1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/* Complex tangent function for long double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious underflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__ctanl (__complex__ long double x)
{
__complex__ long double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__imag__ x))
{
if (isfinite (__real__ x) && fabsl (__real__ x) > 1.0L)
{
long double sinrx, cosrx;
__sincosl (__real__ x, &sinrx, &cosrx);
__real__ res = __copysignl (0.0L, sinrx * cosrx);
}
else
__real__ res = __copysignl (0.0, __real__ x);
__imag__ res = __copysignl (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
if (isinf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
long double sinrx, cosrx;
long double den;
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabsl (__real__ x) > LDBL_MIN))
{
__sincosl (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0;
}
if (fabsl (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
long double exp_2t = __ieee754_expl (2 * t);
__imag__ res = __copysignl (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsl (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expl (2 * __imag__ x);
}
else
{
long double sinhix, coshix;
if (fabsl (__imag__ x) > LDBL_MIN)
{
sinhix = __ieee754_sinhl (__imag__ x);
coshix = __ieee754_coshl (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0L;
}
if (fabsl (sinhix) > fabsl (cosrx) * LDBL_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__ctanl, ctanl)
|