1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
|
.file "atan2.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 08/17/00 Changed predicate register macro-usage to direct predicate
// names due to an assembler bug.
// 09/28/00 Updated to set invalid on SNaN inputs
// 01/19/01 Fixed flags for small results
// 04/13/01 Rescheduled to make all paths faster
// 05/20/02 Cleaned up namespace and sf0 syntax
// 08/20/02 Corrected inexact flag and directed rounding symmetry bugs
// 02/06/03 Reordered header: .section, .global, .proc, .align
// 04/17/03 Added missing mutex directive
// 12/23/03 atan2(NaN1,NaN2) now QNaN1, for consistency with atan2f, atan2l
//
// API
//==============================================================
// double atan2(double Y, double X)
//
// Overview of operation
//==============================================================
//
// The atan2 function returns values in the interval [-pi,+pi].
//
// There are two basic paths: swap true and swap false.
// atan2(Y,X) ==> atan2(V/U) where U >= V. If Y > X, we must swap.
//
// p6 swap True |Y| > |X|
// p7 swap False |Y| <= |X|
// p8 X+ (If swap=True p8=p9=0)
// p9 X-
//
// all the other predicates p10 thru p15 are false for the main path
//
// Simple trigonometric identities show
// Region 1 (-45 to +45 degrees):
// X>0, |Y|<=X, V=Y, U=X atan2(Y,X) = sgnY * (0 + atan(V/U))
//
// Region 2 (-90 to -45 degrees, and +45 to +90 degrees):
// X>0, |Y|>X, V=X, U=Y atan2(Y,X) = sgnY * (pi/2 - atan(V/U))
//
// Region 3 (-135 to -90 degrees, and +90 to +135 degrees):
// X<0, |Y|>X, V=X, U=Y atan2(Y,X) = sgnY * (pi/2 + atan(V/U))
//
// Region 4 (-180 to -135 degrees, and +135 to +180 degrees):
// X<0, |Y|<=X, V=Y, U=X atan2(Y,X) = sgnY * (pi - atan(V/U))
//
// So the result is always of the form atan2(Y,X) = P + sgnXY * atan(V/U)
//
// We compute atan(V/U) from the identity
// atan(z) + atan([(V/U)-z] / [1+(V/U)z])
// where z is a limited precision approximation (16 bits) to V/U
//
// z is calculated with the assistance of the frcpa instruction.
//
// atan(z) is calculated by a polynomial z + z^3 * p(w), w=z^2
// where p(w) = P0+P1*w+...+P22*w^22
//
// Let d = [(V/U)-z] / [1+(V/U)z]) = (V-U*z)/(U+V*z)
//
// Approximate atan(d) by d + P0*d^3
// Let F = 1/(U+V*z) * (1-a), where |a|< 2^-8.8.
// Compute q(a) = 1 + a + ... + a^5.
// Then F*q(a) approximates the reciprocal to more than 50 bits.
// Special values
//==============================================================
// Y x Result
// +number +inf +0
// -number +inf -0
// +number -inf +pi
// -number -inf -pi
//
// +inf +number +pi/2
// -inf +number -pi/2
// +inf -number +pi/2
// -inf -number -pi/2
//
// +inf +inf +pi/4
// -inf +inf -pi/4
// +inf -inf +3pi/4
// -inf -inf -3pi/4
//
// +1 +1 +pi/4
// -1 +1 -pi/4
// +1 -1 +3pi/4
// -1 -1 -3pi/4
//
// +number +0 +pi/2
// -number +0 -pi/2
// +number -0 +pi/2
// -number -0 -pi/2
//
// +0 +number +0
// -0 +number -0
// +0 -number +pi
// -0 -number -pi
//
// +0 +0 +0
// -0 +0 -0
// +0 -0 +pi
// -0 -0 -pi
//
// Nan anything quiet Y
// Not NaN NaN quiet X
// atan2(+-0/+-0) sets double error tag to 37
// Registers used
//==============================================================
// predicate registers used:
// p6 -> p15
// floating-point registers used:
// f8, f9 input
// f32 -> f119
// general registers used
// r32 -> r41
// Assembly macros
//==============================================================
EXP_AD_P1 = r33
EXP_AD_P2 = r34
rsig_near_one = r35
GR_SAVE_B0 = r35
GR_SAVE_GP = r36
GR_SAVE_PFS = r37
GR_Parameter_X = r38
GR_Parameter_Y = r39
GR_Parameter_RESULT = r40
atan2_GR_tag = r41
atan2_Y = f8
atan2_X = f9
atan2_u1_X = f32
atan2_u1_Y = f33
atan2_z2_X = f34
atan2_z2_Y = f35
atan2_two = f36
atan2_B1sq_Y = f37
atan2_z1_X = f38
atan2_z1_Y = f39
atan2_B1X = f40
atan2_B1Y = f41
atan2_wp_X = f42
atan2_B1sq_X = f43
atan2_z = f44
atan2_w = f45
atan2_P0 = f46
atan2_P1 = f47
atan2_P2 = f48
atan2_P3 = f49
atan2_P4 = f50
atan2_P5 = f51
atan2_P6 = f52
atan2_P7 = f53
atan2_P8 = f54
atan2_P9 = f55
atan2_P10 = f56
atan2_P11 = f57
atan2_P12 = f58
atan2_P13 = f59
atan2_P14 = f60
atan2_P15 = f61
atan2_P16 = f62
atan2_P17 = f63
atan2_P18 = f64
atan2_P19 = f65
atan2_P20 = f66
atan2_P21 = f67
atan2_P22 = f68
atan2_tmp = f68
atan2_pi_by_2 = f69
atan2_sgn_pi_by_2 = f69
atan2_V13 = f70
atan2_W11 = f71
atan2_E = f72
atan2_wp_Y = f73
atan2_V11 = f74
atan2_V12 = f75
atan2_V7 = f76
atan2_V8 = f77
atan2_W7 = f78
atan2_W8 = f79
atan2_W3 = f80
atan2_W4 = f81
atan2_V3 = f82
atan2_V4 = f83
atan2_F = f84
atan2_gV = f85
atan2_V10 = f86
atan2_zcub = f87
atan2_V6 = f88
atan2_V9 = f89
atan2_W10 = f90
atan2_W6 = f91
atan2_W2 = f92
atan2_V2 = f93
atan2_alpha = f94
atan2_alpha_1 = f95
atan2_gVF = f96
atan2_V5 = f97
atan2_W12 = f98
atan2_W5 = f99
atan2_alpha_sq = f100
atan2_Cp = f101
atan2_V1 = f102
atan2_ysq = f103
atan2_W1 = f104
atan2_alpha_cub = f105
atan2_C = f106
atan2_xsq = f107
atan2_d = f108
atan2_A_hi = f109
atan2_dsq = f110
atan2_pd = f111
atan2_A_lo = f112
atan2_A = f113
atan2_Pp = f114
atan2_sgnY = f115
atan2_sig_near_one = f116
atan2_near_one = f116
atan2_pi = f117
atan2_sgn_pi = f117
atan2_3pi_by_4 = f118
atan2_pi_by_4 = f119
/////////////////////////////////////////////////////////////
RODATA
.align 16
LOCAL_OBJECT_START(atan2_tb1)
data8 0xA21922DC45605EA1 , 0x00003FFA // P11
data8 0xB199DD6D2675C40F , 0x0000BFFA // P10
data8 0xC2F01E5DDD100DBE , 0x00003FFA // P9
data8 0xD78F28FC2A592781 , 0x0000BFFA // P8
data8 0xF0F03ADB3FC930D3 , 0x00003FFA // P7
data8 0x88887EBB209E3543 , 0x0000BFFB // P6
data8 0x9D89D7D55C3287A5 , 0x00003FFB // P5
data8 0xBA2E8B9793955C77 , 0x0000BFFB // P4
data8 0xE38E38E320A8A098 , 0x00003FFB // P3
data8 0x9249249247E37913 , 0x0000BFFC // P2
data8 0xCCCCCCCCCCC906CD , 0x00003FFC // P1
data8 0xAAAAAAAAAAAAA8A9 , 0x0000BFFD // P0
data8 0xC90FDAA22168C235 , 0x00004000 // pi
LOCAL_OBJECT_END(atan2_tb1)
LOCAL_OBJECT_START(atan2_tb2)
data8 0xCE585A259BD8374C , 0x00003FF0 // P21
data8 0x9F90FB984D8E39D0 , 0x0000BFF3 // P20
data8 0x9D3436AABE218776 , 0x00003FF5 // P19
data8 0xDEC343E068A6D2A8 , 0x0000BFF6 // P18
data8 0xF396268151CFB11C , 0x00003FF7 // P17
data8 0xD818B4BB43D84BF2 , 0x0000BFF8 // P16
data8 0xA2270D30A90AA220 , 0x00003FF9 // P15
data8 0xD5F4F2182E7A8725 , 0x0000BFF9 // P14
data8 0x80D601879218B53A , 0x00003FFA // P13
data8 0x9297B23CCFFB291F , 0x0000BFFA // P12
data8 0xFE7E52D2A89995B3 , 0x0000BFEC // P22
data8 0xC90FDAA22168C235 , 0x00003FFF // pi/2
data8 0xC90FDAA22168C235 , 0x00003FFE // pi/4
data8 0x96cbe3f9990e91a8 , 0x00004000 // 3pi/4
LOCAL_OBJECT_END(atan2_tb2)
.section .text
GLOBAL_IEEE754_ENTRY(atan2)
{ .mfi
alloc r32 = ar.pfs,1,5,4,0
frcpa.s1 atan2_u1_X,p6 = f1,atan2_X
nop.i 999
}
{ .mfi
addl EXP_AD_P1 = @ltoff(atan2_tb1), gp
fma.s1 atan2_two = f1,f1,f1
nop.i 999
;;
}
{ .mfi
ld8 EXP_AD_P1 = [EXP_AD_P1]
frcpa.s1 atan2_u1_Y,p7 = f1,atan2_Y
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_xsq = atan2_X,atan2_X,f0
nop.i 999
;;
}
{ .mfi
nop.m 999
fclass.m p10,p0 = atan2_Y, 0xc3 // Test for y=nan
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_ysq = atan2_Y,atan2_Y,f0
nop.i 999
}
;;
{ .mfi
add EXP_AD_P2 = 0xd0,EXP_AD_P1
fclass.m p12,p0 = atan2_X, 0xc3 // Test for x nan
nop.i 999
}
;;
// p10 Y NAN, quiet and return
{ .mfi
ldfe atan2_P11 = [EXP_AD_P1],16
fmerge.s atan2_sgnY = atan2_Y,f1
nop.i 999
}
{ .mfb
ldfe atan2_P21 = [EXP_AD_P2],16
(p10) fma.d.s0 f8 = atan2_X,atan2_Y,f0 // If y=nan, result quietized y
(p10) br.ret.spnt b0 // Exit if y=nan
;;
}
{ .mfi
ldfe atan2_P10 = [EXP_AD_P1],16
fma.s1 atan2_z1_X = atan2_u1_X, atan2_Y, f0
nop.i 999
}
{ .mfi
ldfe atan2_P20 = [EXP_AD_P2],16
fnma.s1 atan2_B1X = atan2_u1_X, atan2_X, atan2_two
nop.i 999
;;
}
{ .mfi
ldfe atan2_P9 = [EXP_AD_P1],16
fma.s1 atan2_z1_Y = atan2_u1_Y, atan2_X, f0
nop.i 999
}
{ .mfi
ldfe atan2_P19 = [EXP_AD_P2],16
fnma.s1 atan2_B1Y = atan2_u1_Y, atan2_Y, atan2_two
nop.i 999
}
;;
{ .mfi
ldfe atan2_P8 = [EXP_AD_P1],16
fma.s1 atan2_z2_X = atan2_u1_X, atan2_ysq, f0
nop.i 999
}
{ .mfi
ldfe atan2_P18 = [EXP_AD_P2],16
fma.s1 atan2_z2_Y = atan2_u1_Y, atan2_xsq, f0
nop.i 999
}
;;
// p10 ==> x inf y ?
// p11 ==> x !inf y ?
{ .mfi
ldfe atan2_P7 = [EXP_AD_P1],16
fclass.m p10,p11 = atan2_X, 0x23 // test for x inf
nop.i 999
}
{ .mfb
ldfe atan2_P17 = [EXP_AD_P2],16
(p12) fma.d.s0 f8 = atan2_X,atan2_Y,f0 // If x nan, result quiet x
(p12) br.ret.spnt b0 // Exit for x nan
;;
}
// p6 true if swap, means |y| > |x| or ysq > xsq
// p7 true if no swap, means |x| >= |y| or xsq >= ysq
{ .mmf
ldfe atan2_P6 = [EXP_AD_P1],16
ldfe atan2_P16 = [EXP_AD_P2],16
fcmp.ge.s1 p7,p6 = atan2_xsq, atan2_ysq
;;
}
{ .mfi
ldfe atan2_P5 = [EXP_AD_P1],16
fma.s1 atan2_wp_X = atan2_z1_X, atan2_z1_X, f0
nop.i 999
}
{ .mfi
ldfe atan2_P15 = [EXP_AD_P2],16
fma.s1 atan2_B1sq_X = atan2_B1X, atan2_B1X, f0
nop.i 999
;;
}
{ .mfi
ldfe atan2_P4 = [EXP_AD_P1],16
(p6) fma.s1 atan2_wp_Y = atan2_z1_Y, atan2_z1_Y, f0
nop.i 999
}
{ .mfi
ldfe atan2_P14 = [EXP_AD_P2],16
(p6) fma.s1 atan2_B1sq_Y = atan2_B1Y, atan2_B1Y, f0
nop.i 999
;;
}
{ .mfi
ldfe atan2_P3 = [EXP_AD_P1],16
(p6) fma.s1 atan2_E = atan2_z2_Y, atan2_B1Y, atan2_Y
nop.i 999
}
{ .mfi
ldfe atan2_P13 = [EXP_AD_P2],16
(p7) fma.s1 atan2_E = atan2_z2_X, atan2_B1X, atan2_X
nop.i 999
;;
}
{ .mfi
ldfe atan2_P2 = [EXP_AD_P1],16
(p6) fma.s1 atan2_z = atan2_z1_Y, atan2_B1Y, f0
nop.i 999
}
{ .mfi
ldfe atan2_P12 = [EXP_AD_P2],16
(p7) fma.s1 atan2_z = atan2_z1_X, atan2_B1X, f0
nop.i 999
;;
}
{ .mfi
ldfe atan2_P1 = [EXP_AD_P1],16
fcmp.eq.s0 p14,p15=atan2_X,atan2_Y // Dummy for denorm and invalid
nop.i 999
}
{ .mlx
ldfe atan2_P22 = [EXP_AD_P2],16
movl rsig_near_one = 0x8000000000000001 // signif near 1.0
;;
}
// p12 ==> x inf y inf
// p13 ==> x inf y !inf
{ .mmf
ldfe atan2_P0 = [EXP_AD_P1],16
ldfe atan2_pi_by_2 = [EXP_AD_P2],16
(p10) fclass.m.unc p12,p13 = atan2_Y, 0x23 // x inf, test if y inf
;;
}
{ .mfi
ldfe atan2_pi = [EXP_AD_P1],16
(p6) fma.s1 atan2_w = atan2_wp_Y, atan2_B1sq_Y,f0
nop.i 999
}
{ .mfi
ldfe atan2_pi_by_4 = [EXP_AD_P2],16
(p7) fma.s1 atan2_w = atan2_wp_X, atan2_B1sq_X,f0
nop.i 999
;;
}
{ .mfi
ldfe atan2_3pi_by_4 = [EXP_AD_P2],16
(p11) fclass.m.unc p9,p0 = atan2_Y, 0x23 // x not inf, test if y inf
nop.i 999
;;
}
{ .mfi
setf.sig atan2_sig_near_one = rsig_near_one
(p12) fcmp.gt.unc.s1 p10,p11 = atan2_X,f0 // x inf, y inf, test if x +inf
nop.i 999
}
{ .mfi
nop.m 999
(p6) fnma.s1 atan2_gV = atan2_Y, atan2_z, atan2_X
nop.i 999
;;
}
{ .mfi
nop.m 999
frcpa.s1 atan2_F,p0 = f1, atan2_E
nop.i 999
}
{ .mfi
nop.m 999
(p7) fnma.s1 atan2_gV = atan2_X, atan2_z, atan2_Y
nop.i 999
;;
}
// p13 ==> x inf y !inf
{ .mfi
nop.m 999
(p13) fcmp.gt.unc.s1 p14,p15 = atan2_X,f0 // x inf, y !inf, test if x +inf
nop.i 999
}
{ .mfb
nop.m 999
(p9) fma.d.s0 f8 = atan2_sgnY, atan2_pi_by_2, f0 // +-pi/2 if x !inf, y inf
(p9) br.ret.spnt b0 // exit if x not inf, y inf, result is +-pi/2
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V13 = atan2_w, atan2_P11, atan2_P10
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W11 = atan2_w, atan2_P21, atan2_P20
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V11 = atan2_w, atan2_P9, atan2_P8
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_V12 = atan2_w, atan2_w, f0
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V8 = atan2_w, atan2_P7 , atan2_P6
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W8 = atan2_w, atan2_P19, atan2_P18
nop.i 999
;;
}
{ .mfi
nop.m 999
fnma.s1 atan2_alpha = atan2_E, atan2_F, f1
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 atan2_alpha_1 = atan2_E, atan2_F, atan2_two
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V7 = atan2_w, atan2_P5 , atan2_P4
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W7 = atan2_w, atan2_P17, atan2_P16
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V4 = atan2_w, atan2_P3 , atan2_P2
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W4 = atan2_w, atan2_P15, atan2_P14
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V3 = atan2_w, atan2_P1 , atan2_P0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W3 = atan2_w, atan2_P13, atan2_P12
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V10 = atan2_V12, atan2_V13, atan2_V11
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_gVF = atan2_gV, atan2_F, f0
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_alpha_sq = atan2_alpha, atan2_alpha, f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_Cp = atan2_alpha, atan2_alpha_1, f1
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V9 = atan2_V12, atan2_V12, f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W10 = atan2_V12, atan2_P22 , atan2_W11
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V6 = atan2_V12, atan2_V8 , atan2_V7
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W6 = atan2_V12, atan2_W8 , atan2_W7
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V2 = atan2_V12, atan2_V4 , atan2_V3
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W2 = atan2_V12, atan2_W4 , atan2_W3
nop.i 999
;;
}
// p8 ==> y 0 x?
// p9 ==> y !0 x?
{ .mfi
nop.m 999
fclass.m p8,p9 = atan2_Y, 0x07 // Test for y=0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_zcub = atan2_z, atan2_w, f0
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_alpha_cub = atan2_alpha, atan2_alpha_sq, f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_C = atan2_gVF, atan2_Cp, f0
nop.i 999
;;
}
// p12 ==> y0 x0
// p13 ==> y0 x!0
{ .mfi
nop.m 999
(p8) fclass.m.unc p12,p13 = atan2_X, 0x07 // y=0, test if x is 0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W12 = atan2_V9, atan2_V9, f0
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V5 = atan2_V9, atan2_V10, atan2_V6
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_W5 = atan2_V9, atan2_W10, atan2_W6
nop.i 999
;;
}
// p9 ==> y!0 x0
{ .mfi
nop.m 999
(p9) fclass.m.unc p9,p0 = atan2_X, 0x07 // y not 0, test if x is 0
nop.i 999
}
// p10 ==> X +INF, Y +-INF
{ .mfb
nop.m 999
(p10) fma.d.s0 f8 = atan2_sgnY, atan2_pi_by_4, f0 // x=+inf, y=inf
(p10) br.ret.spnt b0 // Exit for x=+inf, y=inf, result is +-pi/4
;;
}
.pred.rel "mutex",p11,p14
{ .mfi
nop.m 999
(p14) fmerge.s f8 = atan2_sgnY, f0 // x=+inf, y !inf, result +-0
nop.i 999
}
// p11 ==> X -INF, Y +-INF
{ .mfb
nop.m 999
(p11) fma.d.s0 f8 = atan2_sgnY, atan2_3pi_by_4, f0 // x=-inf, y=inf
(p11) br.ret.spnt b0 // Exit for x=-inf, y=inf, result is +-3pi/4
;;
}
{ .mfi
nop.m 999
(p13) fcmp.gt.unc.s1 p10,p11 = atan2_X,f0 // x not 0, y=0, test if x>0
nop.i 999
}
{ .mfb
nop.m 999
fma.s1 atan2_d = atan2_alpha_cub, atan2_C, atan2_C
(p14) br.ret.spnt b0 // Exit if x=+inf, y !inf, result +-0
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_W12 = atan2_V9, atan2_W12, f0
nop.i 999
}
{ .mfb
nop.m 999
(p9) fma.d.s0 f8 = atan2_sgnY, atan2_pi_by_2, f0 // x=0, y not 0
(p9) br.ret.spnt b0 // Exit if x=0 and y not 0, result is +-pi/2
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_V1 = atan2_V9, atan2_V5, atan2_V2
nop.i 999
}
{ .mfb
nop.m 999
fma.s1 atan2_W1 = atan2_V9, atan2_W5, atan2_W2
(p12) br.spnt ATAN2_ERROR // Branch if x=0 and y=0
;;
}
{ .mfi
nop.m 999
(p10) fmerge.s f8 = atan2_sgnY, f0 // +-0 if x>0, y=0
nop.i 999
}
{ .mfb
nop.m 999
(p11) fma.d.s0 f8 = atan2_sgnY, atan2_pi, f0 // +-pi if x<0, y=0
(p13) br.ret.spnt b0 // Exit if x!0 and y=0
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_pd = atan2_P0, atan2_d, f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_dsq = atan2_d, atan2_d, f0
nop.i 999
;;
}
{ .mfi
nop.m 999
fmerge.se atan2_near_one = f1, atan2_sig_near_one // Const ~1.0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_Pp = atan2_W12, atan2_W1, atan2_V1
nop.i 999
;;
}
// p8 true if no swap and X positive
// p9 true if no swap and X negative
// both are false is swap is true
{ .mfi
nop.m 999
(p7) fcmp.ge.unc.s1 p8,p9 = atan2_X,f0
nop.i 999
}
{ .mfb
nop.m 999
(p15) fma.d.s0 f8 = atan2_sgnY, atan2_pi, f0
(p15) br.ret.spnt b0 // Exit if x=-inf, y !inf, result +-pi
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_sgn_pi_by_2 = atan2_pi_by_2, atan2_sgnY, f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_A_lo = atan2_pd, atan2_dsq, atan2_d
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_sgn_pi = atan2_pi, atan2_sgnY, f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2_A_hi = atan2_zcub, atan2_Pp, atan2_z
nop.i 999
;;
}
// For |Y| <= |X| and X > 0, force inexact in case A_lo is zero
{ .mfi
nop.m 999
(p8) fmpy.s0 atan2_tmp = atan2_P22, atan2_P22
nop.i 999
;;
}
{ .mfi
nop.m 999
fma.s1 atan2_A = atan2_A_hi, f1, atan2_A_lo
nop.i 999
}
// For |Y| <= |X| and X > 0, result is A_hi + A_lo
{ .mfi
nop.m 999
(p8) fma.d.s0 f8 = atan2_A_hi, f1, atan2_A_lo
nop.i 999
;;
}
.pred.rel "mutex",p6,p9
// We perturb A by multiplying by 1.0+1ulp as we produce the result
// in order to get symmetrically rounded results in directed rounding modes.
// If we don't do this, there are a few cases where the trailing 11 bits of
// the significand of the result, before converting to double, are zero. These
// cases do not round symmetrically in round to +infinity or round to -infinity.
// The perturbation also insures that the inexact flag is set.
// For |Y| > |X|, result is +- pi/2 - (A_hi + A_lo)
{ .mfi
nop.m 999
(p6) fnma.d.s0 f8 = atan2_A, atan2_near_one, atan2_sgn_pi_by_2
nop.i 999
}
// For |Y| <= |X|, and X < 0, result is +- pi + (A_hi + A_lo)
{ .mfb
nop.m 999
(p9) fma.d.s0 f8 = atan2_A, atan2_near_one, atan2_sgn_pi
br.ret.sptk b0
;;
}
ATAN2_ERROR:
// Here if x=0 and y=0
{ .mfi
nop.m 999
fclass.m p10,p11 = atan2_X,0x05 // Test if x=+0
nop.i 999
}
;;
{ .mfi
mov atan2_GR_tag = 37
(p10) fmerge.s f10 = atan2_sgnY, f0 // x=+0, y=0
nop.i 999
}
{ .mfi
nop.m 999
(p11) fma.d.s0 f10 = atan2_sgnY, atan2_pi, f0 // x=-0, y=0
nop.i 999
;;
}
GLOBAL_IEEE754_END(atan2)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
// (2)
{ .mmi
stfd [GR_Parameter_Y] = f8,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
// (3)
{ .mib
stfd [GR_Parameter_X] = f9 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = f10 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
// (4)
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|