
(p9) add table_ptr2 = k, table_ptr2 // Pointer if k was 1, 2, 3
dep special = sp_exp_4sig_Q, special, 19, 13 // Form z_hi as single prec
}
;;
// z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
{ .mmi
ldfd Tbl_hi = [table_ptr2], 8 // Load Tbl_hi from index table
;;
setf.s z_hi = special // Form z_hi
nop.i 999
}
{ .mmi
ldfs Tbl_lo = [table_ptr2], 8 // Load Tbl_lo from index table
;;
ldfe Q_3 = [table_ptr1], -16 // Load Q_3
nop.i 999
}
;;
{ .mmi
ldfe Q_2 = [table_ptr1], -16 // Load Q_2
nop.m 999
nop.i 999
}
;;
{ .mmf
ldfe Q_1 = [table_ptr1], -16 // Load Q_1
nop.m 999
nop.f 999
}
;;
{ .mfi
nop.m 999
fma.s1 U_prime_hi = V, z_hi, U // U_prime_hi = U + V * z_hi
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 V_prime = U, z_hi, V // V_prime = V - U * z_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
mov A_hi = Tbl_hi // Start with A_hi = Tbl_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fsub.s1 U_hold = U, U_prime_hi // U_hold = U - U_prime_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
frcpa.s1 C_hi, p0 = f1, U_prime_hi // C_hi = frcpa(1,U_prime_hi)
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 A_hi = s_Y, A_hi // A_hi = s_Y * A_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 U_prime_lo = z_hi, V, U_hold // U_prime_lo = U_hold + V * z_hi
nop.i 999
}
;;
// C_hi_hold = 1 - C_hi * U_prime_hi (1)
{ .mfi
nop.m 999
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 Res_hi = sigma, A_hi, P_hi // Res_hi = P_hi + sigma * A_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (1)
nop.i 999
}
;;
// C_hi_hold = 1 - C_hi * U_prime_hi (2)
{ .mfi
nop.m 999
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (2)
nop.i 999
}
;;
// C_hi_hold = 1 - C_hi * U_prime_hi (3)
{ .mfi
nop.m 999
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (3)
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 w_hi = V_prime, C_hi // w_hi = V_prime * C_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 wsq = w_hi, w_hi // wsq = w_hi * w_hi
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 w_lo = w_hi, U_prime_hi, V_prime // w_lo = V_prime-w_hi*U_prime_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 poly = wsq, Q_4, Q_3 // poly = Q_3 + wsq * Q_4
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 w_lo = w_hi, U_prime_lo, w_lo // w_lo = w_lo - w_hi * U_prime_lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 poly = wsq, poly, Q_2 // poly = Q_2 + wsq * poly
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 w_lo = C_hi, w_lo // w_lo = = w_lo * C_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 poly = wsq, poly, Q_1 // poly = Q_1 + wsq * poly
nop.i 999
}
{ .mfi
nop.m 999
fadd.s1 A_lo = Tbl_lo, w_lo // A_lo = Tbl_lo + w_lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s0 Q_1 = Q_1, Q_1 // Dummy operation to raise inexact
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 poly = wsq, poly // poly = wsq * poly
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 poly = w_hi, poly // poly = w_hi * poly
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 A_lo = A_lo, poly // A_lo = A_lo + poly
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 A_lo = A_lo, w_hi // A_lo = A_lo + w_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 Res_lo = sigma, A_lo, P_lo // Res_lo = P_lo + sigma * A_lo
nop.i 999
}
;;
//
// Result = Res_hi + Res_lo * s_Y (User Supplied Rounding Mode)
//
{ .mfb
nop.m 999
fma.s0 Result = Res_lo, s_Y, Res_hi
br.ret.sptk b0 // Exit table path 2^-3 <= V/U < 1
}
;;
ATANL_POLY:
// Here if 0 < V/U < 2^-3
//
// ***********************************************
// ******************** STEP4 ********************
// ***********************************************
//
// Following:
// Iterate 3 times E = E + E*(1.0 - E*U)
// Also load P_8, P_7, P_6, P_5, P_4
//
{ .mfi
ldfe P_8 = [table_ptr1], -16 // Load P_8
fnma.s1 z_lo = A_temp, U, V // z_lo = V - A_temp * U
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (2)
nop.i 999
}
;;
{ .mmi
ldfe P_7 = [table_ptr1], -16 // Load P_7
;;
ldfe P_6 = [table_ptr1], -16 // Load P_6
nop.i 999
}
;;
{ .mfi
ldfe P_5 = [table_ptr1], -16 // Load P_5
fma.s1 E = E, E_hold, E // E = E + E_hold*E (2)
nop.i 999
}
;;
{ .mmi
ldfe P_4 = [table_ptr1], -16 // Load P_4
;;
ldfe P_3 = [table_ptr1], -16 // Load P_3
nop.i 999
}
;;
{ .mfi
ldfe P_2 = [table_ptr1], -16 // Load P_2
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (3)
nop.i 999
}
{ .mlx
nop.m 999
movl int_temp = 0x24005 // Signexp for small neg number
}
;;
{ .mmf
ldfe P_1 = [table_ptr1], -16 // Load P_1
setf.exp tmp_small = int_temp // Form small neg number
fma.s1 E = E, E_hold, E // E = E + E_hold*E (3)
}
;;
//
//
// At this point E approximates 1/U to roughly working precision
// Z = V*E approximates V/U
//
{ .mfi
nop.m 999
fmpy.s1 Z = V, E // Z = V * E
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 z_lo = z_lo, E // z_lo = z_lo * E
nop.i 999
}
;;
//
// Now what we want to do is
// poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
// poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3))
//
//
// Fixup added to force inexact later -
// A_hi = A_temp + z_lo
// z_lo = (A_temp - A_hi) + z_lo
//
{ .mfi
nop.m 999
fmpy.s1 zsq = Z, Z // zsq = Z * Z
nop.i 999
}
{ .mfi
nop.m 999
fadd.s1 A_hi = A_temp, z_lo // A_hi = A_temp + z_lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 poly1 = zsq, P_8, P_7 // poly1 = P_7 + zsq * P_8
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 poly2 = zsq, P_3, P_2 // poly2 = P_2 + zsq * P_3
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 z4 = zsq, zsq // z4 = zsq * zsq
nop.i 999
}
{ .mfi
nop.m 999
fsub.s1 A_temp = A_temp, A_hi // A_temp = A_temp - A_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fmerge.s tmp = A_hi, A_hi // Copy tmp = A_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 poly1 = zsq, poly1, P_6 // poly1 = P_6 + zsq * poly1
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 poly2 = zsq, poly2, P_1 // poly2 = P_2 + zsq * poly2
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 z8 = z4, z4 // z8 = z4 * z4
nop.i 999
}
{ .mfi
nop.m 999
fadd.s1 z_lo = A_temp, z_lo // z_lo = (A_temp - A_hi) + z_lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 poly1 = zsq, poly1, P_5 // poly1 = P_5 + zsq * poly1
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 poly2 = poly2, zsq // poly2 = zsq * poly2
nop.i 999
}
;;
// Create small GR double in case need to raise underflow
{ .mfi
nop.m 999
fma.s1 poly1 = zsq, poly1, P_4 // poly1 = P_4 + zsq * poly1
dep GR_temp = -1,r0,0,53
}
;;
// Create small double in case need to raise underflow
{ .mfi
setf.d FR_temp = GR_temp
fma.s1 poly = z8, poly1, poly2 // poly = poly2 + z8 * poly1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 A_lo = Z, poly, z_lo // A_lo = z_lo + Z * poly
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 A_hi = tmp, A_lo // A_hi = tmp + A_lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fsub.s1 tmp = tmp, A_hi // tmp = tmp - A_hi
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 A_hi = s_Y, A_hi // A_hi = s_Y * A_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 A_lo = tmp, A_lo // A_lo = tmp + A_lo
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 Res_hi = sigma, A_hi, P_hi // Res_hi = P_hi + sigma * A_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fsub.s1 tmp = P_hi, Res_hi // tmp = P_hi - Res_hi
nop.i 999
}
;;
//
// Test if A_lo is zero
//
{ .mfi
nop.m 999
fclass.m p6,p0 = A_lo, 0x007 // Test A_lo = 0
nop.i 999
}
;;
{ .mfi
nop.m 999
(p6) mov A_lo = tmp_small // If A_lo zero, make very small
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 tmp = A_hi, sigma, tmp // tmp = sigma * A_hi + tmp
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sigma = A_lo, sigma, P_lo // sigma = A_lo * sigma + P_lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 Res_lo = s_Y, sigma, tmp // Res_lo = s_Y * sigma + tmp
nop.i 999
}
;;
//
// Test if Res_lo is denormal
//
{ .mfi
nop.m 999
fclass.m p14, p15 = Res_lo, 0x0b
nop.i 999
}
;;
//
// Compute Result = Res_lo + Res_hi. Use s3 if Res_lo is denormal.
//
{ .mfi
nop.m 999
(p14) fadd.s3 Result = Res_lo, Res_hi // Result for Res_lo denormal
nop.i 999
}
{ .mfi
nop.m 999
(p15) fadd.s0 Result = Res_lo, Res_hi // Result for Res_lo normal
nop.i 999
}
;;
//
// If Res_lo is denormal test if Result equals zero
//
{ .mfi
nop.m 999
(p14) fclass.m.unc p14, p0 = Result, 0x07
nop.i 999
}
;;
//
// If Res_lo is denormal and Result equals zero, raise inexact, underflow
// by squaring small double
//
{ .mfb
nop.m 999
(p14) fmpy.d.s0 FR_temp = FR_temp, FR_temp
br.ret.sptk b0 // Exit POLY path, 0 < Q < 2^-3
}
;;
ATANL_UNSUPPORTED:
{ .mfb
nop.m 999
fmpy.s0 Result = ArgX,ArgY
br.ret.sptk b0
}
;;
// Here if y natval, nan, inf, zero
ATANL_Y_SPECIAL:
// Here if x natval, nan, inf, zero
ATANL_X_SPECIAL:
{ .mfi
nop.m 999
fclass.m p13,p12 = ArgY_orig, 0x0c3 // Test y nan
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p15,p14 = ArgY_orig, 0x103 // Test y natval
nop.i 999
}
;;
{ .mfi
nop.m 999
(p12) fclass.m p13,p0 = ArgX_orig, 0x0c3 // Test x nan
nop.i 999
}
;;
{ .mfi
nop.m 999
(p14) fclass.m p15,p0 = ArgX_orig, 0x103 // Test x natval
nop.i 999
}
;;
{ .mfb
nop.m 999
(p13) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result nan if x or y nan
(p13) br.ret.spnt b0 // Exit if x or y nan
}
;;
{ .mfb
nop.m 999
(p15) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result natval if x or y natval
(p15) br.ret.spnt b0 // Exit if x or y natval
}
;;
// Here if x or y inf or zero
ATANL_SPECIAL_HANDLING:
{ .mfi
nop.m 999
fclass.m p6, p7 = ArgY_orig, 0x007 // Test y zero
mov special = 992 // Offset to table
}
;;
{ .mfb
add table_ptr1 = table_base, special // Point to 3pi/4
fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
(p7) br.cond.spnt ATANL_ArgY_Not_ZERO // Branch if y not zero
}
;;
// Here if y zero
{ .mmf
ldfd Result = [table_ptr1], 8 // Get pi high
nop.m 999
fclass.m p14, p0 = ArgX, 0x035 // Test for x>=+0
}
;;
{ .mmf
nop.m 999
ldfd Result_lo = [table_ptr1], -8 // Get pi lo
fclass.m p15, p0 = ArgX, 0x036 // Test for x<=-0
}
;;
//
// Return sign_Y * 0 when ArgX > +0
//
{ .mfi
nop.m 999
(p14) fmerge.s Result = ArgY, f0 // If x>=+0, y=0, hi sgn(y)*0
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p13, p0 = ArgX, 0x007 // Test for x=0
nop.i 999
}
;;
{ .mfi
nop.m 999
(p14) fmerge.s Result_lo = ArgY, f0 // If x>=+0, y=0, lo sgn(y)*0
nop.i 999
}
;;
{ .mfi
(p13) mov GR_Parameter_TAG = 36 // Error tag for x=0, y=0
nop.f 999
nop.i 999
}
;;
//
// Return sign_Y * pi when ArgX < -0
//
{ .mfi
nop.m 999
(p15) fmerge.s Result = ArgY, Result // If x<0, y=0, hi=sgn(y)*pi
nop.i 999
}
;;
{ .mfi
nop.m 999
(p15) fmerge.s Result_lo = ArgY, Result_lo // If x<0, y=0, lo=sgn(y)*pi
nop.i 999
}
;;
//
// Call error support function for atan(0,0)
//
{ .mfb
nop.m 999
fadd.s0 Result = Result, Result_lo
(p13) br.cond.spnt __libm_error_region // Branch if atan(0,0)
}
;;
{ .mib
nop.m 999
nop.i 999
br.ret.sptk b0 // Exit for y=0, x not 0
}
;;
// Here if y not zero
ATANL_ArgY_Not_ZERO:
{ .mfi
nop.m 999
fclass.m p0, p10 = ArgY, 0x023 // Test y inf
nop.i 999
}
;;
{ .mfb
nop.m 999
fclass.m p6, p0 = ArgX, 0x017 // Test for 0 <= |x| < inf
(p10) br.cond.spnt ATANL_ArgY_Not_INF // Branch if 0 < |y| < inf
}
;;
// Here if y=inf
//
// Return +PI/2 when ArgY = +Inf and ArgX = +/-0 or normal
// Return -PI/2 when ArgY = -Inf and ArgX = +/-0 or normal
// Return +PI/4 when ArgY = +Inf and ArgX = +Inf
// Return -PI/4 when ArgY = -Inf and ArgX = +Inf
// Return +3PI/4 when ArgY = +Inf and ArgX = -Inf
// Return -3PI/4 when ArgY = -Inf and ArgX = -Inf
//
{ .mfi
nop.m 999
fclass.m p7, p0 = ArgX, 0x021 // Test for x=+inf
nop.i 999
}
;;
{ .mfi
(p6) add table_ptr1 = 16, table_ptr1 // Point to pi/2, if x finite
fclass.m p8, p0 = ArgX, 0x022 // Test for x=-inf
nop.i 999
}
;;
{ .mmi
(p7) add table_ptr1 = 32, table_ptr1 // Point to pi/4 if x=+inf
;;
(p8) add table_ptr1 = 48, table_ptr1 // Point to 3pi/4 if x=-inf
nop.i 999
}
;;
{ .mmi
ldfd Result = [table_ptr1], 8 // Load pi/2, pi/4, or 3pi/4 hi
;;
ldfd Result_lo = [table_ptr1], -8 // Load pi/2, pi/4, or 3pi/4 lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fmerge.s Result = ArgY, Result // Merge sgn(y) in hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fmerge.s Result_lo = ArgY, Result_lo // Merge sgn(y) in lo
nop.i 999
}
;;
{ .mfb
nop.m 999
fadd.s0 Result = Result, Result_lo // Compute complete result
br.ret.sptk b0 // Exit for y=inf
}
;;
// Here if y not INF, and x=0 or INF
ATANL_ArgY_Not_INF:
//
// Return +PI/2 when ArgY NOT Inf, ArgY > 0 and ArgX = +/-0
// Return -PI/2 when ArgY NOT Inf, ArgY < 0 and ArgX = +/-0
// Return +0 when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
// Return -0 when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
// Return +PI when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
// Return -PI when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
//
{ .mfi
nop.m 999
fclass.m p7, p9 = ArgX, 0x021 // Test for x=+inf
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p6, p0 = ArgX, 0x007 // Test for x=0
nop.i 999
}
;;
{ .mfi
(p6) add table_ptr1 = 16, table_ptr1 // Point to pi/2
fclass.m p8, p0 = ArgX, 0x022 // Test for x=-inf
nop.i 999
}
;;
.pred.rel "mutex",p7,p9
{ .mfi
(p9) ldfd Result = [table_ptr1], 8 // Load pi or pi/2 hi
(p7) fmerge.s Result = ArgY, f0 // If y not inf, x=+inf, sgn(y)*0
nop.i 999
}
;;
{ .mfi
(p9) ldfd Result_lo = [table_ptr1], -8 // Load pi or pi/2 lo
(p7) fnorm.s0 Result = Result // If y not inf, x=+inf normalize
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fmerge.s Result = ArgY, Result // Merge sgn(y) in hi
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fmerge.s Result_lo = ArgY, Result_lo // Merge sgn(y) in lo
nop.i 999
}
;;
{ .mfb
nop.m 999
(p9) fadd.s0 Result = Result, Result_lo // Compute complete result
br.ret.spnt b0 // Exit for y not inf, x=0,inf
}
;;
GLOBAL_IEEE754_END(atan2l)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region#)
.type __libm_error_support#,@function
.global __libm_error_support#
|