1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
|
.file "atanh.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// ==============================================================
// History
// ==============================================================
// 05/03/01 Initial version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/06/03 Reordered header: .section, .global, .proc, .align
// 05/26/03 Improved performance, fixed to handle unorms
// 03/31/05 Reformatted delimiters between data tables
//
// API
// ==============================================================
// double atanh(double)
//
// Overview of operation
// ==============================================================
//
// There are 7 paths:
// 1. x = +/-0.0
// Return atanh(x) = +/-0.0
//
// 2. 0.0 < |x| < 1/4
// Return atanh(x) = Po2l(x),
// where Po2l(x) = (((((((((C9*x^2 + C8)*x^2 + C7)*x^2 + C6)*x^2 +
// C5)*x^2 + C4)*x^2 + C3)*x^2 + C2)*x^2 + C1)* x^2 + C0)*x^3 + x
// 3. 1/4 <= |x| < 1
// Return atanh(x) = sign(x) * log((1 + |x|)/(1 - |x|))
// To compute (1 + |x|)/(1 - |x|) modified Newton Raphson method is used
// (3 iterations)
// Algorithm description for log function see below.
//
// 4. |x| = 1
// Return atanh(x) = sign(x) * +INF
//
// 5. 1 < |x| <= +INF
// Return atanh(x) = QNaN
//
// 6. x = [S,Q]NaN
// Return atanh(x) = QNaN
//
// 7. x = denormal
// Return atanh(x) = x
//
//==============================================================
// Algorithm Description for log(x) function
// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always true
// for this atanh implementation
//
// Consider x = 2^N 1.f1 f2 f3 f4...f63
// Log(x) = log(x * frcpa(x) / frcpa(x))
// = log(x * frcpa(x)) + log(1/frcpa(x))
// = log(x * frcpa(x)) - log(frcpa(x))
//
// frcpa(x) = 2^-N * frcpa(1.f1 f2 ... f63)
//
// -log(frcpa(x)) = -log(C)
// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
//
// -log(frcpa(x)) = -log(C)
// = N*log2 - log(frcpa(1.f1 f2 ... f63))
//
//
// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
//
// Log(x) = N*log2 + log(1./frcpa(1.f1 f2 ... f63)) + log(x * frcpa(x))
// Log(x) = N*log2 + T + log(frcpa(x) x)
//
// Log(x) = N*log2 + T + log(C * x)
//
// C * x = 1 + r
//
// Log(x) = N*log2 + T + log(1 + r)
// Log(x) = N*log2 + T + Series(r - r^2/2 + r^3/3 - r^4/4 + ...)
//
// 1.f1 f2 ... f8 has 256 entries.
// They are 1 + k/2^8, k = 0 ... 255
// These 256 values are the table entries.
//
// Implementation
//==============================================================
// C = frcpa(x)
// r = C * x - 1
//
// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
//
// x = f * 2*N where f is 1.f_1f_2f_3...f_63
// Nfloat = float(n) where n is the true unbiased exponent
// pre-index = f_1f_2....f_8
// index = pre_index * 16
// get the dxt table entry at index + offset = T
//
// result = (T + Nfloat * log(2)) + rseries
//
// The T table is calculated as follows
// Form x_k = 1 + k/2^8 where k goes from 0... 255
// y_k = frcpa(x_k)
// log(1/y_k) in quad and round to double-extended
//
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f32 -> f77
// General registers used:
// r14 -> r27, r33 -> r39
// Predicate registers used:
// p6 -> p14
// p10, p11 to indicate is argument positive or negative
// p12 to filter out case when x = [Q,S]NaN or +/-0
// p13 to filter out case when x = denormal
// p6, p7 to filter out case when |x| >= 1
// p8 to filter out case when |x| < 1/4
// Assembly macros
//==============================================================
Data2Ptr = r14
Data3Ptr = r15
RcpTablePtr = r16
rExpbMask = r17
rBias = r18
rNearZeroBound = r19
rArgSExpb = r20
rArgExpb = r21
rSExpb = r22
rExpb = r23
rSig = r24
rN = r25
rInd = r26
DataPtr = r27
GR_SAVE_B0 = r33
GR_SAVE_GP = r34
GR_SAVE_PFS = r35
GR_Parameter_X = r36
GR_Parameter_Y = r37
GR_Parameter_RESULT = r38
atanh_GR_tag = r39
//==============================================================
fAbsX = f32
fOneMx = f33
fOnePx = f34
fY = f35
fR = f36
fR2 = f37
fR3 = f38
fRcp = f39
fY4Rcp = f40
fRcp0 = f41
fRcp0n = f42
fRcp1 = f43
fRcp2 = f44
fRcp3 = f45
fN4Cvt = f46
fN = f47
fY2 = f48
fLog2 = f49
fLogT = f50
fLogT_N = f51
fX2 = f52
fX3 = f53
fX4 = f54
fX8 = f55
fP0 = f56
fP5 = f57
fP4 = f58
fP3 = f59
fP2 = f60
fP1 = f61
fNormX = f62
fC9 = f63
fC8 = f64
fC7 = f65
fC6 = f66
fC5 = f67
fC4 = f68
fC3 = f69
fC2 = f70
fC1 = f71
fC0 = f72
fP98 = f73
fP76 = f74
fP54 = f75
fP32 = f76
fP10 = f77
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(atanh_data)
data8 0xBFC5555DA7212371 // P5
data8 0x3FC999A19EEF5826 // P4
data8 0xBFCFFFFFFFFEF009 // P3
data8 0x3FD555555554ECB2 // P2
data8 0xBFE0000000000000 // P1 = -0.5
data8 0x0000000000000000 // pad
data8 0xb17217f7d1cf79ac , 0x00003ffd // 0.5*log(2)
data8 0x0000000000000000 , 0x00000000 // pad to eliminate bank conflicts
LOCAL_OBJECT_END(atanh_data)
LOCAL_OBJECT_START(atanh_data_2)
data8 0x8649FB89D3AD51FB , 0x00003FFB // C9
data8 0xCC10AABEF160077A , 0x00003FFA // C8
data8 0xF1EDB99AC0819CE2 , 0x00003FFA // C7
data8 0x8881E53A809AD24D , 0x00003FFB // C6
data8 0x9D8A116EF212F271 , 0x00003FFB // C5
data8 0xBA2E8A6D1D756453 , 0x00003FFB // C4
data8 0xE38E38E7A0945692 , 0x00003FFB // C3
data8 0x924924924536891A , 0x00003FFC // C2
data8 0xCCCCCCCCCCD08D51 , 0x00003FFC // C1
data8 0xAAAAAAAAAAAAAA0C , 0x00003FFD // C0
LOCAL_OBJECT_END(atanh_data_2)
LOCAL_OBJECT_START(atanh_data_3)
data8 0x80200aaeac44ef38 , 0x00003ff5 // log(1/frcpa(1+0/2^-8))/2
//
data8 0xc09090a2c35aa070 , 0x00003ff6 // log(1/frcpa(1+1/2^-8))/2
data8 0xa0c94fcb41977c75 , 0x00003ff7 // log(1/frcpa(1+2/2^-8))/2
data8 0xe18b9c263af83301 , 0x00003ff7 // log(1/frcpa(1+3/2^-8))/2
data8 0x8d35c8d6399c30ea , 0x00003ff8 // log(1/frcpa(1+4/2^-8))/2
data8 0xadd4d2ecd601cbb8 , 0x00003ff8 // log(1/frcpa(1+5/2^-8))/2
//
data8 0xce95403a192f9f01 , 0x00003ff8 // log(1/frcpa(1+6/2^-8))/2
data8 0xeb59392cbcc01096 , 0x00003ff8 // log(1/frcpa(1+7/2^-8))/2
data8 0x862c7d0cefd54c5d , 0x00003ff9 // log(1/frcpa(1+8/2^-8))/2
data8 0x94aa63c65e70d499 , 0x00003ff9 // log(1/frcpa(1+9/2^-8))/2
data8 0xa54a696d4b62b382 , 0x00003ff9 // log(1/frcpa(1+10/2^-8))/2
//
data8 0xb3e4a796a5dac208 , 0x00003ff9 // log(1/frcpa(1+11/2^-8))/2
data8 0xc28c45b1878340a9 , 0x00003ff9 // log(1/frcpa(1+12/2^-8))/2
data8 0xd35c55f39d7a6235 , 0x00003ff9 // log(1/frcpa(1+13/2^-8))/2
data8 0xe220f037b954f1f5 , 0x00003ff9 // log(1/frcpa(1+14/2^-8))/2
data8 0xf0f3389b036834f3 , 0x00003ff9 // log(1/frcpa(1+15/2^-8))/2
//
data8 0xffd3488d5c980465 , 0x00003ff9 // log(1/frcpa(1+16/2^-8))/2
data8 0x87609ce2ed300490 , 0x00003ffa // log(1/frcpa(1+17/2^-8))/2
data8 0x8ede9321e8c85927 , 0x00003ffa // log(1/frcpa(1+18/2^-8))/2
data8 0x96639427f2f8e2f4 , 0x00003ffa // log(1/frcpa(1+19/2^-8))/2
data8 0x9defad3e8f73217b , 0x00003ffa // log(1/frcpa(1+20/2^-8))/2
//
data8 0xa582ebd50097029c , 0x00003ffa // log(1/frcpa(1+21/2^-8))/2
data8 0xac06dbe75ab80fee , 0x00003ffa // log(1/frcpa(1+22/2^-8))/2
data8 0xb3a78449b2d3ccca , 0x00003ffa // log(1/frcpa(1+23/2^-8))/2
data8 0xbb4f79635ab46bb2 , 0x00003ffa // log(1/frcpa(1+24/2^-8))/2
data8 0xc2fec93a83523f3f , 0x00003ffa // log(1/frcpa(1+25/2^-8))/2
//
data8 0xc99af2eaca4c4571 , 0x00003ffa // log(1/frcpa(1+26/2^-8))/2
data8 0xd1581106472fa653 , 0x00003ffa // log(1/frcpa(1+27/2^-8))/2
data8 0xd8002560d4355f2e , 0x00003ffa // log(1/frcpa(1+28/2^-8))/2
data8 0xdfcb43b4fe508632 , 0x00003ffa // log(1/frcpa(1+29/2^-8))/2
data8 0xe67f6dff709d4119 , 0x00003ffa // log(1/frcpa(1+30/2^-8))/2
//
data8 0xed393b1c22351280 , 0x00003ffa // log(1/frcpa(1+31/2^-8))/2
data8 0xf5192bff087bcc35 , 0x00003ffa // log(1/frcpa(1+32/2^-8))/2
data8 0xfbdf4ff6dfef2fa3 , 0x00003ffa // log(1/frcpa(1+33/2^-8))/2
data8 0x81559a97f92f9cc7 , 0x00003ffb // log(1/frcpa(1+34/2^-8))/2
data8 0x84be72bce90266e8 , 0x00003ffb // log(1/frcpa(1+35/2^-8))/2
//
data8 0x88bc74113f23def2 , 0x00003ffb // log(1/frcpa(1+36/2^-8))/2
data8 0x8c2ba3edf6799d11 , 0x00003ffb // log(1/frcpa(1+37/2^-8))/2
data8 0x8f9dc92f92ea08b1 , 0x00003ffb // log(1/frcpa(1+38/2^-8))/2
data8 0x9312e8f36efab5a7 , 0x00003ffb // log(1/frcpa(1+39/2^-8))/2
data8 0x968b08643409ceb6 , 0x00003ffb // log(1/frcpa(1+40/2^-8))/2
//
data8 0x9a062cba08a1708c , 0x00003ffb // log(1/frcpa(1+41/2^-8))/2
data8 0x9d845b3abf95485c , 0x00003ffb // log(1/frcpa(1+42/2^-8))/2
data8 0xa06fd841bc001bb4 , 0x00003ffb // log(1/frcpa(1+43/2^-8))/2
data8 0xa3f3a74652fbe0db , 0x00003ffb // log(1/frcpa(1+44/2^-8))/2
data8 0xa77a8fb2336f20f5 , 0x00003ffb // log(1/frcpa(1+45/2^-8))/2
//
data8 0xab0497015d28b0a0 , 0x00003ffb // log(1/frcpa(1+46/2^-8))/2
data8 0xae91c2be6ba6a615 , 0x00003ffb // log(1/frcpa(1+47/2^-8))/2
data8 0xb189d1b99aebb20b , 0x00003ffb // log(1/frcpa(1+48/2^-8))/2
data8 0xb51cced5de9c1b2c , 0x00003ffb // log(1/frcpa(1+49/2^-8))/2
data8 0xb819bee9e720d42f , 0x00003ffb // log(1/frcpa(1+50/2^-8))/2
//
data8 0xbbb2a0947b093a5d , 0x00003ffb // log(1/frcpa(1+51/2^-8))/2
data8 0xbf4ec1505811684a , 0x00003ffb // log(1/frcpa(1+52/2^-8))/2
data8 0xc2535bacfa8975ff , 0x00003ffb // log(1/frcpa(1+53/2^-8))/2
data8 0xc55a3eafad187eb8 , 0x00003ffb // log(1/frcpa(1+54/2^-8))/2
data8 0xc8ff2484b2c0da74 , 0x00003ffb // log(1/frcpa(1+55/2^-8))/2
//
data8 0xcc0b1a008d53ab76 , 0x00003ffb // log(1/frcpa(1+56/2^-8))/2
data8 0xcfb6203844b3209b , 0x00003ffb // log(1/frcpa(1+57/2^-8))/2
data8 0xd2c73949a47a19f5 , 0x00003ffb // log(1/frcpa(1+58/2^-8))/2
data8 0xd5daae18b49d6695 , 0x00003ffb // log(1/frcpa(1+59/2^-8))/2
data8 0xd8f08248cf7e8019 , 0x00003ffb // log(1/frcpa(1+60/2^-8))/2
//
data8 0xdca7749f1b3e540e , 0x00003ffb // log(1/frcpa(1+61/2^-8))/2
data8 0xdfc28e033aaaf7c7 , 0x00003ffb // log(1/frcpa(1+62/2^-8))/2
data8 0xe2e012a5f91d2f55 , 0x00003ffb // log(1/frcpa(1+63/2^-8))/2
data8 0xe600064ed9e292a8 , 0x00003ffb // log(1/frcpa(1+64/2^-8))/2
data8 0xe9226cce42b39f60 , 0x00003ffb // log(1/frcpa(1+65/2^-8))/2
//
data8 0xec4749fd97a28360 , 0x00003ffb // log(1/frcpa(1+66/2^-8))/2
data8 0xef6ea1bf57780495 , 0x00003ffb // log(1/frcpa(1+67/2^-8))/2
data8 0xf29877ff38809091 , 0x00003ffb // log(1/frcpa(1+68/2^-8))/2
data8 0xf5c4d0b245cb89be , 0x00003ffb // log(1/frcpa(1+69/2^-8))/2
data8 0xf8f3afd6fcdef3aa , 0x00003ffb // log(1/frcpa(1+70/2^-8))/2
//
data8 0xfc2519756be1abc7 , 0x00003ffb // log(1/frcpa(1+71/2^-8))/2
data8 0xff59119f503e6832 , 0x00003ffb // log(1/frcpa(1+72/2^-8))/2
data8 0x8147ce381ae0e146 , 0x00003ffc // log(1/frcpa(1+73/2^-8))/2
data8 0x82e45f06cb1ad0f2 , 0x00003ffc // log(1/frcpa(1+74/2^-8))/2
data8 0x842f5c7c573cbaa2 , 0x00003ffc // log(1/frcpa(1+75/2^-8))/2
//
data8 0x85ce471968c8893a , 0x00003ffc // log(1/frcpa(1+76/2^-8))/2
data8 0x876e8305bc04066d , 0x00003ffc // log(1/frcpa(1+77/2^-8))/2
data8 0x891012678031fbb3 , 0x00003ffc // log(1/frcpa(1+78/2^-8))/2
data8 0x8a5f1493d766a05f , 0x00003ffc // log(1/frcpa(1+79/2^-8))/2
data8 0x8c030c778c56fa00 , 0x00003ffc // log(1/frcpa(1+80/2^-8))/2
//
data8 0x8da85df17e31d9ae , 0x00003ffc // log(1/frcpa(1+81/2^-8))/2
data8 0x8efa663e7921687e , 0x00003ffc // log(1/frcpa(1+82/2^-8))/2
data8 0x90a22b6875c6a1f8 , 0x00003ffc // log(1/frcpa(1+83/2^-8))/2
data8 0x91f62cc8f5d24837 , 0x00003ffc // log(1/frcpa(1+84/2^-8))/2
data8 0x93a06cfc3857d980 , 0x00003ffc // log(1/frcpa(1+85/2^-8))/2
//
data8 0x94f66d5e6fd01ced , 0x00003ffc // log(1/frcpa(1+86/2^-8))/2
data8 0x96a330156e6772f2 , 0x00003ffc // log(1/frcpa(1+87/2^-8))/2
data8 0x97fb3582754ea25b , 0x00003ffc // log(1/frcpa(1+88/2^-8))/2
data8 0x99aa8259aad1bbf2 , 0x00003ffc // log(1/frcpa(1+89/2^-8))/2
data8 0x9b0492f6227ae4a8 , 0x00003ffc // log(1/frcpa(1+90/2^-8))/2
//
data8 0x9c5f8e199bf3a7a5 , 0x00003ffc // log(1/frcpa(1+91/2^-8))/2
data8 0x9e1293b9998c1daa , 0x00003ffc // log(1/frcpa(1+92/2^-8))/2
data8 0x9f6fa31e0b41f308 , 0x00003ffc // log(1/frcpa(1+93/2^-8))/2
data8 0xa0cda11eaf46390e , 0x00003ffc // log(1/frcpa(1+94/2^-8))/2
data8 0xa22c8f029cfa45aa , 0x00003ffc // log(1/frcpa(1+95/2^-8))/2
//
data8 0xa3e48badb7856b34 , 0x00003ffc // log(1/frcpa(1+96/2^-8))/2
data8 0xa5459a0aa95849f9 , 0x00003ffc // log(1/frcpa(1+97/2^-8))/2
data8 0xa6a79c84480cfebd , 0x00003ffc // log(1/frcpa(1+98/2^-8))/2
data8 0xa80a946d0fcb3eb2 , 0x00003ffc // log(1/frcpa(1+99/2^-8))/2
data8 0xa96e831a3ea7b314 , 0x00003ffc // log(1/frcpa(1+100/2^-8))/2
//
data8 0xaad369e3dc544e3b , 0x00003ffc // log(1/frcpa(1+101/2^-8))/2
data8 0xac92e9588952c815 , 0x00003ffc // log(1/frcpa(1+102/2^-8))/2
data8 0xadfa035aa1ed8fdc , 0x00003ffc // log(1/frcpa(1+103/2^-8))/2
data8 0xaf6219eae1ad6e34 , 0x00003ffc // log(1/frcpa(1+104/2^-8))/2
data8 0xb0cb2e6d8160f753 , 0x00003ffc // log(1/frcpa(1+105/2^-8))/2
//
data8 0xb2354249ad950f72 , 0x00003ffc // log(1/frcpa(1+106/2^-8))/2
data8 0xb3a056e98ef4a3b4 , 0x00003ffc // log(1/frcpa(1+107/2^-8))/2
data8 0xb50c6dba52c6292a , 0x00003ffc // log(1/frcpa(1+108/2^-8))/2
data8 0xb679882c33876165 , 0x00003ffc // log(1/frcpa(1+109/2^-8))/2
data8 0xb78c07429785cedc , 0x00003ffc // log(1/frcpa(1+110/2^-8))/2
//
data8 0xb8faeb8dc4a77d24 , 0x00003ffc // log(1/frcpa(1+111/2^-8))/2
data8 0xba6ad77eb36ae0d6 , 0x00003ffc // log(1/frcpa(1+112/2^-8))/2
data8 0xbbdbcc915e9bee50 , 0x00003ffc // log(1/frcpa(1+113/2^-8))/2
data8 0xbd4dcc44f8cf12ef , 0x00003ffc // log(1/frcpa(1+114/2^-8))/2
data8 0xbec0d81bf5b531fa , 0x00003ffc // log(1/frcpa(1+115/2^-8))/2
//
data8 0xc034f19c139186f4 , 0x00003ffc // log(1/frcpa(1+116/2^-8))/2
data8 0xc14cb69f7c5e55ab , 0x00003ffc // log(1/frcpa(1+117/2^-8))/2
data8 0xc2c2abbb6e5fd56f , 0x00003ffc // log(1/frcpa(1+118/2^-8))/2
data8 0xc439b2c193e6771e , 0x00003ffc // log(1/frcpa(1+119/2^-8))/2
data8 0xc553acb9d5c67733 , 0x00003ffc // log(1/frcpa(1+120/2^-8))/2
//
data8 0xc6cc96e441272441 , 0x00003ffc // log(1/frcpa(1+121/2^-8))/2
data8 0xc8469753eca88c30 , 0x00003ffc // log(1/frcpa(1+122/2^-8))/2
data8 0xc962cf3ce072b05c , 0x00003ffc // log(1/frcpa(1+123/2^-8))/2
data8 0xcadeba8771f694aa , 0x00003ffc // log(1/frcpa(1+124/2^-8))/2
data8 0xcc5bc08d1f72da94 , 0x00003ffc // log(1/frcpa(1+125/2^-8))/2
//
data8 0xcd7a3f99ea035c29 , 0x00003ffc // log(1/frcpa(1+126/2^-8))/2
data8 0xcef93860c8a53c35 , 0x00003ffc // log(1/frcpa(1+127/2^-8))/2
data8 0xd0192f68a7ed23df , 0x00003ffc // log(1/frcpa(1+128/2^-8))/2
data8 0xd19a201127d3c645 , 0x00003ffc // log(1/frcpa(1+129/2^-8))/2
data8 0xd2bb92f4061c172c , 0x00003ffc // log(1/frcpa(1+130/2^-8))/2
//
data8 0xd43e80b2ee8cc8fc , 0x00003ffc // log(1/frcpa(1+131/2^-8))/2
data8 0xd56173601fc4ade4 , 0x00003ffc // log(1/frcpa(1+132/2^-8))/2
data8 0xd6e6637efb54086f , 0x00003ffc // log(1/frcpa(1+133/2^-8))/2
data8 0xd80ad9f58f3c8193 , 0x00003ffc // log(1/frcpa(1+134/2^-8))/2
data8 0xd991d1d31aca41f8 , 0x00003ffc // log(1/frcpa(1+135/2^-8))/2
//
data8 0xdab7d02231484a93 , 0x00003ffc // log(1/frcpa(1+136/2^-8))/2
data8 0xdc40d532cde49a54 , 0x00003ffc // log(1/frcpa(1+137/2^-8))/2
data8 0xdd685f79ed8b265e , 0x00003ffc // log(1/frcpa(1+138/2^-8))/2
data8 0xde9094bbc0e17b1d , 0x00003ffc // log(1/frcpa(1+139/2^-8))/2
data8 0xe01c91b78440c425 , 0x00003ffc // log(1/frcpa(1+140/2^-8))/2
//
data8 0xe14658f26997e729 , 0x00003ffc // log(1/frcpa(1+141/2^-8))/2
data8 0xe270cdc2391e0d23 , 0x00003ffc // log(1/frcpa(1+142/2^-8))/2
data8 0xe3ffce3a2aa64922 , 0x00003ffc // log(1/frcpa(1+143/2^-8))/2
data8 0xe52bdb274ed82887 , 0x00003ffc // log(1/frcpa(1+144/2^-8))/2
data8 0xe6589852e75d7df6 , 0x00003ffc // log(1/frcpa(1+145/2^-8))/2
//
data8 0xe786068c79937a7d , 0x00003ffc // log(1/frcpa(1+146/2^-8))/2
data8 0xe91903adad100911 , 0x00003ffc // log(1/frcpa(1+147/2^-8))/2
data8 0xea481236f7d35bb0 , 0x00003ffc // log(1/frcpa(1+148/2^-8))/2
data8 0xeb77d48c692e6b14 , 0x00003ffc // log(1/frcpa(1+149/2^-8))/2
data8 0xeca84b83d7297b87 , 0x00003ffc // log(1/frcpa(1+150/2^-8))/2
//
data8 0xedd977f4962aa158 , 0x00003ffc // log(1/frcpa(1+151/2^-8))/2
data8 0xef7179a22f257754 , 0x00003ffc // log(1/frcpa(1+152/2^-8))/2
data8 0xf0a450d139366ca7 , 0x00003ffc // log(1/frcpa(1+153/2^-8))/2
data8 0xf1d7e0524ff9ffdb , 0x00003ffc // log(1/frcpa(1+154/2^-8))/2
data8 0xf30c29036a8b6cae , 0x00003ffc // log(1/frcpa(1+155/2^-8))/2
//
data8 0xf4412bc411ea8d92 , 0x00003ffc // log(1/frcpa(1+156/2^-8))/2
data8 0xf576e97564c8619d , 0x00003ffc // log(1/frcpa(1+157/2^-8))/2
data8 0xf6ad62fa1b5f172f , 0x00003ffc // log(1/frcpa(1+158/2^-8))/2
data8 0xf7e499368b55c542 , 0x00003ffc // log(1/frcpa(1+159/2^-8))/2
data8 0xf91c8d10abaffe22 , 0x00003ffc // log(1/frcpa(1+160/2^-8))/2
//
data8 0xfa553f7018c966f3 , 0x00003ffc // log(1/frcpa(1+161/2^-8))/2
data8 0xfb8eb13e185d802c , 0x00003ffc // log(1/frcpa(1+162/2^-8))/2
data8 0xfcc8e3659d9bcbed , 0x00003ffc // log(1/frcpa(1+163/2^-8))/2
data8 0xfe03d6d34d487fd2 , 0x00003ffc // log(1/frcpa(1+164/2^-8))/2
data8 0xff3f8c7581e9f0ae , 0x00003ffc // log(1/frcpa(1+165/2^-8))/2
//
data8 0x803e029e280173ae , 0x00003ffd // log(1/frcpa(1+166/2^-8))/2
data8 0x80dca10cc52d0757 , 0x00003ffd // log(1/frcpa(1+167/2^-8))/2
data8 0x817ba200632755a1 , 0x00003ffd // log(1/frcpa(1+168/2^-8))/2
data8 0x821b05f3b01d6774 , 0x00003ffd // log(1/frcpa(1+169/2^-8))/2
data8 0x82bacd623ff19d06 , 0x00003ffd // log(1/frcpa(1+170/2^-8))/2
//
data8 0x835af8c88e7a8f47 , 0x00003ffd // log(1/frcpa(1+171/2^-8))/2
data8 0x83c5f8299e2b4091 , 0x00003ffd // log(1/frcpa(1+172/2^-8))/2
data8 0x8466cb43f3d87300 , 0x00003ffd // log(1/frcpa(1+173/2^-8))/2
data8 0x850803a67c80ca4b , 0x00003ffd // log(1/frcpa(1+174/2^-8))/2
data8 0x85a9a1d11a23b461 , 0x00003ffd // log(1/frcpa(1+175/2^-8))/2
//
data8 0x864ba644a18e6e05 , 0x00003ffd // log(1/frcpa(1+176/2^-8))/2
data8 0x86ee1182dcc432f7 , 0x00003ffd // log(1/frcpa(1+177/2^-8))/2
data8 0x875a925d7e48c316 , 0x00003ffd // log(1/frcpa(1+178/2^-8))/2
data8 0x87fdaa109d23aef7 , 0x00003ffd // log(1/frcpa(1+179/2^-8))/2
data8 0x88a129ed4becfaf2 , 0x00003ffd // log(1/frcpa(1+180/2^-8))/2
//
data8 0x89451278ecd7f9cf , 0x00003ffd // log(1/frcpa(1+181/2^-8))/2
data8 0x89b29295f8432617 , 0x00003ffd // log(1/frcpa(1+182/2^-8))/2
data8 0x8a572ac5a5496882 , 0x00003ffd // log(1/frcpa(1+183/2^-8))/2
data8 0x8afc2d0ce3b2dadf , 0x00003ffd // log(1/frcpa(1+184/2^-8))/2
data8 0x8b6a69c608cfd3af , 0x00003ffd // log(1/frcpa(1+185/2^-8))/2
//
data8 0x8c101e106e899a83 , 0x00003ffd // log(1/frcpa(1+186/2^-8))/2
data8 0x8cb63de258f9d626 , 0x00003ffd // log(1/frcpa(1+187/2^-8))/2
data8 0x8d2539c5bd19e2b1 , 0x00003ffd // log(1/frcpa(1+188/2^-8))/2
data8 0x8dcc0e064b29e6f1 , 0x00003ffd // log(1/frcpa(1+189/2^-8))/2
data8 0x8e734f45d88357ae , 0x00003ffd // log(1/frcpa(1+190/2^-8))/2
//
data8 0x8ee30cef034a20db , 0x00003ffd // log(1/frcpa(1+191/2^-8))/2
data8 0x8f8b0515686d1d06 , 0x00003ffd // log(1/frcpa(1+192/2^-8))/2
data8 0x90336bba039bf32f , 0x00003ffd // log(1/frcpa(1+193/2^-8))/2
data8 0x90a3edd23d1c9d58 , 0x00003ffd // log(1/frcpa(1+194/2^-8))/2
data8 0x914d0de2f5d61b32 , 0x00003ffd // log(1/frcpa(1+195/2^-8))/2
//
data8 0x91be0c20d28173b5 , 0x00003ffd // log(1/frcpa(1+196/2^-8))/2
data8 0x9267e737c06cd34a , 0x00003ffd // log(1/frcpa(1+197/2^-8))/2
data8 0x92d962ae6abb1237 , 0x00003ffd // log(1/frcpa(1+198/2^-8))/2
data8 0x9383fa6afbe2074c , 0x00003ffd // log(1/frcpa(1+199/2^-8))/2
data8 0x942f0421651c1c4e , 0x00003ffd // log(1/frcpa(1+200/2^-8))/2
//
data8 0x94a14a3845bb985e , 0x00003ffd // log(1/frcpa(1+201/2^-8))/2
data8 0x954d133857f861e7 , 0x00003ffd // log(1/frcpa(1+202/2^-8))/2
data8 0x95bfd96468e604c4 , 0x00003ffd // log(1/frcpa(1+203/2^-8))/2
data8 0x9632d31cafafa858 , 0x00003ffd // log(1/frcpa(1+204/2^-8))/2
data8 0x96dfaabd86fa1647 , 0x00003ffd // log(1/frcpa(1+205/2^-8))/2
//
data8 0x9753261fcbb2a594 , 0x00003ffd // log(1/frcpa(1+206/2^-8))/2
data8 0x9800c11b426b996d , 0x00003ffd // log(1/frcpa(1+207/2^-8))/2
data8 0x9874bf4d45ae663c , 0x00003ffd // log(1/frcpa(1+208/2^-8))/2
data8 0x99231f5ee9a74f79 , 0x00003ffd // log(1/frcpa(1+209/2^-8))/2
data8 0x9997a18a56bcad28 , 0x00003ffd // log(1/frcpa(1+210/2^-8))/2
//
data8 0x9a46c873a3267e79 , 0x00003ffd // log(1/frcpa(1+211/2^-8))/2
data8 0x9abbcfc621eb6cb6 , 0x00003ffd // log(1/frcpa(1+212/2^-8))/2
data8 0x9b310cb0d354c990 , 0x00003ffd // log(1/frcpa(1+213/2^-8))/2
data8 0x9be14cf9e1b3515c , 0x00003ffd // log(1/frcpa(1+214/2^-8))/2
data8 0x9c5710b8cbb73a43 , 0x00003ffd // log(1/frcpa(1+215/2^-8))/2
//
data8 0x9ccd0abd301f399c , 0x00003ffd // log(1/frcpa(1+216/2^-8))/2
data8 0x9d7e67f3bdce8888 , 0x00003ffd // log(1/frcpa(1+217/2^-8))/2
data8 0x9df4ea81a99daa01 , 0x00003ffd // log(1/frcpa(1+218/2^-8))/2
data8 0x9e6ba405a54514ba , 0x00003ffd // log(1/frcpa(1+219/2^-8))/2
data8 0x9f1e21c8c7bb62b3 , 0x00003ffd // log(1/frcpa(1+220/2^-8))/2
//
data8 0x9f956593f6b6355c , 0x00003ffd // log(1/frcpa(1+221/2^-8))/2
data8 0xa00ce1092e5498c3 , 0x00003ffd // log(1/frcpa(1+222/2^-8))/2
data8 0xa0c08309c4b912c1 , 0x00003ffd // log(1/frcpa(1+223/2^-8))/2
data8 0xa1388a8c6faa2afa , 0x00003ffd // log(1/frcpa(1+224/2^-8))/2
data8 0xa1b0ca7095b5f985 , 0x00003ffd // log(1/frcpa(1+225/2^-8))/2
//
data8 0xa22942eb47534a00 , 0x00003ffd // log(1/frcpa(1+226/2^-8))/2
data8 0xa2de62326449d0a3 , 0x00003ffd // log(1/frcpa(1+227/2^-8))/2
data8 0xa357690f88bfe345 , 0x00003ffd // log(1/frcpa(1+228/2^-8))/2
data8 0xa3d0a93f45169a4b , 0x00003ffd // log(1/frcpa(1+229/2^-8))/2
data8 0xa44a22f7ffe65f30 , 0x00003ffd // log(1/frcpa(1+230/2^-8))/2
//
data8 0xa500c5e5b4c1aa36 , 0x00003ffd // log(1/frcpa(1+231/2^-8))/2
data8 0xa57ad064eb2ebbc2 , 0x00003ffd // log(1/frcpa(1+232/2^-8))/2
data8 0xa5f5152dedf4384e , 0x00003ffd // log(1/frcpa(1+233/2^-8))/2
data8 0xa66f9478856233ec , 0x00003ffd // log(1/frcpa(1+234/2^-8))/2
data8 0xa6ea4e7cca02c32e , 0x00003ffd // log(1/frcpa(1+235/2^-8))/2
//
data8 0xa765437325341ccf , 0x00003ffd // log(1/frcpa(1+236/2^-8))/2
data8 0xa81e21e6c75b4020 , 0x00003ffd // log(1/frcpa(1+237/2^-8))/2
data8 0xa899ab333fe2b9ca , 0x00003ffd // log(1/frcpa(1+238/2^-8))/2
data8 0xa9157039c51ebe71 , 0x00003ffd // log(1/frcpa(1+239/2^-8))/2
data8 0xa991713433c2b999 , 0x00003ffd // log(1/frcpa(1+240/2^-8))/2
//
data8 0xaa0dae5cbcc048b3 , 0x00003ffd // log(1/frcpa(1+241/2^-8))/2
data8 0xaa8a27ede5eb13ad , 0x00003ffd // log(1/frcpa(1+242/2^-8))/2
data8 0xab06de228a9e3499 , 0x00003ffd // log(1/frcpa(1+243/2^-8))/2
data8 0xab83d135dc633301 , 0x00003ffd // log(1/frcpa(1+244/2^-8))/2
data8 0xac3fb076adc7fe7a , 0x00003ffd // log(1/frcpa(1+245/2^-8))/2
//
data8 0xacbd3cbbe47988f1 , 0x00003ffd // log(1/frcpa(1+246/2^-8))/2
data8 0xad3b06b1a5dc57c3 , 0x00003ffd // log(1/frcpa(1+247/2^-8))/2
data8 0xadb90e94af887717 , 0x00003ffd // log(1/frcpa(1+248/2^-8))/2
data8 0xae3754a218f7c816 , 0x00003ffd // log(1/frcpa(1+249/2^-8))/2
data8 0xaeb5d9175437afa2 , 0x00003ffd // log(1/frcpa(1+250/2^-8))/2
//
data8 0xaf349c322e9c7cee , 0x00003ffd // log(1/frcpa(1+251/2^-8))/2
data8 0xafb39e30d1768d1c , 0x00003ffd // log(1/frcpa(1+252/2^-8))/2
data8 0xb032df51c2c93116 , 0x00003ffd // log(1/frcpa(1+253/2^-8))/2
data8 0xb0b25fd3e6035ad9 , 0x00003ffd // log(1/frcpa(1+254/2^-8))/2
data8 0xb1321ff67cba178c , 0x00003ffd // log(1/frcpa(1+255/2^-8))/2
LOCAL_OBJECT_END(atanh_data_3)
.section .text
GLOBAL_LIBM_ENTRY(atanh)
{ .mfi
getf.exp rArgSExpb = f8 // Must recompute if x unorm
fclass.m p13,p0 = f8, 0x0b // is arg denormal ?
mov rExpbMask = 0x1ffff
}
{ .mfi
addl DataPtr = @ltoff(atanh_data), gp
fnma.s1 fOneMx = f8, f1, f1 // fOneMx = 1 - x
mov rBias = 0xffff
}
;;
{ .mfi
mov rNearZeroBound = 0xfffd // biased exp of 1/4
fclass.m p12,p0 = f8, 0xc7 // is arg NaN or +/-0 ?
nop.i 0
}
{ .mfi
ld8 DataPtr = [DataPtr]
fma.s1 fOnePx = f8, f1, f1 // fOnePx = 1 + x
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.lt.s1 p10,p11 = f8,f0 // is x < 0 ?
nop.i 0
}
{ .mfb
nop.m 0
fnorm.s1 fNormX = f8 // Normalize x
(p13) br.cond.spnt ATANH_UNORM // Branch if x=unorm
}
;;
ATANH_COMMON:
// Return here if x=unorm and not denorm
{ .mfi
adds Data2Ptr = 0x50, DataPtr
fma.s1 fX2 = f8, f8, f0 // x^2
nop.i 0
}
{ .mfb
adds Data3Ptr = 0xC0, DataPtr
(p12) fma.d.s0 f8 = f8,f1,f8 // NaN or +/-0
(p12) br.ret.spnt b0 // Exit for x Nan or zero
}
;;
{ .mfi
ldfe fC9 = [Data2Ptr], 16
(p11) frcpa.s1 fRcp0, p0 = f1, fOneMx
nop.i 0
}
;;
{ .mfi
ldfe fC8 = [Data2Ptr], 16
(p10) frcpa.s1 fRcp0n, p0 = f1, fOnePx
and rArgExpb = rArgSExpb, rExpbMask // biased exponent
}
{ .mfi
nop.m 0
(p10) fma.s1 fOneMx = fOnePx, f1, f0 // fOnePx = 1 - |x|
nop.i 0
}
;;
{ .mfi
ldfe fC7 = [Data2Ptr], 16
(p10) fnma.s1 fOnePx = fNormX, f1, f1 // fOnePx = 1 + |x|
cmp.ge p6,p0 = rArgExpb, rBias // is Expb(Arg) >= Expb(1) ?
}
{ .mfb
nop.m 0
nop.f 0
(p6) br.cond.spnt atanh_ge_one // Branch if |x| >=1.0
}
;;
{ .mfi
ldfe fC6 = [Data2Ptr], 16
nop.f 0
nop.i 0
}
;;
{ .mfi
ldfe fC5 = [Data2Ptr], 16
fma.s1 fX4 = fX2, fX2, f0 // x^4
cmp.gt p8,p0 = rNearZeroBound, rArgExpb
}
{ .mfb
ldfe fC2 = [Data3Ptr], 16
fma.s1 fX3 = fX2, fNormX, f0 // x^3
(p8) br.cond.spnt atanh_near_zero // Exit if 0 < |x| < 0.25
}
;;
// Main path: 0.25 <= |x| < 1.0
// NR method: iteration #1
.pred.rel "mutex",p11,p10
{ .mfi
ldfpd fP5, fP4 = [DataPtr], 16
(p11) fnma.s1 fRcp1 = fRcp0, fOneMx, f1 // t = 1 - r0*x
nop.i 0
}
{ .mfi
nop.m 0
(p10) fnma.s1 fRcp1 = fRcp0n, fOneMx, f1 // t = 1 - r0*x
nop.i 0
}
;;
{ .mfi
ldfpd fP3, fP2 = [DataPtr], 16
// r1 = r0 + r0*t = r0 + r0*(1 - r0*x)
(p11) fma.s1 fRcp1 = fRcp0, fRcp1, fRcp0
nop.i 0
}
{ .mfi
nop.m 0
// r1 = r0 + r0*t = r0 + r0*(1 - r0*x)
(p10) fma.s1 fRcp1 = fRcp0n, fRcp1, fRcp0n
nop.i 0
}
;;
// NR method: iteration #2
{ .mfi
ldfd fP1 = [DataPtr], 16
fnma.s1 fRcp2 = fRcp1, fOneMx, f1 // t = 1 - r1*x
nop.i 0
}
;;
{ .mfi
ldfe fLog2 = [DataPtr], 16
// r2 = r1 + r1*t = r1 + r1*(1 - r1*x)
fma.s1 fRcp2 = fRcp1, fRcp2, fRcp1
nop.i 0
}
;;
// NR method: iteration #3
{ .mfi
adds RcpTablePtr = 0xB0, DataPtr
fnma.s1 fRcp3 = fRcp2, fOneMx, f1 // t = 1 - r2*x
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fY4Rcp = fRcp2, fOnePx, f0 // fY4Rcp = r2*(1 + x)
nop.i 0
}
;;
// polynomial approximation & final reconstruction
{ .mfi
nop.m 0
frcpa.s1 fRcp, p0 = f1, fY4Rcp
nop.i 0
}
{ .mfi
nop.m 0
// y = r2 * (1 + x) + r2 * (1 + x) * t = (1 + x) * (r2 + r2*(1 - r2*x))
fma.s1 fY = fY4Rcp, fRcp3, fY4Rcp
nop.i 0
}
;;
{ .mmi
getf.exp rSExpb = fY4Rcp // biased exponent and sign
;;
getf.sig rSig = fY4Rcp // significand
nop.i 0
}
;;
{ .mfi
nop.m 0
fms.s1 fR = fY, fRcp, f1 // fR = fY * fRcp - 1
nop.i 0
}
;;
{ .mmi
and rExpb = rSExpb, rExpbMask
;;
sub rN = rExpb, rBias // exponent
extr.u rInd = rSig,55,8 // Extract 8 bits
}
;;
{ .mmi
setf.sig fN4Cvt = rN
shladd RcpTablePtr = rInd, 4, RcpTablePtr
nop.i 0
}
;;
{ .mfi
ldfe fLogT = [RcpTablePtr]
fma.s1 fR2 = fR, fR, f0 // r^2
nop.i 0
}
{
nop.m 0
fma.s1 fP54 = fP5, fR, fP4 // P5*r + P4
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP32 = fP3, fR, fP2 // P3*r + P2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fR3 = fR2, fR, f0 // r^3
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fP10 = fP1, fR2, fR // P1*r^2 + r
nop.i 0
}
;;
{ .mfi
nop.m 0
fcvt.xf fN = fN4Cvt
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fP54 = fP54, fR2, fP32 // (P5*r + P4)*r^2 + P3*r + P2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fLogT_N = fN, fLog2, fLogT // N*Log2 + LogT
nop.i 0
}
{ .mfi
nop.m 0
// ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
fma.s1 fP54 = fP54, fR3, fP10
nop.i 0
}
;;
.pred.rel "mutex",p11,p10
{ .mfi
nop.m 0
// 0.5*(((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r) + 0.5*(N*Log2 + T)
(p11) fnma.d.s0 f8 = fP54, fP1, fLogT_N
nop.i 0
}
{ .mfb
nop.m 0
// -0.5*(((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r) - 0.5*(N*Log2 + T)
(p10) fms.d.s0 f8 = fP54, fP1, fLogT_N
br.ret.sptk b0 // Exit for 0.25 <= |x| < 1.0
}
;;
// Here if 0 < |x| < 0.25
atanh_near_zero:
{ .mfi
ldfe fC4 = [Data2Ptr], 16
fma.s1 fP98 = fC9, fX2, fC8 // C9*x^2 + C8
nop.i 0
}
{ .mfi
ldfe fC1 = [Data3Ptr], 16
fma.s1 fP76 = fC7, fX2, fC6 // C7*x^2 + C6
nop.i 0
}
;;
{ .mfi
ldfe fC3 = [Data2Ptr], 16
fma.s1 fX8 = fX4, fX4, f0 // x^8
nop.i 0
}
{ .mfi
ldfe fC0 = [Data3Ptr], 16
nop.f 0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP98 = fP98, fX4, fP76 // C9*x^6 + C8*x^4 + C7*x^2 + C6
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP54 = fC5, fX2, fC4 // C5*x^2 + C4
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP32 = fC3, fX2, fC2 // C3*x^2 + C2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP10 = fC1, fX2, fC0 // C1*x^2 + C0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP54 = fP54, fX4, fP32 // C5*x^6 + C4*x^4 + C3*x^2 + C2
nop.i 0
}
;;
{ .mfi
nop.m 0
// C9*x^14 + C8*x^12 + C7*x^10 + C6*x^8 + C5*x^6 + C4*x^4 + C3*x^2 + C2
fma.s1 fP98 = fP98, fX8, fP54
nop.i 0
}
;;
{ .mfi
nop.m 0
// C9*x^18 + C8*x^16 + C7*x^14 + C6*x^12 + C5*x^10 + C4*x^8 + C3*x^6 +
// C2*x^4 + C1*x^2 + C0
fma.s1 fP98 = fP98, fX4, fP10
nop.i 0
}
;;
{ .mfb
nop.m 0
// C9*x^21 + C8*x^19 + C7*x^17 + C6*x^15 + C5*x^13 + C4*x^11 + C3*x^9 +
// C2*x^7 + C1*x^5 + C0*x^3 + x
fma.d.s0 f8 = fP98, fX3, fNormX
br.ret.sptk b0 // Exit for 0 < |x| < 0.25
}
;;
ATANH_UNORM:
// Here if x=unorm
{ .mfi
getf.exp rArgSExpb = fNormX // Recompute if x unorm
fclass.m p0,p13 = fNormX, 0x0b // Test x denorm
nop.i 0
}
;;
{ .mfb
nop.m 0
fcmp.eq.s0 p7,p0 = f8, f0 // Dummy to set denormal flag
(p13) br.cond.sptk ATANH_COMMON // Continue if x unorm and not denorm
}
;;
.pred.rel "mutex",p10,p11
{ .mfi
nop.m 0
(p10) fnma.d.s0 f8 = f8,f8,f8 // Result x-x^2 if x=-denorm
nop.i 0
}
{ .mfb
nop.m 0
(p11) fma.d.s0 f8 = f8,f8,f8 // Result x+x^2 if x=+denorm
br.ret.spnt b0 // Exit if denorm
}
;;
// Here if |x| >= 1.0
atanh_ge_one:
{ .mfi
alloc r32 = ar.pfs,1,3,4,0
fmerge.s fAbsX = f0, f8 // Form |x|
nop.i 0
}
;;
{ .mfi
nop.m 0
fmerge.s f10 = f8, f8 // Save input for error call
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.eq.s1 p6,p7 = fAbsX, f1 // Test for |x| = 1.0
nop.i 0
}
;;
// Set error tag and result, and raise invalid flag if |x| > 1.0
{ .mfi
(p7) mov atanh_GR_tag = 131
(p7) frcpa.s0 f8, p0 = f0, f0 // Get QNaN, and raise invalid
nop.i 0
}
;;
// Set error tag and result, and raise Z flag if |x| = 1.0
{ .mfi
nop.m 0
(p6) frcpa.s0 fRcp, p0 = f1, f0 // Get inf, and raise Z flag
nop.i 0
}
;;
{ .mfb
(p6) mov atanh_GR_tag = 132
(p6) fmerge.s f8 = f8, fRcp // result is +-inf
br.cond.sptk __libm_error_region // Exit if |x| >= 1.0
}
;;
GLOBAL_LIBM_END(atanh)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfd [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfd [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|