1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#ifndef _MATH_PRIVATE_H_
#error "Never use <math_ldbl.h> directly; include <math_private.h> instead."
#endif
#include <ieee754.h>
#include <stdint.h>
/* To suit our callers we return *hi64 and *lo64 as if they came from
an ieee854 112 bit mantissa, that is, 48 bits in *hi64 (plus one
implicit bit) and 64 bits in *lo64. */
static inline void
ldbl_extract_mantissa (int64_t *hi64, uint64_t *lo64, int *exp, long double x)
{
/* We have 105 bits of mantissa plus one implicit digit. Since
106 bits are representable we use the first implicit digit for
the number before the decimal point and the second implicit bit
as bit 53 of the mantissa. */
uint64_t hi, lo;
union ibm_extended_long_double u;
u.ld = x;
*exp = u.d[0].ieee.exponent - IEEE754_DOUBLE_BIAS;
lo = ((uint64_t) u.d[1].ieee.mantissa0 << 32) | u.d[1].ieee.mantissa1;
hi = ((uint64_t) u.d[0].ieee.mantissa0 << 32) | u.d[0].ieee.mantissa1;
if (u.d[0].ieee.exponent != 0)
{
int ediff;
/* If not a denormal or zero then we have an implicit 53rd bit. */
hi |= (uint64_t) 1 << 52;
if (u.d[1].ieee.exponent != 0)
lo |= (uint64_t) 1 << 52;
else
/* A denormal is to be interpreted as having a biased exponent
of 1. */
lo = lo << 1;
/* We are going to shift 4 bits out of hi later, because we only
want 48 bits in *hi64. That means we want 60 bits in lo, but
we currently only have 53. Shift the value up. */
lo = lo << 7;
/* The lower double is normalized separately from the upper.
We may need to adjust the lower mantissa to reflect this.
The difference between the exponents can be larger than 53
when the low double is much less than 1ULP of the upper
(in which case there are significant bits, all 0's or all
1's, between the two significands). The difference between
the exponents can be less than 53 when the upper double
exponent is nearing its minimum value (in which case the low
double is denormal ie. has an exponent of zero). */
ediff = u.d[0].ieee.exponent - u.d[1].ieee.exponent - 53;
if (ediff > 0)
{
if (ediff < 64)
lo = lo >> ediff;
else
lo = 0;
}
else if (ediff < 0)
lo = lo << -ediff;
if (u.d[0].ieee.negative != u.d[1].ieee.negative
&& lo != 0)
{
hi--;
lo = ((uint64_t) 1 << 60) - lo;
if (hi < (uint64_t) 1 << 52)
{
/* We have a borrow from the hidden bit, so shift left 1. */
hi = (hi << 1) | (lo >> 59);
lo = (((uint64_t) 1 << 60) - 1) & (lo << 1);
*exp = *exp - 1;
}
}
}
else
/* If the larger magnitude double is denormal then the smaller
one must be zero. */
hi = hi << 1;
*lo64 = (hi << 60) | lo;
*hi64 = hi >> 4;
}
static inline long double
ldbl_insert_mantissa (int sign, int exp, int64_t hi64, uint64_t lo64)
{
union ibm_extended_long_double u;
int expnt2;
uint64_t hi, lo;
u.d[0].ieee.negative = sign;
u.d[1].ieee.negative = sign;
u.d[0].ieee.exponent = exp + IEEE754_DOUBLE_BIAS;
u.d[1].ieee.exponent = 0;
expnt2 = exp - 53 + IEEE754_DOUBLE_BIAS;
/* Expect 113 bits (112 bits + hidden) right justified in two longs.
The low order 53 bits (52 + hidden) go into the lower double */
lo = (lo64 >> 7) & (((uint64_t) 1 << 53) - 1);
/* The high order 53 bits (52 + hidden) go into the upper double */
hi = lo64 >> 60;
hi |= hi64 << 4;
if (lo != 0)
{
int lzcount;
/* hidden bit of low double controls rounding of the high double.
If hidden is '1' and either the explicit mantissa is non-zero
or hi is odd, then round up hi and adjust lo (2nd mantissa)
plus change the sign of the low double to compensate. */
if ((lo & ((uint64_t) 1 << 52)) != 0
&& ((hi & 1) != 0 || (lo & (((uint64_t) 1 << 52) - 1)) != 0))
{
hi++;
if ((hi & ((uint64_t) 1 << 53)) != 0)
{
hi = hi >> 1;
u.d[0].ieee.exponent++;
}
u.d[1].ieee.negative = !sign;
lo = ((uint64_t) 1 << 53) - lo;
}
/* Normalize the low double. Shift the mantissa left until
the hidden bit is '1' and adjust the exponent accordingly. */
if (sizeof (lo) == sizeof (long))
lzcount = __builtin_clzl (lo);
else if ((lo >> 32) != 0)
lzcount = __builtin_clzl ((long) (lo >> 32));
else
lzcount = __builtin_clzl ((long) lo) + 32;
lzcount = lzcount - (64 - 53);
lo <<= lzcount;
expnt2 -= lzcount;
if (expnt2 >= 1)
/* Not denormal. */
u.d[1].ieee.exponent = expnt2;
else
{
/* Is denormal. Note that biased exponent of 0 is treated
as if it was 1, hence the extra shift. */
if (expnt2 > -53)
lo >>= 1 - expnt2;
else
lo = 0;
}
}
else
u.d[1].ieee.negative = 0;
u.d[1].ieee.mantissa1 = lo;
u.d[1].ieee.mantissa0 = lo >> 32;
u.d[0].ieee.mantissa1 = hi;
u.d[0].ieee.mantissa0 = hi >> 32;
return u.ld;
}
/* Handy utility functions to pack/unpack/cononicalize and find the nearbyint
of long double implemented as double double. */
static inline long double
default_ldbl_pack (double a, double aa)
{
union ibm_extended_long_double u;
u.d[0].d = a;
u.d[1].d = aa;
return u.ld;
}
static inline void
default_ldbl_unpack (long double l, double *a, double *aa)
{
union ibm_extended_long_double u;
u.ld = l;
*a = u.d[0].d;
*aa = u.d[1].d;
}
#ifndef ldbl_pack
# define ldbl_pack default_ldbl_pack
#endif
#ifndef ldbl_unpack
# define ldbl_unpack default_ldbl_unpack
#endif
/* Extract high double. */
#define ldbl_high(x) ((double) x)
/* Convert a finite long double to canonical form.
Does not handle +/-Inf properly. */
static inline void
ldbl_canonicalize (double *a, double *aa)
{
double xh, xl;
xh = *a + *aa;
xl = (*a - xh) + *aa;
*a = xh;
*aa = xl;
}
/* Simple inline nearbyint (double) function.
Only works in the default rounding mode
but is useful in long double rounding functions. */
static inline double
ldbl_nearbyint (double a)
{
double two52 = 0x1p52;
if (__glibc_likely ((__builtin_fabs (a) < two52)))
{
if (__glibc_likely ((a > 0.0)))
{
a += two52;
a -= two52;
}
else if (__glibc_likely ((a < 0.0)))
{
a = two52 - a;
a = -(a - two52);
}
}
return a;
}
/* Canonicalize a result from an integer rounding function, in any
rounding mode. *A and *AA are finite and integers, with *A being
nonzero; if the result is not already canonical, *AA is plus or
minus a power of 2 that does not exceed the least set bit in
*A. */
static inline void
ldbl_canonicalize_int (double *a, double *aa)
{
int64_t ax, aax;
EXTRACT_WORDS64 (ax, *a);
EXTRACT_WORDS64 (aax, *aa);
int expdiff = ((ax >> 52) & 0x7ff) - ((aax >> 52) & 0x7ff);
if (expdiff <= 53)
{
if (expdiff == 53)
{
/* Half way between two double values; noncanonical iff the
low bit of A's mantissa is 1. */
if ((ax & 1) != 0)
{
*a += 2 * *aa;
*aa = -*aa;
}
}
else
{
/* The sum can be represented in a single double. */
*a += *aa;
*aa = 0;
}
}
}
|