1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
/* Complex tangent function for double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__ctan (__complex__ double x)
{
__complex__ double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__imag__ x))
{
if (isfinite (__real__ x) && fabs (__real__ x) > 1.0)
{
double sinrx, cosrx;
__sincos (__real__ x, &sinrx, &cosrx);
__real__ res = __copysign (0.0, sinrx * cosrx);
}
else
__real__ res = __copysign (0.0, __real__ x);
__imag__ res = __copysign (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
if (isinf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
double sinrx, cosrx;
double den;
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabs (__real__ x) > DBL_MIN))
{
__sincos (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0;
}
if (fabs (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
double exp_2t = __ieee754_exp (2 * t);
__imag__ res = __copysign (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabs (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_exp (2 * __imag__ x);
}
else
{
double sinhix, coshix;
if (fabs (__imag__ x) > DBL_MIN)
{
sinhix = __ieee754_sinh (__imag__ x);
coshix = __ieee754_cosh (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0;
}
if (fabs (sinhix) > fabs (cosrx) * DBL_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__ctan, ctan)
#ifdef NO_LONG_DOUBLE
strong_alias (__ctan, __ctanl)
weak_alias (__ctan, ctanl)
#endif
|