1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/* Compute cubic root of double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Dirk Alboth <dirka@uni-paderborn.de> and
Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <machine/asm.h>
.section .rodata
.align ALIGNARG(4)
.type f7,@object
f7: .double -0.145263899385486377
ASM_SIZE_DIRECTIVE(f7)
.type f6,@object
f6: .double 0.784932344976639262
ASM_SIZE_DIRECTIVE(f6)
.type f5,@object
f5: .double -1.83469277483613086
ASM_SIZE_DIRECTIVE(f5)
.type f4,@object
f4: .double 2.44693122563534430
ASM_SIZE_DIRECTIVE(f4)
.type f3,@object
f3: .double -2.11499494167371287
ASM_SIZE_DIRECTIVE(f3)
.type f2,@object
f2: .double 1.50819193781584896
ASM_SIZE_DIRECTIVE(f2)
.type f1,@object
f1: .double 0.354895765043919860
ASM_SIZE_DIRECTIVE(f1)
#define CBRT2 1.2599210498948731648
#define ONE_CBRT2 0.793700525984099737355196796584
#define SQR_CBRT2 1.5874010519681994748
#define ONE_SQR_CBRT2 0.629960524947436582364439673883
.type factor,@object
factor: .double ONE_SQR_CBRT2
.double ONE_CBRT2
.double 1.0
.double CBRT2
.double SQR_CBRT2
ASM_SIZE_DIRECTIVE(factor)
.type two54,@object
two54: .byte 0, 0, 0, 0, 0, 0, 0x50, 0x43
ASM_SIZE_DIRECTIVE(two54)
#ifdef PIC
#define MO(op) op##@GOTOFF(%ebx)
#define MOX(op,x) op##@GOTOFF(%ebx,x,1)
#else
#define MO(op) op
#define MOX(op,x) op(x)
#endif
.text
ENTRY(__cbrt)
movl 4(%esp), %ecx
movl 8(%esp), %eax
movl %eax, %edx
andl $0x7fffffff, %eax
orl %eax, %ecx
jz 1f
xorl %ecx, %ecx
cmpl $0x7ff00000, %eax
jae 1f
#ifdef PIC
pushl %ebx
cfi_adjust_cfa_offset (4)
cfi_rel_offset (ebx, 0)
LOAD_PIC_REG (bx)
#endif
cmpl $0x00100000, %eax
jae 2f
#ifdef PIC
fldl 8(%esp)
#else
fldl 4(%esp)
#endif
fmull MO(two54)
movl $-54, %ecx
#ifdef PIC
fstpl 8(%esp)
movl 12(%esp), %eax
#else
fstpl 4(%esp)
movl 8(%esp), %eax
#endif
movl %eax, %edx
andl $0x7fffffff, %eax
2: shrl $20, %eax
andl $0x800fffff, %edx
subl $1022, %eax
orl $0x3fe00000, %edx
addl %eax, %ecx
#ifdef PIC
movl %edx, 12(%esp)
fldl 8(%esp) /* xm */
#else
movl %edx, 8(%esp)
fldl 4(%esp) /* xm */
#endif
fabs
/* The following code has two tracks:
a) compute the normalized cbrt value
b) compute xe/3 and xe%3
The right track computes the value for b) and this is done
in an optimized way by avoiding division.
But why two tracks at all? Very easy: efficiency. Some FP
instruction can overlap with a certain amount of integer (and
FP) instructions. So we get (except for the imull) all
instructions for free. */
fld %st(0) /* xm : xm */
fmull MO(f7) /* f7*xm : xm */
movl $1431655766, %eax
faddl MO(f6) /* f6+f7*xm : xm */
imull %ecx
fmul %st(1) /* (f6+f7*xm)*xm : xm */
movl %ecx, %eax
faddl MO(f5) /* f5+(f6+f7*xm)*xm : xm */
sarl $31, %eax
fmul %st(1) /* (f5+(f6+f7*xm)*xm)*xm : xm */
subl %eax, %edx
faddl MO(f4) /* f4+(f5+(f6+f7*xm)*xm)*xm : xm */
fmul %st(1) /* (f4+(f5+(f6+f7*xm)*xm)*xm)*xm : xm */
faddl MO(f3) /* f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm : xm */
fmul %st(1) /* (f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm)*xm : xm */
faddl MO(f2) /* f2+(f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm)*xm : xm */
fmul %st(1) /* (f2+(f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm)*xm)*xm : xm */
faddl MO(f1) /* u:=f1+(f2+(f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm)*xm)*xm : xm */
fld %st /* u : u : xm */
fmul %st(1) /* u*u : u : xm */
fld %st(2) /* xm : u*u : u : xm */
fadd %st /* 2*xm : u*u : u : xm */
fxch %st(1) /* u*u : 2*xm : u : xm */
fmul %st(2) /* t2:=u*u*u : 2*xm : u : xm */
movl %edx, %eax
fadd %st, %st(1) /* t2 : t2+2*xm : u : xm */
leal (%edx,%edx,2),%edx
fadd %st(0) /* 2*t2 : t2+2*xm : u : xm */
subl %edx, %ecx
faddp %st, %st(3) /* t2+2*xm : u : 2*t2+xm */
shll $3, %ecx
fmulp /* u*(t2+2*xm) : 2*t2+xm */
fdivp %st, %st(1) /* u*(t2+2*xm)/(2*t2+xm) */
fmull MOX(16+factor,%ecx) /* u*(t2+2*xm)/(2*t2+xm)*FACT */
pushl %eax
cfi_adjust_cfa_offset (4)
fildl (%esp) /* xe/3 : u*(t2+2*xm)/(2*t2+xm)*FACT */
fxch /* u*(t2+2*xm)/(2*t2+xm)*FACT : xe/3 */
fscale /* u*(t2+2*xm)/(2*t2+xm)*FACT*2^xe/3 */
popl %edx
cfi_adjust_cfa_offset (-4)
#ifdef PIC
movl 12(%esp), %eax
popl %ebx
cfi_adjust_cfa_offset (-4)
cfi_restore (ebx)
#else
movl 8(%esp), %eax
#endif
testl %eax, %eax
fstp %st(1)
jns 4f
fchs
4: ret
/* Return the argument. */
1: fldl 4(%esp)
ret
END(__cbrt)
weak_alias (__cbrt, cbrt)
|