1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
|
.file "tancotl.s"
// Copyright (c) 2000 - 2004, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// History:
//
// 02/02/00 (hand-optimized)
// 04/04/00 Unwind support added
// 12/28/00 Fixed false invalid flags
// 02/06/02 Improved speed
// 05/07/02 Changed interface to __libm_pi_by_2_reduce
// 05/30/02 Added cotl
// 02/10/03 Reordered header: .section, .global, .proc, .align;
// used data8 for long double table values
// 05/15/03 Reformatted data tables
// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
//
//*********************************************************************
//
// Functions: tanl(x) = tangent(x), for double-extended precision x values
// cotl(x) = cotangent(x), for double-extended precision x values
//
//*********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
// f9-f15
// f32-f121
//
// General Purpose Registers:
// r32-r70
//
// Predicate Registers: p6-p15
//
//*********************************************************************
//
// IEEE Special Conditions for tanl:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions do not occur
// Underflow exceptions raised when appropriate for tan
// (No specialized error handling for this routine)
// Inexact raised when appropriate by algorithm
//
// tanl(SNaN) = QNaN
// tanl(QNaN) = QNaN
// tanl(inf) = QNaN
// tanl(+/-0) = +/-0
//
//*********************************************************************
//
// IEEE Special Conditions for cotl:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions occur at zero and near zero
// Underflow exceptions do not occur
// Inexact raised when appropriate by algorithm
//
// cotl(SNaN) = QNaN
// cotl(QNaN) = QNaN
// cotl(inf) = QNaN
// cotl(+/-0) = +/-Inf and error handling is called
//
//*********************************************************************
//
// Below are mathematical and algorithmic descriptions for tanl.
// For cotl we use next identity cot(x) = -tan(x + Pi/2).
// So, to compute cot(x) we just need to increment N (N = N + 1)
// and invert sign of the computed result.
//
//*********************************************************************
//
// Mathematical Description
//
// We consider the computation of FPTANL of Arg. Now, given
//
// Arg = N pi/2 + alpha, |alpha| <= pi/4,
//
// basic mathematical relationship shows that
//
// tan( Arg ) = tan( alpha ) if N is even;
// = -cot( alpha ) otherwise.
//
// The value of alpha is obtained by argument reduction and
// represented by two working precision numbers r and c where
//
// alpha = r + c accurately.
//
// The reduction method is described in a previous write up.
// The argument reduction scheme identifies 4 cases. For Cases 2
// and 4, because |alpha| is small, tan(r+c) and -cot(r+c) can be
// computed very easily by 2 or 3 terms of the Taylor series
// expansion as follows:
//
// Case 2:
// -------
//
// tan(r + c) = r + c + r^3/3 ...accurately
// -cot(r + c) = -1/(r+c) + r/3 ...accurately
//
// Case 4:
// -------
//
// tan(r + c) = r + c + r^3/3 + 2r^5/15 ...accurately
// -cot(r + c) = -1/(r+c) + r/3 + r^3/45 ...accurately
//
//
// The only cases left are Cases 1 and 3 of the argument reduction
// procedure. These two cases will be merged since after the
// argument is reduced in either cases, we have the reduced argument
// represented as r + c and that the magnitude |r + c| is not small
// enough to allow the usage of a very short approximation.
//
// The greatest challenge of this task is that the second terms of
// the Taylor series for tan(r) and -cot(r)
//
// r + r^3/3 + 2 r^5/15 + ...
//
// and
//
// -1/r + r/3 + r^3/45 + ...
//
// are not very small when |r| is close to pi/4 and the rounding
// errors will be a concern if simple polynomial accumulation is
// used. When |r| < 2^(-2), however, the second terms will be small
// enough (5 bits or so of right shift) that a normal Horner
// recurrence suffices. Hence there are two cases that we consider
// in the accurate computation of tan(r) and cot(r), |r| <= pi/4.
//
// Case small_r: |r| < 2^(-2)
// --------------------------
//
// Since Arg = N pi/4 + r + c accurately, we have
//
// tan(Arg) = tan(r+c) for N even,
// = -cot(r+c) otherwise.
//
// Here for this case, both tan(r) and -cot(r) can be approximated
// by simple polynomials:
//
// tan(r) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
// -cot(r) = -1/r + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
//
// accurately. Since |r| is relatively small, tan(r+c) and
// -cot(r+c) can be accurately approximated by replacing r with
// r+c only in the first two terms of the corresponding polynomials.
//
// Note that P1_1 (and Q1_1 for that matter) approximates 1/3 to
// almost 64 sig. bits, thus
//
// P1_1 (r+c)^3 = P1_1 r^3 + c * r^2 accurately.
//
// Hence,
//
// tan(r+c) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
// + c*(1 + r^2)
//
// -cot(r+c) = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
// + Q1_1*c
//
//
// Case normal_r: 2^(-2) <= |r| <= pi/4
// ------------------------------------
//
// This case is more likely than the previous one if one considers
// r to be uniformly distributed in [-pi/4 pi/4].
//
// The required calculation is either
//
// tan(r + c) = tan(r) + correction, or
// -cot(r + c) = -cot(r) + correction.
//
// Specifically,
//
// tan(r + c) = tan(r) + c tan'(r) + O(c^2)
// = tan(r) + c sec^2(r) + O(c^2)
// = tan(r) + c SEC_sq ...accurately
// as long as SEC_sq approximates sec^2(r)
// to, say, 5 bits or so.
//
// Similarly,
//
// -cot(r + c) = -cot(r) - c cot'(r) + O(c^2)
// = -cot(r) + c csc^2(r) + O(c^2)
// = -cot(r) + c CSC_sq ...accurately
// as long as CSC_sq approximates csc^2(r)
// to, say, 5 bits or so.
//
// We therefore concentrate on accurately calculating tan(r) and
// cot(r) for a working-precision number r, |r| <= pi/4 to within
// 0.1% or so.
//
// We will employ a table-driven approach. Let
//
// r = sgn_r * 2^k * 1.b_1 b_2 ... b_5 ... b_63
// = sgn_r * ( B + x )
//
// where
//
// B = 2^k * 1.b_1 b_2 ... b_5 1
// x = |r| - B
//
// Now,
// tan(B) + tan(x)
// tan( B + x ) = ------------------------
// 1 - tan(B)*tan(x)
//
// / \
// | tan(B) + tan(x) |
// = tan(B) + | ------------------------ - tan(B) |
// | 1 - tan(B)*tan(x) |
// \ /
//
// sec^2(B) * tan(x)
// = tan(B) + ------------------------
// 1 - tan(B)*tan(x)
//
// (1/[sin(B)*cos(B)]) * tan(x)
// = tan(B) + --------------------------------
// cot(B) - tan(x)
//
//
// Clearly, the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
// calculated beforehand and stored in a table. Since
//
// |x| <= 2^k * 2^(-6) <= 2^(-7) (because k = -1, -2)
//
// a very short polynomial will be sufficient to approximate tan(x)
// accurately. The details involved in computing the last expression
// will be given in the next section on algorithm description.
//
//
// Now, we turn to the case where cot( B + x ) is needed.
//
//
// 1 - tan(B)*tan(x)
// cot( B + x ) = ------------------------
// tan(B) + tan(x)
//
// / \
// | 1 - tan(B)*tan(x) |
// = cot(B) + | ----------------------- - cot(B) |
// | tan(B) + tan(x) |
// \ /
//
// [tan(B) + cot(B)] * tan(x)
// = cot(B) - ----------------------------
// tan(B) + tan(x)
//
// (1/[sin(B)*cos(B)]) * tan(x)
// = cot(B) - --------------------------------
// tan(B) + tan(x)
//
//
// Note that the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) that
// are needed are the same set of values needed in the previous
// case.
//
// Finally, we can put all the ingredients together as follows:
//
// Arg = N * pi/2 + r + c ...accurately
//
// tan(Arg) = tan(r) + correction if N is even;
// = -cot(r) + correction otherwise.
//
// For Cases 2 and 4,
//
// Case 2:
// tan(Arg) = tan(r + c) = r + c + r^3/3 N even
// = -cot(r + c) = -1/(r+c) + r/3 N odd
// Case 4:
// tan(Arg) = tan(r + c) = r + c + r^3/3 + 2r^5/15 N even
// = -cot(r + c) = -1/(r+c) + r/3 + r^3/45 N odd
//
//
// For Cases 1 and 3,
//
// Case small_r: |r| < 2^(-2)
//
// tan(Arg) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
// + c*(1 + r^2) N even
//
// = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
// + Q1_1*c N odd
//
// Case normal_r: 2^(-2) <= |r| <= pi/4
//
// tan(Arg) = tan(r) + c * sec^2(r) N even
// = -cot(r) + c * csc^2(r) otherwise
//
// For N even,
//
// tan(Arg) = tan(r) + c*sec^2(r)
// = tan( sgn_r * (B+x) ) + c * sec^2(|r|)
// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(|r|) )
// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(B) )
//
// since B approximates |r| to 2^(-6) in relative accuracy.
//
// / (1/[sin(B)*cos(B)]) * tan(x)
// tan(Arg) = sgn_r * | tan(B) + --------------------------------
// \ cot(B) - tan(x)
// \
// + CORR |
// /
// where
//
// CORR = sgn_r*c*tan(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)).
//
// For N odd,
//
// tan(Arg) = -cot(r) + c*csc^2(r)
// = -cot( sgn_r * (B+x) ) + c * csc^2(|r|)
// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(|r|) )
// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(B) )
//
// since B approximates |r| to 2^(-6) in relative accuracy.
//
// / (1/[sin(B)*cos(B)]) * tan(x)
// tan(Arg) = sgn_r * | -cot(B) + --------------------------------
// \ tan(B) + tan(x)
// \
// + CORR |
// /
// where
//
// CORR = sgn_r*c*cot(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)).
//
//
// The actual algorithm prescribes how all the mathematical formulas
// are calculated.
//
//
// 2. Algorithmic Description
// ==========================
//
// 2.1 Computation for Cases 2 and 4.
// ----------------------------------
//
// For Case 2, we use two-term polynomials.
//
// For N even,
//
// rsq := r * r
// Poly := c + r * rsq * P1_1
// Result := r + Poly ...in user-defined rounding
//
// For N odd,
// S_hi := -frcpa(r) ...8 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
// ...S_hi + S_lo is -1/(r+c) to extra precision
// S_lo := S_lo + Q1_1*r
//
// Result := S_hi + S_lo ...in user-defined rounding
//
// For Case 4, we use three-term polynomials
//
// For N even,
//
// rsq := r * r
// Poly := c + r * rsq * (P1_1 + rsq * P1_2)
// Result := r + Poly ...in user-defined rounding
//
// For N odd,
// S_hi := -frcpa(r) ...8 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
// ...S_hi + S_lo is -1/(r+c) to extra precision
// rsq := r * r
// P := Q1_1 + rsq*Q1_2
// S_lo := S_lo + r*P
//
// Result := S_hi + S_lo ...in user-defined rounding
//
//
// Note that the coefficients P1_1, P1_2, Q1_1, and Q1_2 are
// the same as those used in the small_r case of Cases 1 and 3
// below.
//
//
// 2.2 Computation for Cases 1 and 3.
// ----------------------------------
// This is further divided into the case of small_r,
// where |r| < 2^(-2), and the case of normal_r, where |r| lies between
// 2^(-2) and pi/4.
//
// Algorithm for the case of small_r
// ---------------------------------
//
// For N even,
// rsq := r * r
// Poly1 := rsq*(P1_1 + rsq*(P1_2 + rsq*P1_3))
// r_to_the_8 := rsq * rsq
// r_to_the_8 := r_to_the_8 * r_to_the_8
// Poly2 := P1_4 + rsq*(P1_5 + rsq*(P1_6 + ... rsq*P1_9))
// CORR := c * ( 1 + rsq )
// Poly := Poly1 + r_to_the_8*Poly2
// Poly := r*Poly + CORR
// Result := r + Poly ...in user-defined rounding
// ...note that Poly1 and r_to_the_8 can be computed in parallel
// ...with Poly2 (Poly1 is intentionally set to be much
// ...shorter than Poly2 so that r_to_the_8 and CORR can be hidden)
//
// For N odd,
// S_hi := -frcpa(r) ...8 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
// ...S_hi + S_lo is -1/(r+c) to extra precision
// S_lo := S_lo + Q1_1*c
//
// ...S_hi and S_lo are computed in parallel with
// ...the following
// rsq := r*r
// P := Q1_1 + rsq*(Q1_2 + rsq*(Q1_3 + ... + rsq*Q1_7))
//
// Poly := r*P + S_lo
// Result := S_hi + Poly ...in user-defined rounding
//
//
// Algorithm for the case of normal_r
// ----------------------------------
//
// Here, we first consider the computation of tan( r + c ). As
// presented in the previous section,
//
// tan( r + c ) = tan(r) + c * sec^2(r)
// = sgn_r * [ tan(B+x) + CORR ]
// CORR = sgn_r * c * tan(B) * 1/[sin(B)*cos(B)]
//
// because sec^2(r) = sec^(|r|), and B approximate |r| to 6.5 bits.
//
// tan( r + c ) =
// / (1/[sin(B)*cos(B)]) * tan(x)
// sgn_r * | tan(B) + -------------------------------- +
// \ cot(B) - tan(x)
// \
// CORR |
// /
//
// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
// calculated beforehand and stored in a table. Specifically,
// the table values are
//
// tan(B) as T_hi + T_lo;
// cot(B) as C_hi + C_lo;
// 1/[sin(B)*cos(B)] as SC_inv
//
// T_hi, C_hi are in double-precision memory format;
// T_lo, C_lo are in single-precision memory format;
// SC_inv is in extended-precision memory format.
//
// The value of tan(x) will be approximated by a short polynomial of
// the form
//
// tan(x) as x + x * P, where
// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
//
// Because |x| <= 2^(-7), cot(B) - x approximates cot(B) - tan(x)
// to a relative accuracy better than 2^(-20). Thus, a good
// initial guess of 1/( cot(B) - tan(x) ) to initiate the iterative
// division is:
//
// 1/(cot(B) - tan(x)) is approximately
// 1/(cot(B) - x) is
// tan(B)/(1 - x*tan(B)) is approximately
// T_hi / ( 1 - T_hi * x ) is approximately
//
// T_hi * [ 1 + (Thi * x) + (T_hi * x)^2 ]
//
// The calculation of tan(r+c) therefore proceed as follows:
//
// Tx := T_hi * x
// xsq := x * x
//
// V_hi := T_hi*(1 + Tx*(1 + Tx))
// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
// ...V_hi serves as an initial guess of 1/(cot(B) - tan(x))
// ...good to about 20 bits of accuracy
//
// tanx := x + x*P
// D := C_hi - tanx
// ...D is a double precision denominator: cot(B) - tan(x)
//
// V_hi := V_hi + V_hi*(1 - V_hi*D)
// ....V_hi approximates 1/(cot(B)-tan(x)) to 40 bits
//
// V_lo := V_hi * ( [ (1 - V_hi*C_hi) + V_hi*tanx ]
// - V_hi*C_lo ) ...observe all order
// ...V_hi + V_lo approximates 1/(cot(B) - tan(x))
// ...to extra accuracy
//
// ... SC_inv(B) * (x + x*P)
// ... tan(B) + ------------------------- + CORR
// ... cot(B) - (x + x*P)
// ...
// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
// ...
//
// Sx := SC_inv * x
// CORR := sgn_r * c * SC_inv * T_hi
//
// ...put the ingredients together to compute
// ... SC_inv(B) * (x + x*P)
// ... tan(B) + ------------------------- + CORR
// ... cot(B) - (x + x*P)
// ...
// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
// ...
// ... = T_hi + T_lo + CORR +
// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
//
// CORR := CORR + T_lo
// tail := V_lo + P*(V_hi + V_lo)
// tail := Sx * tail + CORR
// tail := Sx * V_hi + tail
// T_hi := sgn_r * T_hi
//
// ...T_hi + sgn_r*tail now approximate
// ...sgn_r*(tan(B+x) + CORR) accurately
//
// Result := T_hi + sgn_r*tail ...in user-defined
// ...rounding control
// ...It is crucial that independent paths be fully
// ...exploited for performance's sake.
//
//
// Next, we consider the computation of -cot( r + c ). As
// presented in the previous section,
//
// -cot( r + c ) = -cot(r) + c * csc^2(r)
// = sgn_r * [ -cot(B+x) + CORR ]
// CORR = sgn_r * c * cot(B) * 1/[sin(B)*cos(B)]
//
// because csc^2(r) = csc^(|r|), and B approximate |r| to 6.5 bits.
//
// -cot( r + c ) =
// / (1/[sin(B)*cos(B)]) * tan(x)
// sgn_r * | -cot(B) + -------------------------------- +
// \ tan(B) + tan(x)
// \
// CORR |
// /
//
// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
// calculated beforehand and stored in a table. Specifically,
// the table values are
//
// tan(B) as T_hi + T_lo;
// cot(B) as C_hi + C_lo;
// 1/[sin(B)*cos(B)] as SC_inv
//
// T_hi, C_hi are in double-precision memory format;
// T_lo, C_lo are in single-precision memory format;
// SC_inv is in extended-precision memory format.
//
// The value of tan(x) will be approximated by a short polynomial of
// the form
//
// tan(x) as x + x * P, where
// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
//
// Because |x| <= 2^(-7), tan(B) + x approximates tan(B) + tan(x)
// to a relative accuracy better than 2^(-18). Thus, a good
// initial guess of 1/( tan(B) + tan(x) ) to initiate the iterative
// division is:
//
// 1/(tan(B) + tan(x)) is approximately
// 1/(tan(B) + x) is
// cot(B)/(1 + x*cot(B)) is approximately
// C_hi / ( 1 + C_hi * x ) is approximately
//
// C_hi * [ 1 - (C_hi * x) + (C_hi * x)^2 ]
//
// The calculation of -cot(r+c) therefore proceed as follows:
//
// Cx := C_hi * x
// xsq := x * x
//
// V_hi := C_hi*(1 - Cx*(1 - Cx))
// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
// ...V_hi serves as an initial guess of 1/(tan(B) + tan(x))
// ...good to about 18 bits of accuracy
//
// tanx := x + x*P
// D := T_hi + tanx
// ...D is a double precision denominator: tan(B) + tan(x)
//
// V_hi := V_hi + V_hi*(1 - V_hi*D)
// ....V_hi approximates 1/(tan(B)+tan(x)) to 40 bits
//
// V_lo := V_hi * ( [ (1 - V_hi*T_hi) - V_hi*tanx ]
// - V_hi*T_lo ) ...observe all order
// ...V_hi + V_lo approximates 1/(tan(B) + tan(x))
// ...to extra accuracy
//
// ... SC_inv(B) * (x + x*P)
// ... -cot(B) + ------------------------- + CORR
// ... tan(B) + (x + x*P)
// ...
// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
// ...
//
// Sx := SC_inv * x
// CORR := sgn_r * c * SC_inv * C_hi
//
// ...put the ingredients together to compute
// ... SC_inv(B) * (x + x*P)
// ... -cot(B) + ------------------------- + CORR
// ... tan(B) + (x + x*P)
// ...
// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
// ...
// ... =-C_hi - C_lo + CORR +
// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
//
// CORR := CORR - C_lo
// tail := V_lo + P*(V_hi + V_lo)
// tail := Sx * tail + CORR
// tail := Sx * V_hi + tail
// C_hi := -sgn_r * C_hi
//
// ...C_hi + sgn_r*tail now approximates
// ...sgn_r*(-cot(B+x) + CORR) accurately
//
// Result := C_hi + sgn_r*tail in user-defined rounding control
// ...It is crucial that independent paths be fully
// ...exploited for performance's sake.
//
// 3. Implementation Notes
// =======================
//
// Table entries T_hi, T_lo; C_hi, C_lo; SC_inv
//
// Recall that 2^(-2) <= |r| <= pi/4;
//
// r = sgn_r * 2^k * 1.b_1 b_2 ... b_63
//
// and
//
// B = 2^k * 1.b_1 b_2 b_3 b_4 b_5 1
//
// Thus, for k = -2, possible values of B are
//
// B = 2^(-2) * ( 1 + index/32 + 1/64 ),
// index ranges from 0 to 31
//
// For k = -1, however, since |r| <= pi/4 = 0.78...
// possible values of B are
//
// B = 2^(-1) * ( 1 + index/32 + 1/64 )
// index ranges from 0 to 19.
//
//
RODATA
.align 16
LOCAL_OBJECT_START(TANL_BASE_CONSTANTS)
tanl_table_1:
data8 0xA2F9836E4E44152A, 0x00003FFE // two_by_pi
data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
data8 0xC90FDAA22168C235, 0x00003FFF // P_1
data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
LOCAL_OBJECT_END(TANL_BASE_CONSTANTS)
LOCAL_OBJECT_START(tanl_table_2)
data8 0xC90FDAA22168C234, 0x00003FFE // PI_BY_4
data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
data4 0x3E800000 // two**-2
data4 0xBE800000 // -two**-2
data4 0x00000000 // pad
data4 0x00000000 // pad
LOCAL_OBJECT_END(tanl_table_2)
LOCAL_OBJECT_START(tanl_table_p1)
data8 0xAAAAAAAAAAAAAABD, 0x00003FFD // P1_1
data8 0x8888888888882E6A, 0x00003FFC // P1_2
data8 0xDD0DD0DD0F0177B6, 0x00003FFA // P1_3
data8 0xB327A440646B8C6D, 0x00003FF9 // P1_4
data8 0x91371B251D5F7D20, 0x00003FF8 // P1_5
data8 0xEB69A5F161C67914, 0x00003FF6 // P1_6
data8 0xBEDD37BE019318D2, 0x00003FF5 // P1_7
data8 0x9979B1463C794015, 0x00003FF4 // P1_8
data8 0x8EBD21A38C6EB58A, 0x00003FF3 // P1_9
LOCAL_OBJECT_END(tanl_table_p1)
LOCAL_OBJECT_START(tanl_table_q1)
data8 0xAAAAAAAAAAAAAAB4, 0x00003FFD // Q1_1
data8 0xB60B60B60B5FC93E, 0x00003FF9 // Q1_2
data8 0x8AB355E00C9BBFBF, 0x00003FF6 // Q1_3
data8 0xDDEBBC89CBEE3D4C, 0x00003FF2 // Q1_4
data8 0xB3548A685F80BBB6, 0x00003FEF // Q1_5
data8 0x913625604CED5BF1, 0x00003FEC // Q1_6
data8 0xF189D95A8EE92A83, 0x00003FE8 // Q1_7
LOCAL_OBJECT_END(tanl_table_q1)
LOCAL_OBJECT_START(tanl_table_p2)
data8 0xAAAAAAAAAAAB362F, 0x00003FFD // P2_1
data8 0x88888886E97A6097, 0x00003FFC // P2_2
data8 0xDD108EE025E716A1, 0x00003FFA // P2_3
LOCAL_OBJECT_END(tanl_table_p2)
LOCAL_OBJECT_START(tanl_table_tm2)
//
// Entries T_hi double-precision memory format
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
// Entries T_lo single-precision memory format
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
//
data8 0x3FD09BC362400794
data4 0x23A05C32, 0x00000000
data8 0x3FD124A9DFFBC074
data4 0x240078B2, 0x00000000
data8 0x3FD1AE235BD4920F
data4 0x23826B8E, 0x00000000
data8 0x3FD2383515E2701D
data4 0x22D31154, 0x00000000
data8 0x3FD2C2E463739C2D
data4 0x2265C9E2, 0x00000000
data8 0x3FD34E36AFEEA48B
data4 0x245C05EB, 0x00000000
data8 0x3FD3DA317DBB35D1
data4 0x24749F2D, 0x00000000
data8 0x3FD466DA67321619
data4 0x2462CECE, 0x00000000
data8 0x3FD4F4371F94A4D5
data4 0x246D0DF1, 0x00000000
data8 0x3FD5824D740C3E6D
data4 0x240A85B5, 0x00000000
data8 0x3FD611234CB1E73D
data4 0x23F96E33, 0x00000000
data8 0x3FD6A0BEAD9EA64B
data4 0x247C5393, 0x00000000
data8 0x3FD73125B804FD01
data4 0x241F3B29, 0x00000000
data8 0x3FD7C25EAB53EE83
data4 0x2479989B, 0x00000000
data8 0x3FD8546FE6640EED
data4 0x23B343BC, 0x00000000
data8 0x3FD8E75FE8AF1892
data4 0x241454D1, 0x00000000
data8 0x3FD97B3553928BDA
data4 0x238613D9, 0x00000000
data8 0x3FDA0FF6EB9DE4DE
data4 0x22859FA7, 0x00000000
data8 0x3FDAA5AB99ECF92D
data4 0x237A6D06, 0x00000000
data8 0x3FDB3C5A6D8F1796
data4 0x23952F6C, 0x00000000
data8 0x3FDBD40A9CFB8BE4
data4 0x2280FC95, 0x00000000
data8 0x3FDC6CC387943100
data4 0x245D2EC0, 0x00000000
data8 0x3FDD068CB736C500
data4 0x23C4AD7D, 0x00000000
data8 0x3FDDA16DE1DDBC31
data4 0x23D076E6, 0x00000000
data8 0x3FDE3D6EEB515A93
data4 0x244809A6, 0x00000000
data8 0x3FDEDA97E6E9E5F1
data4 0x220856C8, 0x00000000
data8 0x3FDF78F11963CE69
data4 0x244BE993, 0x00000000
data8 0x3FE00C417D635BCE
data4 0x23D21799, 0x00000000
data8 0x3FE05CAB1C302CD3
data4 0x248A1B1D, 0x00000000
data8 0x3FE0ADB9DB6A1FA0
data4 0x23D53E33, 0x00000000
data8 0x3FE0FF724A20BA81
data4 0x24DB9ED5, 0x00000000
data8 0x3FE151D9153FA6F5
data4 0x24E9E451, 0x00000000
LOCAL_OBJECT_END(tanl_table_tm2)
LOCAL_OBJECT_START(tanl_table_tm1)
//
// Entries T_hi double-precision memory format
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
// Entries T_lo single-precision memory format
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
//
data8 0x3FE1CEC4BA1BE39E
data4 0x24B60F9E, 0x00000000
data8 0x3FE277E45ABD9B2D
data4 0x248C2474, 0x00000000
data8 0x3FE324180272B110
data4 0x247B8311, 0x00000000
data8 0x3FE3D38B890E2DF0
data4 0x24C55751, 0x00000000
data8 0x3FE4866D46236871
data4 0x24E5BC34, 0x00000000
data8 0x3FE53CEE45E044B0
data4 0x24001BA4, 0x00000000
data8 0x3FE5F74282EC06E4
data4 0x24B973DC, 0x00000000
data8 0x3FE6B5A125DF43F9
data4 0x24895440, 0x00000000
data8 0x3FE77844CAFD348C
data4 0x240021CA, 0x00000000
data8 0x3FE83F6BCEED6B92
data4 0x24C45372, 0x00000000
data8 0x3FE90B58A34F3665
data4 0x240DAD33, 0x00000000
data8 0x3FE9DC522C1E56B4
data4 0x24F846CE, 0x00000000
data8 0x3FEAB2A427041578
data4 0x2323FB6E, 0x00000000
data8 0x3FEB8E9F9DD8C373
data4 0x24B3090B, 0x00000000
data8 0x3FEC709B65C9AA7B
data4 0x2449F611, 0x00000000
data8 0x3FED58F4ACCF8435
data4 0x23616A7E, 0x00000000
data8 0x3FEE480F97635082
data4 0x24C2FEAE, 0x00000000
data8 0x3FEF3E57F0ACC544
data4 0x242CE964, 0x00000000
data8 0x3FF01E20F7E06E4B
data4 0x2480D3EE, 0x00000000
data8 0x3FF0A1258A798A69
data4 0x24DB8967, 0x00000000
LOCAL_OBJECT_END(tanl_table_tm1)
LOCAL_OBJECT_START(tanl_table_cm2)
//
// Entries C_hi double-precision memory format
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
// Entries C_lo single-precision memory format
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
//
data8 0x400ED3E2E63EFBD0
data4 0x259D94D4, 0x00000000
data8 0x400DDDB4C515DAB5
data4 0x245F0537, 0x00000000
data8 0x400CF57ABE19A79F
data4 0x25D4EA9F, 0x00000000
data8 0x400C1A06D15298ED
data4 0x24AE40A0, 0x00000000
data8 0x400B4A4C164B2708
data4 0x25A5AAB6, 0x00000000
data8 0x400A855A5285B068
data4 0x25524F18, 0x00000000
data8 0x4009CA5A3FFA549F
data4 0x24C999C0, 0x00000000
data8 0x4009188A646AF623
data4 0x254FD801, 0x00000000
data8 0x40086F3C6084D0E7
data4 0x2560F5FD, 0x00000000
data8 0x4007CDD2A29A76EE
data4 0x255B9D19, 0x00000000
data8 0x400733BE6C8ECA95
data4 0x25CB021B, 0x00000000
data8 0x4006A07E1F8DDC52
data4 0x24AB4722, 0x00000000
data8 0x4006139BC298AD58
data4 0x252764E2, 0x00000000
data8 0x40058CABBAD7164B
data4 0x24DAF5DB, 0x00000000
data8 0x40050B4BAE31A5D3
data4 0x25EA20F4, 0x00000000
data8 0x40048F2189F85A8A
data4 0x2583A3E8, 0x00000000
data8 0x400417DAA862380D
data4 0x25DCC4CC, 0x00000000
data8 0x4003A52B1088FCFE
data4 0x2430A492, 0x00000000
data8 0x400336CCCD3527D5
data4 0x255F77CF, 0x00000000
data8 0x4002CC7F5760766D
data4 0x25DA0BDA, 0x00000000
data8 0x4002660711CE02E3
data4 0x256FF4A2, 0x00000000
data8 0x4002032CD37BBE04
data4 0x25208AED, 0x00000000
data8 0x4001A3BD7F050775
data4 0x24B72DD6, 0x00000000
data8 0x40014789A554848A
data4 0x24AB4DAA, 0x00000000
data8 0x4000EE65323E81B7
data4 0x2584C440, 0x00000000
data8 0x4000982721CF1293
data4 0x25C9428D, 0x00000000
data8 0x400044A93D415EEB
data4 0x25DC8482, 0x00000000
data8 0x3FFFE78FBD72C577
data4 0x257F5070, 0x00000000
data8 0x3FFF4AC375EFD28E
data4 0x23EBBF7A, 0x00000000
data8 0x3FFEB2AF60B52DDE
data4 0x22EECA07, 0x00000000
data8 0x3FFE1F1935204180
data4 0x24191079, 0x00000000
data8 0x3FFD8FCA54F7E60A
data4 0x248D3058, 0x00000000
LOCAL_OBJECT_END(tanl_table_cm2)
LOCAL_OBJECT_START(tanl_table_cm1)
//
// Entries C_hi double-precision memory format
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
// Entries C_lo single-precision memory format
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
//
data8 0x3FFCC06A79F6FADE
data4 0x239C7886, 0x00000000
data8 0x3FFBB91F891662A6
data4 0x250BD191, 0x00000000
data8 0x3FFABFB6529F155D
data4 0x256CC3E6, 0x00000000
data8 0x3FF9D3002E964AE9
data4 0x250843E3, 0x00000000
data8 0x3FF8F1EF89DCB383
data4 0x2277C87E, 0x00000000
data8 0x3FF81B937C87DBD6
data4 0x256DA6CF, 0x00000000
data8 0x3FF74F141042EDE4
data4 0x2573D28A, 0x00000000
data8 0x3FF68BAF1784B360
data4 0x242E489A, 0x00000000
data8 0x3FF5D0B57C923C4C
data4 0x2532D940, 0x00000000
data8 0x3FF51D88F418EF20
data4 0x253C7DD6, 0x00000000
data8 0x3FF4719A02F88DAE
data4 0x23DB59BF, 0x00000000
data8 0x3FF3CC6649DA0788
data4 0x252B4756, 0x00000000
data8 0x3FF32D770B980DB8
data4 0x23FE585F, 0x00000000
data8 0x3FF2945FE56C987A
data4 0x25378A63, 0x00000000
data8 0x3FF200BDB16523F6
data4 0x247BB2E0, 0x00000000
data8 0x3FF172358CE27778
data4 0x24446538, 0x00000000
data8 0x3FF0E873FDEFE692
data4 0x2514638F, 0x00000000
data8 0x3FF0632C33154062
data4 0x24A7FC27, 0x00000000
data8 0x3FEFC42EB3EF115F
data4 0x248FD0FE, 0x00000000
data8 0x3FEEC9E8135D26F6
data4 0x2385C719, 0x00000000
LOCAL_OBJECT_END(tanl_table_cm1)
LOCAL_OBJECT_START(tanl_table_scim2)
//
// Entries SC_inv in Swapped IEEE format (extended)
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
//
data8 0x839D6D4A1BF30C9E, 0x00004001
data8 0x80092804554B0EB0, 0x00004001
data8 0xF959F94CA1CF0DE9, 0x00004000
data8 0xF3086BA077378677, 0x00004000
data8 0xED154515CCD4723C, 0x00004000
data8 0xE77909441C27CF25, 0x00004000
data8 0xE22D037D8DDACB88, 0x00004000
data8 0xDD2B2D8A89C73522, 0x00004000
data8 0xD86E1A23BB2C1171, 0x00004000
data8 0xD3F0E288DFF5E0F9, 0x00004000
data8 0xCFAF16B1283BEBD5, 0x00004000
data8 0xCBA4AFAA0D88DD53, 0x00004000
data8 0xC7CE03CCCA67C43D, 0x00004000
data8 0xC427BC820CA0DDB0, 0x00004000
data8 0xC0AECD57F13D8CAB, 0x00004000
data8 0xBD606C3871ECE6B1, 0x00004000
data8 0xBA3A0A96A44C4929, 0x00004000
data8 0xB7394F6FE5CCCEC1, 0x00004000
data8 0xB45C12039637D8BC, 0x00004000
data8 0xB1A0552892CB051B, 0x00004000
data8 0xAF04432B6BA2FFD0, 0x00004000
data8 0xAC862A237221235F, 0x00004000
data8 0xAA2478AF5F00A9D1, 0x00004000
data8 0xA7DDBB0C81E082BF, 0x00004000
data8 0xA5B0987D45684FEE, 0x00004000
data8 0xA39BD0F5627A8F53, 0x00004000
data8 0xA19E3B036EC5C8B0, 0x00004000
data8 0x9FB6C1F091CD7C66, 0x00004000
data8 0x9DE464101FA3DF8A, 0x00004000
data8 0x9C263139A8F6B888, 0x00004000
data8 0x9A7B4968C27B0450, 0x00004000
data8 0x98E2DB7E5EE614EE, 0x00004000
LOCAL_OBJECT_END(tanl_table_scim2)
LOCAL_OBJECT_START(tanl_table_scim1)
//
// Entries SC_inv in Swapped IEEE format (extended)
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
//
data8 0x969F335C13B2B5BA, 0x00004000
data8 0x93D446D9D4C0F548, 0x00004000
data8 0x9147094F61B798AF, 0x00004000
data8 0x8EF317CC758787AC, 0x00004000
data8 0x8CD498B3B99EEFDB, 0x00004000
data8 0x8AE82A7DDFF8BC37, 0x00004000
data8 0x892AD546E3C55D42, 0x00004000
data8 0x8799FEA9D15573C1, 0x00004000
data8 0x86335F88435A4B4C, 0x00004000
data8 0x84F4FB6E3E93A87B, 0x00004000
data8 0x83DD195280A382FB, 0x00004000
data8 0x82EA3D7FA4CB8C9E, 0x00004000
data8 0x821B247C6861D0A8, 0x00004000
data8 0x816EBED163E8D244, 0x00004000
data8 0x80E42D9127E4CFC6, 0x00004000
data8 0x807ABF8D28E64AFD, 0x00004000
data8 0x8031EF26863B4FD8, 0x00004000
data8 0x800960ADAE8C11FD, 0x00004000
data8 0x8000E1475FDBEC21, 0x00004000
data8 0x80186650A07791FA, 0x00004000
LOCAL_OBJECT_END(tanl_table_scim1)
Arg = f8
Save_Norm_Arg = f8 // For input to reduction routine
Result = f8
r = f8 // For output from reduction routine
c = f9 // For output from reduction routine
U_2 = f10
rsq = f11
C_hi = f12
C_lo = f13
T_hi = f14
T_lo = f15
d_1 = f33
N_0 = f34
tail = f35
tanx = f36
Cx = f37
Sx = f38
sgn_r = f39
CORR = f40
P = f41
D = f42
ArgPrime = f43
P_0 = f44
P2_1 = f45
P2_2 = f46
P2_3 = f47
P1_1 = f45
P1_2 = f46
P1_3 = f47
P1_4 = f48
P1_5 = f49
P1_6 = f50
P1_7 = f51
P1_8 = f52
P1_9 = f53
x = f56
xsq = f57
Tx = f58
Tx1 = f59
Set = f60
poly1 = f61
poly2 = f62
Poly = f63
Poly1 = f64
Poly2 = f65
r_to_the_8 = f66
B = f67
SC_inv = f68
Pos_r = f69
N_0_fix = f70
d_2 = f71
PI_BY_4 = f72
TWO_TO_NEG14 = f74
TWO_TO_NEG33 = f75
NEGTWO_TO_NEG14 = f76
NEGTWO_TO_NEG33 = f77
two_by_PI = f78
N = f79
N_fix = f80
P_1 = f81
P_2 = f82
P_3 = f83
s_val = f84
w = f85
B_mask1 = f86
B_mask2 = f87
w2 = f88
A = f89
a = f90
t = f91
U_1 = f92
NEGTWO_TO_NEG2 = f93
TWO_TO_NEG2 = f94
Q1_1 = f95
Q1_2 = f96
Q1_3 = f97
Q1_4 = f98
Q1_5 = f99
Q1_6 = f100
Q1_7 = f101
Q1_8 = f102
S_hi = f103
S_lo = f104
V_hi = f105
V_lo = f106
U_hi = f107
U_lo = f108
U_hiabs = f109
V_hiabs = f110
V = f111
Inv_P_0 = f112
FR_inv_pi_2to63 = f113
FR_rshf_2to64 = f114
FR_2tom64 = f115
FR_rshf = f116
Norm_Arg = f117
Abs_Arg = f118
TWO_TO_NEG65 = f119
fp_tmp = f120
mOne = f121
GR_SAVE_B0 = r33
GR_SAVE_GP = r34
GR_SAVE_PFS = r35
table_base = r36
table_ptr1 = r37
table_ptr2 = r38
table_ptr3 = r39
lookup = r40
N_fix_gr = r41
GR_exp_2tom2 = r42
GR_exp_2tom65 = r43
exp_r = r44
sig_r = r45
bmask1 = r46
table_offset = r47
bmask2 = r48
gr_tmp = r49
cot_flag = r50
GR_sig_inv_pi = r51
GR_rshf_2to64 = r52
GR_exp_2tom64 = r53
GR_rshf = r54
GR_exp_2_to_63 = r55
GR_exp_2_to_24 = r56
GR_signexp_x = r57
GR_exp_x = r58
GR_exp_mask = r59
GR_exp_2tom14 = r60
GR_exp_m2tom14 = r61
GR_exp_2tom33 = r62
GR_exp_m2tom33 = r63
GR_SAVE_B0 = r64
GR_SAVE_PFS = r65
GR_SAVE_GP = r66
GR_Parameter_X = r67
GR_Parameter_Y = r68
GR_Parameter_RESULT = r69
GR_Parameter_Tag = r70
.section .text
.global __libm_tanl#
.global __libm_cotl#
.proc __libm_cotl#
__libm_cotl:
.endp __libm_cotl#
LOCAL_LIBM_ENTRY(cotl)
{ .mlx
alloc r32 = ar.pfs, 0,35,4,0
movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
}
{ .mlx
mov GR_exp_mask = 0x1ffff // Exponent mask
movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
}
;;
// Check for NatVals, Infs , NaNs, and Zeros
{ .mfi
getf.exp GR_signexp_x = Arg // Get sign and exponent of x
fclass.m p6,p0 = Arg, 0x1E7 // Test for natval, nan, inf, zero
mov cot_flag = 0x1
}
{ .mfb
addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
fnorm.s1 Norm_Arg = Arg // Normalize x
br.cond.sptk COMMON_PATH
};;
LOCAL_LIBM_END(cotl)
.proc __libm_tanl#
__libm_tanl:
.endp __libm_tanl#
GLOBAL_IEEE754_ENTRY(tanl)
{ .mlx
alloc r32 = ar.pfs, 0,35,4,0
movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
}
{ .mlx
mov GR_exp_mask = 0x1ffff // Exponent mask
movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
}
;;
// Check for NatVals, Infs , NaNs, and Zeros
{ .mfi
getf.exp GR_signexp_x = Arg // Get sign and exponent of x
fclass.m p6,p0 = Arg, 0x1E7 // Test for natval, nan, inf, zero
mov cot_flag = 0x0
}
{ .mfi
addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
fnorm.s1 Norm_Arg = Arg // Normalize x
nop.i 0
};;
// Common path for both tanl and cotl
COMMON_PATH:
{ .mfi
setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
fclass.m p9, p0 = Arg, 0x0b // Test x denormal
mov GR_exp_2tom64 = 0xffff - 64 // Scaling constant to compute N
}
{ .mlx
setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64)
movl GR_rshf = 0x43e8000000000000 // Form const 1.1000 * 2^63
}
;;
// Check for everything - if false, then must be pseudo-zero or pseudo-nan.
// Branch out to deal with special values.
{ .mfi
addl gr_tmp = -1,r0
fclass.nm p7,p0 = Arg, 0x1FF // Test x unsupported
mov GR_exp_2_to_63 = 0xffff + 63 // Exponent of 2^63
}
{ .mfb
ld8 table_base = [table_base] // Get pointer to constant table
fms.s1 mOne = f0, f0, f1
(p6) br.cond.spnt TANL_SPECIAL // Branch if x natval, nan, inf, zero
}
;;
{ .mmb
setf.sig fp_tmp = gr_tmp // Make a constant so fmpy produces inexact
mov GR_exp_2_to_24 = 0xffff + 24 // Exponent of 2^24
(p9) br.cond.spnt TANL_DENORMAL // Branch if x denormal
}
;;
TANL_COMMON:
// Return to here if x denormal
//
// Do fcmp to generate Denormal exception
// - can't do FNORM (will generate Underflow when U is unmasked!)
// Branch out to deal with unsupporteds values.
{ .mfi
setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float
fcmp.eq.s0 p0, p6 = Arg, f1 // Dummy to flag denormals
add table_ptr1 = 0, table_base // Point to tanl_table_1
}
{ .mib
setf.d FR_rshf = GR_rshf // Form right shift const 1.1000 * 2^63
add table_ptr2 = 80, table_base // Point to tanl_table_2
(p7) br.cond.spnt TANL_UNSUPPORTED // Branch if x unsupported type
}
;;
{ .mfi
and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
fmpy.s1 Save_Norm_Arg = Norm_Arg, f1 // Save x if large arg reduction
dep.z bmask1 = 0x7c, 56, 8 // Form mask to get 5 msb of r
// bmask1 = 0x7c00000000000000
}
;;
//
// Decide about the paths to take:
// Set PR_6 if |Arg| >= 2**63
// Set PR_9 if |Arg| < 2**24 - CASE 1 OR 2
// OTHERWISE Set PR_8 - CASE 3 OR 4
//
// Branch out if the magnitude of the input argument is >= 2^63
// - do this branch before the next.
{ .mfi
ldfe two_by_PI = [table_ptr1],16 // Load 2/pi
nop.f 999
dep.z bmask2 = 0x41, 57, 7 // Form mask to OR to produce B
// bmask2 = 0x8200000000000000
}
{ .mib
ldfe PI_BY_4 = [table_ptr2],16 // Load pi/4
cmp.ge p6,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63
(p6) br.cond.spnt TANL_ARG_TOO_LARGE // Branch if |x| >= 2^63
}
;;
{ .mmi
ldfe P_0 = [table_ptr1],16 // Load P_0
ldfe Inv_P_0 = [table_ptr2],16 // Load Inv_P_0
nop.i 999
}
;;
{ .mfi
ldfe P_1 = [table_ptr1],16 // Load P_1
fmerge.s Abs_Arg = f0, Norm_Arg // Get |x|
mov GR_exp_m2tom33 = 0x2ffff - 33 // Form signexp of -2^-33
}
{ .mfi
ldfe d_1 = [table_ptr2],16 // Load d_1 for 2^24 <= |x| < 2^63
nop.f 999
mov GR_exp_2tom33 = 0xffff - 33 // Form signexp of 2^-33
}
;;
{ .mmi
ldfe P_2 = [table_ptr1],16 // Load P_2
ldfe d_2 = [table_ptr2],16 // Load d_2 for 2^24 <= |x| < 2^63
cmp.ge p8,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24
}
;;
// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
{ .mfb
ldfe P_3 = [table_ptr1],16 // Load P_3
fma.s1 N_fix = Norm_Arg, FR_inv_pi_2to63, FR_rshf_2to64
(p8) br.cond.spnt TANL_LARGER_ARG // Branch if 2^24 <= |x| < 2^63
}
;;
// Here if 0 < |x| < 2^24
// ARGUMENT REDUCTION CODE - CASE 1 and 2
//
{ .mmf
setf.exp TWO_TO_NEG33 = GR_exp_2tom33 // Form 2^-33
setf.exp NEGTWO_TO_NEG33 = GR_exp_m2tom33 // Form -2^-33
fmerge.s r = Norm_Arg,Norm_Arg // Assume r=x, ok if |x| < pi/4
}
;;
//
// If |Arg| < pi/4, set PR_8, else pi/4 <=|Arg| < 2^24 - set PR_9.
//
// Case 2: Convert integer N_fix back to normalized floating-point value.
{ .mfi
getf.sig sig_r = Norm_Arg // Get sig_r if 1/4 <= |x| < pi/4
fcmp.lt.s1 p8,p9= Abs_Arg,PI_BY_4 // Test |x| < pi/4
mov GR_exp_2tom2 = 0xffff - 2 // Form signexp of 2^-2
}
{ .mfi
ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2] // Load 2^-2, -2^-2
fms.s1 N = N_fix, FR_2tom64, FR_rshf // Use scaling to get N floated
mov N_fix_gr = r0 // Assume N=0, ok if |x| < pi/4
}
;;
//
// Case 1: Is |r| < 2**(-2).
// Arg is the same as r in this case.
// r = Arg
// c = 0
//
// Case 2: Place integer part of N in GP register.
{ .mfi
(p9) getf.sig N_fix_gr = N_fix
fmerge.s c = f0, f0 // Assume c=0, ok if |x| < pi/4
cmp.lt p10, p0 = GR_exp_x, GR_exp_2tom2 // Test if |x| < 1/4
}
;;
{ .mfi
setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
nop.f 999
mov exp_r = GR_exp_x // Get exp_r if 1/4 <= |x| < pi/4
}
{ .mbb
setf.sig B_mask2 = bmask2 // Form mask to form B from r
(p10) br.cond.spnt TANL_SMALL_R // Branch if 0 < |x| < 1/4
(p8) br.cond.spnt TANL_NORMAL_R // Branch if 1/4 <= |x| < pi/4
}
;;
// Here if pi/4 <= |x| < 2^24
//
// Case 1: PR_3 is only affected when PR_1 is set.
//
//
// Case 2: w = N * P_2
// Case 2: s_val = -N * P_1 + Arg
//
{ .mfi
nop.m 999
fnma.s1 s_val = N, P_1, Norm_Arg
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 w = N, P_2 // w = N * P_2 for |s| >= 2^-33
nop.i 999
}
;;
// Case 2_reduce: w = N * P_3 (change sign)
{ .mfi
nop.m 999
fmpy.s1 w2 = N, P_3 // w = N * P_3 for |s| < 2^-33
nop.i 999
}
;;
// Case 1_reduce: r = s + w (change sign)
{ .mfi
nop.m 999
fsub.s1 r = s_val, w // r = s_val - w for |s| >= 2^-33
nop.i 999
}
;;
// Case 2_reduce: U_1 = N * P_2 + w
{ .mfi
nop.m 999
fma.s1 U_1 = N, P_2, w2 // U_1 = N * P_2 + w for |s| < 2^-33
nop.i 999
}
;;
//
// Decide between case_1 and case_2 reduce:
// Case 1_reduce: |s| >= 2**(-33)
// Case 2_reduce: |s| < 2**(-33)
//
{ .mfi
nop.m 999
fcmp.lt.s1 p9, p8 = s_val, TWO_TO_NEG33
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fcmp.gt.s1 p9, p8 = s_val, NEGTWO_TO_NEG33
nop.i 999
}
;;
// Case 1_reduce: c = s - r
{ .mfi
nop.m 999
fsub.s1 c = s_val, r // c = s_val - r for |s| >= 2^-33
nop.i 999
}
;;
// Case 2_reduce: r is complete here - continue to calculate c .
// r = s - U_1
{ .mfi
nop.m 999
(p9) fsub.s1 r = s_val, U_1
nop.i 999
}
{ .mfi
nop.m 999
(p9) fms.s1 U_2 = N, P_2, U_1
nop.i 999
}
;;
//
// Case 1_reduce: Is |r| < 2**(-2), if so set PR_10
// else set PR_13.
//
{ .mfi
nop.m 999
fand B = B_mask1, r
nop.i 999
}
{ .mfi
nop.m 999
(p8) fcmp.lt.unc.s1 p10, p13 = r, TWO_TO_NEG2
nop.i 999
}
;;
{ .mfi
(p8) getf.sig sig_r = r // Get signif of r if |s| >= 2^-33
nop.f 999
nop.i 999
}
;;
{ .mfi
(p8) getf.exp exp_r = r // Extract signexp of r if |s| >= 2^-33
(p10) fcmp.gt.s1 p10, p13 = r, NEGTWO_TO_NEG2
nop.i 999
}
;;
// Case 1_reduce: c is complete here.
// Case 1: Branch to SMALL_R or NORMAL_R.
// c = c + w (w has not been negated.)
{ .mfi
nop.m 999
(p8) fsub.s1 c = c, w // c = c - w for |s| >= 2^-33
nop.i 999
}
{ .mbb
nop.m 999
(p10) br.cond.spnt TANL_SMALL_R // Branch if pi/4 < |x| < 2^24 and |r|<1/4
(p13) br.cond.sptk TANL_NORMAL_R_A // Branch if pi/4 < |x| < 2^24 and |r|>=1/4
}
;;
// Here if pi/4 < |x| < 2^24 and |s| < 2^-33
//
// Is i_1 = lsb of N_fix_gr even or odd?
// if i_1 == 0, set p11, else set p12.
//
{ .mfi
nop.m 999
fsub.s1 s_val = s_val, r
add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
}
{ .mfi
nop.m 999
//
// Case 2_reduce:
// U_2 = N * P_2 - U_1
// Not needed until later.
//
fadd.s1 U_2 = U_2, w2
//
// Case 2_reduce:
// s = s - r
// U_2 = U_2 + w
//
nop.i 999
}
;;
//
// Case 2_reduce:
// c = c - U_2
// c is complete here
// Argument reduction ends here.
//
{ .mfi
nop.m 999
fmpy.s1 rsq = r, r
tbit.z p11, p12 = N_fix_gr, 0 ;; // Set p11 if N even, p12 if odd
}
{ .mfi
nop.m 999
(p12) frcpa.s1 S_hi,p0 = f1, r
nop.i 999
}
{ .mfi
nop.m 999
fsub.s1 c = s_val, U_1
nop.i 999
}
;;
{ .mmi
add table_ptr1 = 160, table_base ;; // Point to tanl_table_p1
ldfe P1_1 = [table_ptr1],144
nop.i 999 ;;
}
//
// Load P1_1 and point to Q1_1 .
//
{ .mfi
ldfe Q1_1 = [table_ptr1]
//
// N even: rsq = r * Z
// N odd: S_hi = frcpa(r)
//
(p12) fmerge.ns S_hi = S_hi, S_hi
nop.i 999
}
{ .mfi
nop.m 999
//
// Case 2_reduce:
// c = s - U_1
//
(p9) fsub.s1 c = c, U_2
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: Change sign of S_hi
//
(p11) fmpy.s1 rsq = rsq, P1_1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: rsq = rsq * P1_1
// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
//
(p11) fma.s1 Poly = r, rsq, c
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Poly = c + r * rsq
// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
//
(p12) fma.s1 poly1 = S_hi, r, f1
(p11) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
nop.m 999
//
// N even: Result = Poly + r
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
//
(p14) fadd.s0 Result = r, Poly // for tanl
nop.i 999
}
{ .mfi
nop.m 999
(p15) fms.s0 Result = r, mOne, Poly // for cotl
nop.i 999
}
;;
{ .mfi
nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Result1 = Result + r
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
//
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
//
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: poly1 = S_hi * poly + 1.0 64 bits
//
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: poly1 = S_hi * r + 1.0
//
(p12) fma.s1 poly1 = S_hi, c, poly1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: poly1 = S_hi * c + poly1
//
(p12) fmpy.s1 S_lo = S_hi, poly1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: S_lo = S_hi * poly1
//
(p12) fma.s1 S_lo = Q1_1, r, S_lo
(p12) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
nop.m 999
//
// N odd: Result = S_hi + S_lo
//
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: S_lo = S_lo + Q1_1 * r
//
(p14) fadd.s0 Result = S_hi, S_lo // for tanl
nop.i 999
}
{ .mfb
nop.m 999
(p15) fms.s0 Result = S_hi, mOne, S_lo // for cotl
br.ret.sptk b0 ;; // Exit for pi/4 <= |x| < 2^24 and |s| < 2^-33
}
TANL_LARGER_ARG:
// Here if 2^24 <= |x| < 2^63
//
// ARGUMENT REDUCTION CODE - CASE 3 and 4
//
{ .mmf
mov GR_exp_2tom14 = 0xffff - 14 // Form signexp of 2^-14
mov GR_exp_m2tom14 = 0x2ffff - 14 // Form signexp of -2^-14
fmpy.s1 N_0 = Norm_Arg, Inv_P_0
}
;;
{ .mmi
setf.exp TWO_TO_NEG14 = GR_exp_2tom14 // Form 2^-14
setf.exp NEGTWO_TO_NEG14 = GR_exp_m2tom14// Form -2^-14
nop.i 999
}
;;
//
// Adjust table_ptr1 to beginning of table.
// N_0 = Arg * Inv_P_0
//
{ .mmi
add table_ptr2 = 144, table_base ;; // Point to 2^-2
ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
nop.i 999
}
;;
//
// N_0_fix = integer part of N_0 .
//
//
// Make N_0 the integer part.
//
{ .mfi
nop.m 999
fcvt.fx.s1 N_0_fix = N_0
nop.i 999 ;;
}
{ .mfi
setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
fcvt.xf N_0 = N_0_fix
nop.i 999 ;;
}
{ .mfi
setf.sig B_mask2 = bmask2 // Form mask to form B from r
fnma.s1 ArgPrime = N_0, P_0, Norm_Arg
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 w = N_0, d_1
nop.i 999 ;;
}
//
// ArgPrime = -N_0 * P_0 + Arg
// w = N_0 * d_1
//
//
// N = ArgPrime * 2/pi
//
// fcvt.fx.s1 N_fix = N
// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
{ .mfi
nop.m 999
fma.s1 N_fix = ArgPrime, FR_inv_pi_2to63, FR_rshf_2to64
nop.i 999 ;;
}
// Convert integer N_fix back to normalized floating-point value.
{ .mfi
nop.m 999
fms.s1 N = N_fix, FR_2tom64, FR_rshf // Use scaling to get N floated
nop.i 999
}
;;
//
// N is the integer part of the reduced-reduced argument.
// Put the integer in a GP register.
//
{ .mfi
getf.sig N_fix_gr = N_fix
nop.f 999
nop.i 999
}
;;
//
// s_val = -N*P_1 + ArgPrime
// w = -N*P_2 + w
//
{ .mfi
nop.m 999
fnma.s1 s_val = N, P_1, ArgPrime
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 w = N, P_2, w
nop.i 999
}
;;
// Case 4: V_hi = N * P_2
// Case 4: U_hi = N_0 * d_1
{ .mfi
nop.m 999
fmpy.s1 V_hi = N, P_2 // V_hi = N * P_2 for |s| < 2^-14
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 U_hi = N_0, d_1 // U_hi = N_0 * d_1 for |s| < 2^-14
nop.i 999
}
;;
// Case 3: r = s_val + w (Z complete)
// Case 4: w = N * P_3
{ .mfi
nop.m 999
fadd.s1 r = s_val, w // r = s_val + w for |s| >= 2^-14
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 w2 = N, P_3 // w = N * P_3 for |s| < 2^-14
nop.i 999
}
;;
// Case 4: A = U_hi + V_hi
// Note: Worry about switched sign of V_hi, so subtract instead of add.
// Case 4: V_lo = -N * P_2 - V_hi (U_hi is in place of V_hi in writeup)
// Note: the (-) is still missing for V_hi.
{ .mfi
nop.m 999
fsub.s1 A = U_hi, V_hi // A = U_hi - V_hi for |s| < 2^-14
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 V_lo = N, P_2, V_hi // V_lo = V_hi - N * P_2 for |s| < 2^-14
nop.i 999
}
;;
// Decide between case 3 and 4:
// Case 3: |s| >= 2**(-14) Set p10
// Case 4: |s| < 2**(-14) Set p11
//
// Case 4: U_lo = N_0 * d_1 - U_hi
{ .mfi
nop.m 999
fms.s1 U_lo = N_0, d_1, U_hi // U_lo = N_0*d_1 - U_hi for |s| < 2^-14
nop.i 999
}
{ .mfi
nop.m 999
fcmp.lt.s1 p11, p10 = s_val, TWO_TO_NEG14
nop.i 999
}
;;
// Case 4: We need abs of both U_hi and V_hi - dont
// worry about switched sign of V_hi.
{ .mfi
nop.m 999
fabs V_hiabs = V_hi // |V_hi| for |s| < 2^-14
nop.i 999
}
{ .mfi
nop.m 999
(p11) fcmp.gt.s1 p11, p10 = s_val, NEGTWO_TO_NEG14
nop.i 999
}
;;
// Case 3: c = s_val - r
{ .mfi
nop.m 999
fabs U_hiabs = U_hi // |U_hi| for |s| < 2^-14
nop.i 999
}
{ .mfi
nop.m 999
fsub.s1 c = s_val, r // c = s_val - r for |s| >= 2^-14
nop.i 999
}
;;
// For Case 3, |s| >= 2^-14, determine if |r| < 1/4
//
// Case 4: C_hi = s_val + A
//
{ .mfi
nop.m 999
(p11) fadd.s1 C_hi = s_val, A // C_hi = s_val + A for |s| < 2^-14
nop.i 999
}
{ .mfi
nop.m 999
(p10) fcmp.lt.unc.s1 p14, p15 = r, TWO_TO_NEG2
nop.i 999
}
;;
{ .mfi
getf.sig sig_r = r // Get signif of r if |s| >= 2^-33
fand B = B_mask1, r
nop.i 999
}
;;
// Case 4: t = U_lo + V_lo
{ .mfi
getf.exp exp_r = r // Extract signexp of r if |s| >= 2^-33
(p11) fadd.s1 t = U_lo, V_lo // t = U_lo + V_lo for |s| < 2^-14
nop.i 999
}
{ .mfi
nop.m 999
(p14) fcmp.gt.s1 p14, p15 = r, NEGTWO_TO_NEG2
nop.i 999
}
;;
// Case 3: c = (s - r) + w (c complete)
{ .mfi
nop.m 999
(p10) fadd.s1 c = c, w // c = c + w for |s| >= 2^-14
nop.i 999
}
{ .mbb
nop.m 999
(p14) br.cond.spnt TANL_SMALL_R // Branch if 2^24 <= |x| < 2^63 and |r|< 1/4
(p15) br.cond.sptk TANL_NORMAL_R_A // Branch if 2^24 <= |x| < 2^63 and |r|>=1/4
}
;;
// Here if 2^24 <= |x| < 2^63 and |s| < 2^-14 >>>>>>> Case 4.
//
// Case 4: Set P_12 if U_hiabs >= V_hiabs
// Case 4: w = w + N_0 * d_2
// Note: the (-) is now incorporated in w .
{ .mfi
add table_ptr1 = 160, table_base // Point to tanl_table_p1
fcmp.ge.unc.s1 p12, p13 = U_hiabs, V_hiabs
nop.i 999
}
{ .mfi
nop.m 999
fms.s1 w2 = N_0, d_2, w2
nop.i 999
}
;;
// Case 4: C_lo = s_val - C_hi
{ .mfi
ldfe P1_1 = [table_ptr1], 16 // Load P1_1
fsub.s1 C_lo = s_val, C_hi
nop.i 999
}
;;
//
// Case 4: a = U_hi - A
// a = V_hi - A (do an add to account for missing (-) on V_hi
//
{ .mfi
ldfe P1_2 = [table_ptr1], 128 // Load P1_2
(p12) fsub.s1 a = U_hi, A
nop.i 999
}
{ .mfi
nop.m 999
(p13) fadd.s1 a = V_hi, A
nop.i 999
}
;;
// Case 4: t = U_lo + V_lo + w
{ .mfi
ldfe Q1_1 = [table_ptr1], 16 // Load Q1_1
fadd.s1 t = t, w2
nop.i 999
}
;;
// Case 4: a = (U_hi - A) + V_hi
// a = (V_hi - A) + U_hi
// In each case account for negative missing form V_hi .
//
{ .mfi
ldfe Q1_2 = [table_ptr1], 16 // Load Q1_2
(p12) fsub.s1 a = a, V_hi
nop.i 999
}
{ .mfi
nop.m 999
(p13) fsub.s1 a = U_hi, a
nop.i 999
}
;;
//
// Case 4: C_lo = (s_val - C_hi) + A
//
{ .mfi
nop.m 999
fadd.s1 C_lo = C_lo, A
nop.i 999 ;;
}
//
// Case 4: t = t + a
//
{ .mfi
nop.m 999
fadd.s1 t = t, a
nop.i 999
}
;;
// Case 4: C_lo = C_lo + t
// Case 4: r = C_hi + C_lo
{ .mfi
nop.m 999
fadd.s1 C_lo = C_lo, t
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 r = C_hi, C_lo
nop.i 999
}
;;
//
// Case 4: c = C_hi - r
//
{ .mfi
nop.m 999
fsub.s1 c = C_hi, r
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 rsq = r, r
add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
}
;;
// Case 4: c = c + C_lo finished.
//
// Is i_1 = lsb of N_fix_gr even or odd?
// if i_1 == 0, set PR_11, else set PR_12.
//
{ .mfi
nop.m 999
fadd.s1 c = c , C_lo
tbit.z p11, p12 = N_fix_gr, 0
}
;;
// r and c have been computed.
{ .mfi
nop.m 999
(p12) frcpa.s1 S_hi, p0 = f1, r
nop.i 999
}
{ .mfi
nop.m 999
//
// N odd: Change sign of S_hi
//
(p11) fma.s1 Poly = rsq, P1_2, P1_1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 P = rsq, Q1_2, Q1_1
nop.i 999
}
{ .mfi
nop.m 999
//
// N odd: Result = S_hi + S_lo (User supplied rounding mode for C1)
//
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: rsq = r * r
// N odd: S_hi = frcpa(r)
//
(p12) fmerge.ns S_hi = S_hi, S_hi
nop.i 999
}
{ .mfi
nop.m 999
//
// N even: rsq = rsq * P1_2 + P1_1
// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
//
(p11) fmpy.s1 Poly = rsq, Poly
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 poly1 = S_hi, r,f1
(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
nop.m 999
//
// N even: Poly = Poly * rsq
// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
//
(p11) fma.s1 Poly = r, Poly, c
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999
}
{ .mfi
nop.m 999
//
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
//
(p14) fadd.s0 Result = r, Poly // for tanl
nop.i 999 ;;
}
.pred.rel "mutex",p15,p12
{ .mfi
nop.m 999
(p15) fms.s0 Result = r, mOne, Poly // for cotl
nop.i 999
}
{ .mfi
nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Poly = Poly * r + c
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
//
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Result = Poly + r (Rounding mode S0)
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
//
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: poly1 = S_hi * poly + S_hi 64 bits
//
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: poly1 = S_hi * r + 1.0
//
(p12) fma.s1 poly1 = S_hi, c, poly1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: poly1 = S_hi * c + poly1
//
(p12) fmpy.s1 S_lo = S_hi, poly1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: S_lo = S_hi * poly1
//
(p12) fma.s1 S_lo = P, r, S_lo
(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
nop.m 999
(p14) fadd.s0 Result = S_hi, S_lo // for tanl
nop.i 999
}
{ .mfb
nop.m 999
//
// N odd: S_lo = S_lo + r * P
//
(p15) fms.s0 Result = S_hi, mOne, S_lo // for cotl
br.ret.sptk b0 ;; // Exit for 2^24 <= |x| < 2^63 and |s| < 2^-14
}
TANL_SMALL_R:
// Here if |r| < 1/4
// r and c have been computed.
// *****************************************************************
// *****************************************************************
// *****************************************************************
// N odd: S_hi = frcpa(r)
// Get [i_1] - lsb of N_fix_gr. Set p11 if N even, p12 if N odd.
// N even: rsq = r * r
{ .mfi
add table_ptr1 = 160, table_base // Point to tanl_table_p1
frcpa.s1 S_hi, p0 = f1, r // S_hi for N odd
add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
}
{ .mfi
add table_ptr2 = 400, table_base // Point to Q1_7
fmpy.s1 rsq = r, r
nop.i 999
}
;;
{ .mmi
ldfe P1_1 = [table_ptr1], 16
;;
ldfe P1_2 = [table_ptr1], 16
tbit.z p11, p12 = N_fix_gr, 0
}
;;
{ .mfi
ldfe P1_3 = [table_ptr1], 96
nop.f 999
nop.i 999
}
;;
{ .mfi
(p11) ldfe P1_9 = [table_ptr1], -16
(p12) fmerge.ns S_hi = S_hi, S_hi
nop.i 999
}
{ .mfi
nop.m 999
(p11) fmpy.s1 r_to_the_8 = rsq, rsq
nop.i 999
}
;;
//
// N even: Poly2 = P1_7 + Poly2 * rsq
// N odd: poly2 = Q1_5 + poly2 * rsq
//
{ .mfi
(p11) ldfe P1_8 = [table_ptr1], -16
(p11) fadd.s1 CORR = rsq, f1
nop.i 999
}
;;
//
// N even: Poly1 = P1_2 + P1_3 * rsq
// N odd: poly1 = 1.0 + S_hi * r
// 16 bits partial account for necessary (-1)
//
{ .mmi
(p11) ldfe P1_7 = [table_ptr1], -16
;;
(p11) ldfe P1_6 = [table_ptr1], -16
nop.i 999
}
;;
//
// N even: Poly1 = P1_1 + Poly1 * rsq
// N odd: S_hi = S_hi + S_hi * poly1) 16 bits account for necessary
//
//
// N even: Poly2 = P1_5 + Poly2 * rsq
// N odd: poly2 = Q1_3 + poly2 * rsq
//
{ .mfi
(p11) ldfe P1_5 = [table_ptr1], -16
(p11) fmpy.s1 r_to_the_8 = r_to_the_8, r_to_the_8
nop.i 999
}
{ .mfi
nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999
}
;;
//
// N even: Poly1 = Poly1 * rsq
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
//
//
// N even: CORR = CORR * c
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
//
//
// N even: Poly2 = P1_6 + Poly2 * rsq
// N odd: poly2 = Q1_4 + poly2 * rsq
//
{ .mmf
(p11) ldfe P1_4 = [table_ptr1], -16
nop.m 999
(p11) fmpy.s1 CORR = CORR, c
}
;;
{ .mfi
nop.m 999
(p11) fma.s1 Poly1 = P1_3, rsq, P1_2
nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_7 = [table_ptr2], -16
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_6 = [table_ptr2], -16
(p11) fma.s1 Poly2 = P1_9, rsq, P1_8
nop.i 999 ;;
}
{ .mmi
(p12) ldfe Q1_5 = [table_ptr2], -16 ;;
(p12) ldfe Q1_4 = [table_ptr2], -16
nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_3 = [table_ptr2], -16
//
// N even: Poly2 = P1_8 + P1_9 * rsq
// N odd: poly2 = Q1_6 + Q1_7 * rsq
//
(p11) fma.s1 Poly1 = Poly1, rsq, P1_1
nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_2 = [table_ptr2], -16
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_1 = [table_ptr2], -16
(p11) fma.s1 Poly2 = Poly2, rsq, P1_7
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: CORR = rsq + 1
// N even: r_to_the_8 = rsq * rsq
//
(p11) fmpy.s1 Poly1 = Poly1, rsq
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999
}
{ .mfi
nop.m 999
(p12) fma.s1 poly2 = Q1_7, rsq, Q1_6
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p11) fma.s1 Poly2 = Poly2, rsq, P1_6
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999
}
{ .mfi
nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_5
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p11) fma.s1 Poly2= Poly2, rsq, P1_5
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
nop.i 999
}
{ .mfi
nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_4
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: r_to_the_8 = r_to_the_8 * r_to_the_8
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
//
(p11) fma.s1 Poly2 = Poly2, rsq, P1_4
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Poly = CORR + Poly * r
// N odd: P = Q1_1 + poly2 * rsq
//
(p12) fma.s1 poly1 = S_hi, r, f1
nop.i 999
}
{ .mfi
nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_3
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Poly2 = P1_4 + Poly2 * rsq
// N odd: poly2 = Q1_2 + poly2 * rsq
//
(p11) fma.s1 Poly = Poly2, r_to_the_8, Poly1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 poly1 = S_hi, c, poly1
nop.i 999
}
{ .mfi
nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_2
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Poly = Poly1 + Poly2 * r_to_the_8
// N odd: S_hi = S_hi * poly1 + S_hi 64 bits
//
(p11) fma.s1 Poly = Poly, r, CORR
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Result = r + Poly (User supplied rounding mode)
// N odd: poly1 = S_hi * c + poly1
//
(p12) fmpy.s1 S_lo = S_hi, poly1
(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
nop.m 999
(p12) fma.s1 P = poly2, rsq, Q1_1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: poly1 = S_hi * r + 1.0
//
//
// N odd: S_lo = S_hi * poly1
//
(p14) fadd.s0 Result = Poly, r // for tanl
nop.i 999
}
{ .mfi
nop.m 999
(p15) fms.s0 Result = Poly, mOne, r // for cotl
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: S_lo = Q1_1 * c + S_lo
//
(p12) fma.s1 S_lo = Q1_1, c, S_lo
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: Result = S_lo + r * P
//
(p12) fma.s1 Result = P, r, S_lo
(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
}
//
// N odd: Result = Result + S_hi (user supplied rounding mode)
//
{ .mfi
nop.m 999
(p14) fadd.s0 Result = Result, S_hi // for tanl
nop.i 999
}
{ .mfb
nop.m 999
(p15) fms.s0 Result = Result, mOne, S_hi // for cotl
br.ret.sptk b0 ;; // Exit |r| < 1/4 path
}
TANL_NORMAL_R:
// Here if 1/4 <= |x| < pi/4 or if |x| >= 2^63 and |r| >= 1/4
// *******************************************************************
// *******************************************************************
// *******************************************************************
//
// r and c have been computed.
//
{ .mfi
nop.m 999
fand B = B_mask1, r
nop.i 999
}
;;
TANL_NORMAL_R_A:
// Enter here if pi/4 <= |x| < 2^63 and |r| >= 1/4
// Get the 5 bits or r for the lookup. 1.xxxxx ....
{ .mmi
add table_ptr1 = 416, table_base // Point to tanl_table_p2
mov GR_exp_2tom65 = 0xffff - 65 // Scaling constant for B
extr.u lookup = sig_r, 58, 5
}
;;
{ .mmi
ldfe P2_1 = [table_ptr1], 16
setf.exp TWO_TO_NEG65 = GR_exp_2tom65 // 2^-65 for scaling B if exp_r=-2
add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
}
;;
.pred.rel "mutex",p11,p12
// B = 2^63 * 1.xxxxx 100...0
{ .mfi
ldfe P2_2 = [table_ptr1], 16
for B = B_mask2, B
mov table_offset = 512 // Assume table offset is 512
}
;;
{ .mfi
ldfe P2_3 = [table_ptr1], 16
fmerge.s Pos_r = f1, r
tbit.nz p8,p9 = exp_r, 0
}
;;
// Is B = 2** -2 or B= 2** -1? If 2**-1, then
// we want an offset of 512 for table addressing.
{ .mii
add table_ptr2 = 1296, table_base // Point to tanl_table_cm2
(p9) shladd table_offset = lookup, 4, table_offset
(p8) shladd table_offset = lookup, 4, r0
}
;;
{ .mmi
add table_ptr1 = table_ptr1, table_offset // Point to T_hi
add table_ptr2 = table_ptr2, table_offset // Point to C_hi
add table_ptr3 = 2128, table_base // Point to tanl_table_scim2
}
;;
{ .mmi
ldfd T_hi = [table_ptr1], 8 // Load T_hi
;;
ldfd C_hi = [table_ptr2], 8 // Load C_hi
add table_ptr3 = table_ptr3, table_offset // Point to SC_inv
}
;;
//
// x = |r| - B
//
// Convert B so it has the same exponent as Pos_r before subtracting
{ .mfi
ldfs T_lo = [table_ptr1] // Load T_lo
(p9) fnma.s1 x = B, FR_2tom64, Pos_r
nop.i 999
}
{ .mfi
nop.m 999
(p8) fnma.s1 x = B, TWO_TO_NEG65, Pos_r
nop.i 999
}
;;
{ .mfi
ldfs C_lo = [table_ptr2] // Load C_lo
nop.f 999
nop.i 999
}
;;
{ .mfi
ldfe SC_inv = [table_ptr3] // Load SC_inv
fmerge.s sgn_r = r, f1
tbit.z p11, p12 = N_fix_gr, 0 // p11 if N even, p12 if odd
}
;;
//
// xsq = x * x
// N even: Tx = T_hi * x
//
// N even: Tx1 = Tx + 1
// N odd: Cx1 = 1 - Cx
//
{ .mfi
nop.m 999
fmpy.s1 xsq = x, x
nop.i 999
}
{ .mfi
nop.m 999
(p11) fmpy.s1 Tx = T_hi, x
nop.i 999
}
;;
//
// N odd: Cx = C_hi * x
//
{ .mfi
nop.m 999
(p12) fmpy.s1 Cx = C_hi, x
nop.i 999
}
;;
//
// N even and odd: P = P2_3 + P2_2 * xsq
//
{ .mfi
nop.m 999
fma.s1 P = P2_3, xsq, P2_2
nop.i 999
}
{ .mfi
nop.m 999
(p11) fadd.s1 Tx1 = Tx, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: D = C_hi - tanx
// N odd: D = T_hi + tanx
//
(p11) fmpy.s1 CORR = SC_inv, T_hi
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 Sx = SC_inv, x
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fmpy.s1 CORR = SC_inv, C_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fsub.s1 V_hi = f1, Cx
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 P = P, xsq, P2_1
nop.i 999
}
{ .mfi
nop.m 999
//
// N even and odd: P = P2_1 + P * xsq
//
(p11) fma.s1 V_hi = Tx, Tx1, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: Result = sgn_r * tail + T_hi (user rounding mode for C1)
// N odd: Result = sgn_r * tail + C_hi (user rounding mode for C1)
//
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
nop.i 999 ;;
}
{ .mfi
nop.m 999
fmpy.s1 CORR = CORR, c
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fnma.s1 V_hi = Cx,V_hi,f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: V_hi = Tx * Tx1 + 1
// N odd: Cx1 = 1 - Cx * Cx1
//
fmpy.s1 P = P, xsq
nop.i 999
}
{ .mfi
nop.m 999
//
// N even and odd: P = P * xsq
//
(p11) fmpy.s1 V_hi = V_hi, T_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even and odd: tail = P * tail + V_lo
//
(p11) fmpy.s1 T_hi = sgn_r, T_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
fmpy.s1 CORR = CORR, sgn_r
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fmpy.s1 V_hi = V_hi,C_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: V_hi = T_hi * V_hi
// N odd: V_hi = C_hi * V_hi
//
fma.s1 tanx = P, x, x
nop.i 999
}
{ .mfi
nop.m 999
(p12) fnmpy.s1 C_hi = sgn_r, C_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: V_lo = 1 - V_hi + C_hi
// N odd: V_lo = 1 - V_hi + T_hi
//
(p11) fadd.s1 CORR = CORR, T_lo
nop.i 999
}
{ .mfi
nop.m 999
(p12) fsub.s1 CORR = CORR, C_lo
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even and odd: tanx = x + x * P
// N even and odd: Sx = SC_inv * x
//
(p11) fsub.s1 D = C_hi, tanx
nop.i 999
}
{ .mfi
nop.m 999
(p12) fadd.s1 D = T_hi, tanx
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N odd: CORR = SC_inv * C_hi
// N even: CORR = SC_inv * T_hi
//
fnma.s1 D = V_hi, D, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even and odd: D = 1 - V_hi * D
// N even and odd: CORR = CORR * c
//
fma.s1 V_hi = V_hi, D, V_hi
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even and odd: V_hi = V_hi + V_hi * D
// N even and odd: CORR = sgn_r * CORR
//
(p11) fnma.s1 V_lo = V_hi, C_hi, f1
nop.i 999
}
{ .mfi
nop.m 999
(p12) fnma.s1 V_lo = V_hi, T_hi, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: CORR = COOR + T_lo
// N odd: CORR = CORR - C_lo
//
(p11) fma.s1 V_lo = tanx, V_hi, V_lo
tbit.nz p15, p0 = cot_flag, 0 // p15=1 if we compute cotl
}
{ .mfi
nop.m 999
(p12) fnma.s1 V_lo = tanx, V_hi, V_lo
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p15) fms.s1 T_hi = f0, f0, T_hi // to correct result's sign for cotl
nop.i 999
}
{ .mfi
nop.m 999
(p15) fms.s1 C_hi = f0, f0, C_hi // to correct result's sign for cotl
nop.i 999
};;
{ .mfi
nop.m 999
(p15) fms.s1 sgn_r = f0, f0, sgn_r // to correct result's sign for cotl
nop.i 999
};;
{ .mfi
nop.m 999
//
// N even: V_lo = V_lo + V_hi * tanx
// N odd: V_lo = V_lo - V_hi * tanx
//
(p11) fnma.s1 V_lo = C_lo, V_hi, V_lo
nop.i 999
}
{ .mfi
nop.m 999
(p12) fnma.s1 V_lo = T_lo, V_hi, V_lo
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: V_lo = V_lo - V_hi * C_lo
// N odd: V_lo = V_lo - V_hi * T_lo
//
fmpy.s1 V_lo = V_hi, V_lo
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even and odd: V_lo = V_lo * V_hi
//
fadd.s1 tail = V_hi, V_lo
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even and odd: tail = V_hi + V_lo
//
fma.s1 tail = tail, P, V_lo
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even: T_hi = sgn_r * T_hi
// N odd : C_hi = -sgn_r * C_hi
//
fma.s1 tail = tail, Sx, CORR
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even and odd: tail = Sx * tail + CORR
//
fma.s1 tail = V_hi, Sx, tail
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// N even an odd: tail = Sx * V_hi + tail
//
(p11) fma.s0 Result = sgn_r, tail, T_hi
nop.i 999
}
{ .mfb
nop.m 999
(p12) fma.s0 Result = sgn_r, tail, C_hi
br.ret.sptk b0 ;; // Exit for 1/4 <= |r| < pi/4
}
TANL_DENORMAL:
// Here if x denormal
{ .mfb
getf.exp GR_signexp_x = Norm_Arg // Get sign and exponent of x
nop.f 999
br.cond.sptk TANL_COMMON // Return to common code
}
;;
TANL_SPECIAL:
TANL_UNSUPPORTED:
//
// Code for NaNs, Unsupporteds, Infs, or +/- zero ?
// Invalid raised for Infs and SNaNs.
//
{ .mfi
nop.m 999
fmerge.s f10 = f8, f8 // Save input for error call
tbit.nz p6, p7 = cot_flag, 0 // p6=1 if we compute cotl
}
;;
{ .mfi
nop.m 999
(p6) fclass.m p6, p7 = f8, 0x7 // Test for zero (cotl only)
nop.i 999
}
;;
.pred.rel "mutex", p6, p7
{ .mfi
(p6) mov GR_Parameter_Tag = 225 // (cotl)
(p6) frcpa.s0 f8, p0 = f1, f8 // cotl(+-0) = +-Inf
nop.i 999
}
{ .mfb
nop.m 999
(p7) fmpy.s0 f8 = f8, f0
(p7) br.ret.sptk b0
}
;;
GLOBAL_IEEE754_END(tanl)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
// (2)
{ .mmi
stfe [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
// (3)
{ .mib
stfe [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfe [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
// (4)
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
// *******************************************************************
// *******************************************************************
// *******************************************************************
//
// Special Code to handle very large argument case.
// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
// The interface is custom:
// On input:
// (Arg or x) is in f8
// On output:
// r is in f8
// c is in f9
// N is in r8
// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
// use this to eliminate save/restore of key fp registers in this calling
// function.
//
// *******************************************************************
// *******************************************************************
// *******************************************************************
LOCAL_LIBM_ENTRY(__libm_callout)
TANL_ARG_TOO_LARGE:
.prologue
{ .mfi
add table_ptr2 = 144, table_base // Point to 2^-2
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
;;
// Load 2^-2, -2^-2
{ .mmi
ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
//
// Call argument reduction with x in f8
// Returns with N in r8, r in f8, c in f9
// Assumes f71-127 are preserved across the call
//
{ .mib
setf.sig B_mask2 = bmask2 // Form mask to form B from r
mov GR_SAVE_GP=gp // Save gp
br.call.sptk b0=__libm_pi_by_2_reduce#
}
;;
//
// Is |r| < 2**(-2)
//
{ .mfi
getf.sig sig_r = r // Extract significand of r
fcmp.lt.s1 p6, p0 = r, TWO_TO_NEG2
mov gp = GR_SAVE_GP // Restore gp
}
;;
{ .mfi
getf.exp exp_r = r // Extract signexp of r
nop.f 999
mov b0 = GR_SAVE_B0 // Restore return address
}
;;
//
// Get N_fix_gr
//
{ .mfi
mov N_fix_gr = r8
(p6) fcmp.gt.unc.s1 p6, p0 = r, NEGTWO_TO_NEG2
mov ar.pfs = GR_SAVE_PFS // Restore pfs
}
;;
{ .mbb
nop.m 999
(p6) br.cond.spnt TANL_SMALL_R // Branch if |r| < 1/4
br.cond.sptk TANL_NORMAL_R // Branch if 1/4 <= |r| < pi/4
}
;;
LOCAL_LIBM_END(__libm_callout)
.type __libm_pi_by_2_reduce#,@function
.global __libm_pi_by_2_reduce#
|