1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
.file "sinh.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 10/12/00 Update to set denormal operand and underflow flags
// 01/22/01 Fixed to set inexact flag for small args.
// 05/02/01 Reworked to improve speed of all paths
// 05/20/02 Cleaned up namespace and sf0 syntax
// 11/20/02 Improved speed with new algorithm
// 03/31/05 Reformatted delimiters between data tables
// API
//==============================================================
// double sinh(double)
// Overview of operation
//==============================================================
// Case 1: 0 < |x| < 2^-60
// Result = x, computed by x+sgn(x)*x^2) to handle flags and rounding
//
// Case 2: 2^-60 < |x| < 0.25
// Evaluate sinh(x) by a 13th order polynomial
// Care is take for the order of multiplication; and A1 is not exactly 1/3!,
// A2 is not exactly 1/5!, etc.
// sinh(x) = x + (A1*x^3 + A2*x^5 + A3*x^7 + A4*x^9 + A5*x^11 + A6*x^13)
//
// Case 3: 0.25 < |x| < 710.47586
// Algorithm is based on the identity sinh(x) = ( exp(x) - exp(-x) ) / 2.
// The algorithm for exp is described as below. There are a number of
// economies from evaluating both exp(x) and exp(-x). Although we
// are evaluating both quantities, only where the quantities diverge do we
// duplicate the computations. The basic algorithm for exp(x) is described
// below.
//
// Take the input x. w is "how many log2/128 in x?"
// w = x * 128/log2
// n = int(w)
// x = n log2/128 + r + delta
// n = 128M + index_1 + 2^4 index_2
// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
// Construct 2^M
// Get 2^(index_1/128) from table_1;
// Get 2^(index_2/8) from table_2;
// Calculate exp(r) by 5th order polynomial
// r = x - n (log2/128)_high
// delta = - n (log2/128)_low
// Calculate exp(delta) as 1 + delta
// Special values
//==============================================================
// sinh(+0) = +0
// sinh(-0) = -0
// sinh(+qnan) = +qnan
// sinh(-qnan) = -qnan
// sinh(+snan) = +qnan
// sinh(-snan) = -qnan
// sinh(-inf) = -inf
// sinh(+inf) = +inf
// Overflow and Underflow
//=======================
// sinh(x) = largest double normal when
// |x| = 710.47586 = 0x408633ce8fb9f87d
//
// Underflow is handled as described in case 1 above
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input, output
// f6 -> f15, f32 -> f61
// General registers used:
// r14 -> r40
// Predicate registers used:
// p6 -> p15
// Assembly macros
//==============================================================
rRshf = r14
rN_neg = r14
rAD_TB1 = r15
rAD_TB2 = r16
rAD_P = r17
rN = r18
rIndex_1 = r19
rIndex_2_16 = r20
rM = r21
rBiased_M = r21
rSig_inv_ln2 = r22
rIndex_1_neg = r22
rExp_bias = r23
rExp_bias_minus_1 = r23
rExp_mask = r24
rTmp = r24
rGt_ln = r24
rIndex_2_16_neg = r24
rM_neg = r25
rBiased_M_neg = r25
rRshf_2to56 = r26
rAD_T1_neg = r26
rExp_2tom56 = r28
rAD_T2_neg = r28
rAD_T1 = r29
rAD_T2 = r30
rSignexp_x = r31
rExp_x = r31
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT = r39
GR_Parameter_TAG = r40
FR_X = f10
FR_Y = f1
FR_RESULT = f8
fRSHF_2TO56 = f6
fINV_LN2_2TO63 = f7
fW_2TO56_RSH = f9
f2TOM56 = f11
fP5 = f12
fP4 = f13
fP3 = f14
fP2 = f15
fLn2_by_128_hi = f33
fLn2_by_128_lo = f34
fRSHF = f35
fNfloat = f36
fNormX = f37
fR = f38
fF = f39
fRsq = f40
f2M = f41
fS1 = f42
fT1 = f42
fS2 = f43
fT2 = f43
fS = f43
fWre_urm_f8 = f44
fAbsX = f44
fMIN_DBL_OFLOW_ARG = f45
fMAX_DBL_NORM_ARG = f46
fXsq = f47
fX4 = f48
fGt_pln = f49
fTmp = f49
fP54 = f50
fP5432 = f50
fP32 = f51
fP = f52
fP54_neg = f53
fP5432_neg = f53
fP32_neg = f54
fP_neg = f55
fF_neg = f56
f2M_neg = f57
fS1_neg = f58
fT1_neg = f58
fS2_neg = f59
fT2_neg = f59
fS_neg = f59
fExp = f60
fExp_neg = f61
fA6 = f50
fA65 = f50
fA6543 = f50
fA654321 = f50
fA5 = f51
fA4 = f52
fA43 = f52
fA3 = f53
fA2 = f54
fA21 = f54
fA1 = f55
fX3 = f56
// Data tables
//==============================================================
RODATA
.align 16
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
// double-extended 1/ln(2)
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
// 3fff b8aa 3b29 5c17 f0bc
// For speed the significand will be loaded directly with a movl and setf.sig
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
// computations need to scale appropriately.
// The constant 128/ln(2) is needed for the computation of w. This is also
// obtained by scaling the computations.
//
// Two shifting constants are loaded directly with movl and setf.d.
// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
// This constant is added to x*1/ln2 to shift the integer part of
// x*128/ln2 into the rightmost bits of the significand.
// The result of this fma is fW_2TO56_RSH.
// 2. fRSHF = 1.1000..00 * 2^(63)
// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
// the integer part of w, n, as a floating-point number.
// The result of this fms is fNfloat.
LOCAL_OBJECT_START(exp_table_1)
data8 0x408633ce8fb9f87e // smallest dbl overflow arg
data8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl result
data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
//
// Table 1 is 2^(index_1/128) where
// index_1 goes from 0 to 15
//
data8 0x8000000000000000 , 0x00003FFF
data8 0x80B1ED4FD999AB6C , 0x00003FFF
data8 0x8164D1F3BC030773 , 0x00003FFF
data8 0x8218AF4373FC25EC , 0x00003FFF
data8 0x82CD8698AC2BA1D7 , 0x00003FFF
data8 0x8383594EEFB6EE37 , 0x00003FFF
data8 0x843A28C3ACDE4046 , 0x00003FFF
data8 0x84F1F656379C1A29 , 0x00003FFF
data8 0x85AAC367CC487B15 , 0x00003FFF
data8 0x8664915B923FBA04 , 0x00003FFF
data8 0x871F61969E8D1010 , 0x00003FFF
data8 0x87DB357FF698D792 , 0x00003FFF
data8 0x88980E8092DA8527 , 0x00003FFF
data8 0x8955EE03618E5FDD , 0x00003FFF
data8 0x8A14D575496EFD9A , 0x00003FFF
data8 0x8AD4C6452C728924 , 0x00003FFF
LOCAL_OBJECT_END(exp_table_1)
// Table 2 is 2^(index_1/8) where
// index_2 goes from 0 to 7
LOCAL_OBJECT_START(exp_table_2)
data8 0x8000000000000000 , 0x00003FFF
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
data8 0x9837F0518DB8A96F , 0x00003FFF
data8 0xA5FED6A9B15138EA , 0x00003FFF
data8 0xB504F333F9DE6484 , 0x00003FFF
data8 0xC5672A115506DADD , 0x00003FFF
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
data8 0xEAC0C6E7DD24392F , 0x00003FFF
LOCAL_OBJECT_END(exp_table_2)
LOCAL_OBJECT_START(exp_p_table)
data8 0x3f8111116da21757 //P5
data8 0x3fa55555d787761c //P4
data8 0x3fc5555555555414 //P3
data8 0x3fdffffffffffd6a //P2
LOCAL_OBJECT_END(exp_p_table)
LOCAL_OBJECT_START(sinh_p_table)
data8 0xB08AF9AE78C1239F, 0x00003FDE // A6
data8 0xB8EF1D28926D8891, 0x00003FEC // A4
data8 0x8888888888888412, 0x00003FF8 // A2
data8 0xD732377688025BE9, 0x00003FE5 // A5
data8 0xD00D00D00D4D39F2, 0x00003FF2 // A3
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // A1
LOCAL_OBJECT_END(sinh_p_table)
.section .text
GLOBAL_IEEE754_ENTRY(sinh)
{ .mlx
getf.exp rSignexp_x = f8 // Must recompute if x unorm
movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
}
{ .mlx
addl rAD_TB1 = @ltoff(exp_table_1), gp
movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
}
;;
{ .mfi
ld8 rAD_TB1 = [rAD_TB1]
fclass.m p6,p0 = f8,0x0b // Test for x=unorm
mov rExp_mask = 0x1ffff
}
{ .mfi
mov rExp_bias = 0xffff
fnorm.s1 fNormX = f8
mov rExp_2tom56 = 0xffff-56
}
;;
// Form two constants we need
// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
{ .mfi
setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
fclass.m p8,p0 = f8,0x07 // Test for x=0
nop.i 999
}
{ .mlx
setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
}
;;
{ .mfi
ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16
fclass.m p10,p0 = f8,0x1e3 // Test for x=inf, nan, NaT
nop.i 0
}
{ .mfb
setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
nop.f 0
(p6) br.cond.spnt SINH_UNORM // Branch if x=unorm
}
;;
SINH_COMMON:
{ .mfi
ldfe fLn2_by_128_hi = [rAD_TB1],16
nop.f 0
nop.i 0
}
{ .mfb
setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
nop.f 0
(p8) br.ret.spnt b0 // Exit for x=0, result=x
}
;;
{ .mfi
ldfe fLn2_by_128_lo = [rAD_TB1],16
nop.f 0
nop.i 0
}
{ .mfb
and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
(p10) fma.d.s0 f8 = f8,f1,f0 // Result if x=inf, nan, NaT
(p10) br.ret.spnt b0 // quick exit for x=inf, nan, NaT
}
;;
// After that last load rAD_TB1 points to the beginning of table 1
{ .mfi
nop.m 0
fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D
sub rExp_x = rExp_x, rExp_bias // True exponent of x
}
;;
{ .mfi
nop.m 0
fmerge.s fAbsX = f0, fNormX // Form |x|
nop.i 0
}
{ .mfb
cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
(p7) br.cond.spnt SINH_SMALL // Branch if 0 < |x| < 2^-2
}
;;
// W = X * Inv_log2_by_128
// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
{ .mfi
add rAD_P = 0x180, rAD_TB1
fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
add rAD_TB2 = 0x100, rAD_TB1
}
;;
// Divide arguments into the following categories:
// Certain Safe - 0.25 <= |x| <= MAX_DBL_NORM_ARG
// Possible Overflow p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG
// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf
//
// If the input is really a double arg, then there will never be
// "Possible Overflow" arguments.
//
{ .mfi
ldfpd fP5, fP4 = [rAD_P] ,16
fcmp.ge.s1 p15,p14 = fAbsX,fMIN_DBL_OFLOW_ARG
nop.i 0
}
;;
// Nfloat = round_int(W)
// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
// as a twos complement number in the lower bits (that is, it may be negative).
// That twos complement number (called N) is put into rN.
// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
// Thus, fNfloat contains the floating point version of N
{ .mfi
ldfpd fP3, fP2 = [rAD_P]
(p14) fcmp.gt.unc.s1 p14,p0 = fAbsX,fMAX_DBL_NORM_ARG
nop.i 0
}
{ .mfb
nop.m 0
fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
(p15) br.cond.spnt SINH_CERTAIN_OVERFLOW
}
;;
{ .mfi
getf.sig rN = fW_2TO56_RSH
nop.f 0
mov rExp_bias_minus_1 = 0xfffe
}
;;
// rIndex_1 has index_1
// rIndex_2_16 has index_2 * 16
// rBiased_M has M
// rM has true M
// r = x - Nfloat * ln2_by_128_hi
// f = 1 - Nfloat * ln2_by_128_lo
{ .mfi
and rIndex_1 = 0x0f, rN
fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
shr rM = rN, 0x7
}
{ .mfi
and rIndex_2_16 = 0x70, rN
fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
sub rN_neg = r0, rN
}
;;
{ .mmi
and rIndex_1_neg = 0x0f, rN_neg
add rBiased_M = rExp_bias_minus_1, rM
shr rM_neg = rN_neg, 0x7
}
{ .mmi
and rIndex_2_16_neg = 0x70, rN_neg
add rAD_T2 = rAD_TB2, rIndex_2_16
shladd rAD_T1 = rIndex_1, 4, rAD_TB1
}
;;
// rAD_T1 has address of T1
// rAD_T2 has address if T2
{ .mmi
setf.exp f2M = rBiased_M
ldfe fT2 = [rAD_T2]
nop.i 0
}
{ .mmi
add rBiased_M_neg = rExp_bias_minus_1, rM_neg
add rAD_T2_neg = rAD_TB2, rIndex_2_16_neg
shladd rAD_T1_neg = rIndex_1_neg, 4, rAD_TB1
}
;;
// Create Scale = 2^M
// Load T1 and T2
{ .mmi
ldfe fT1 = [rAD_T1]
nop.m 0
nop.i 0
}
{ .mmf
setf.exp f2M_neg = rBiased_M_neg
ldfe fT2_neg = [rAD_T2_neg]
fma.s1 fF_neg = fNfloat, fLn2_by_128_lo, f1
}
;;
{ .mfi
nop.m 0
fma.s1 fRsq = fR, fR, f0
nop.i 0
}
{ .mfi
ldfe fT1_neg = [rAD_T1_neg]
fma.s1 fP54 = fR, fP5, fP4
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP32 = fR, fP3, fP2
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 fP54_neg = fR, fP5, fP4
nop.i 0
}
;;
{ .mfi
nop.m 0
fnma.s1 fP32_neg = fR, fP3, fP2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP5432 = fRsq, fP54, fP32
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS2 = fF,fT2,f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fS1 = f2M,fT1,f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fP5432_neg = fRsq, fP54_neg, fP32_neg
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fS1_neg = f2M_neg,fT1_neg,f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS2_neg = fF_neg,fT2_neg,f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP = fRsq, fP5432, fR
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS = fS1,fS2,f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fms.s1 fP_neg = fRsq, fP5432_neg, fR
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS_neg = fS1_neg,fS2_neg,f0
nop.i 0
}
;;
{ .mfb
nop.m 0
fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
(p14) br.cond.spnt SINH_POSSIBLE_OVERFLOW
}
;;
{ .mfi
nop.m 0
fma.s1 fExp = fS, fP, fS
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fExp_neg = fS_neg, fP_neg, fS_neg
nop.i 0
}
;;
{ .mfb
nop.m 0
fms.d.s0 f8 = fExp, f1, fExp_neg
br.ret.sptk b0 // Normal path exit
}
;;
// Here if 0 < |x| < 0.25
SINH_SMALL:
{ .mfi
add rAD_T1 = 0x1a0, rAD_TB1
fcmp.lt.s1 p7, p8 = fNormX, f0 // Test sign of x
cmp.gt p6, p0 = -60, rExp_x // Test |x| < 2^(-60)
}
{ .mfi
add rAD_T2 = 0x1d0, rAD_TB1
nop.f 0
nop.i 0
}
;;
{ .mmb
ldfe fA6 = [rAD_T1],16
ldfe fA5 = [rAD_T2],16
(p6) br.cond.spnt SINH_VERY_SMALL // Branch if |x| < 2^(-60)
}
;;
{ .mmi
ldfe fA4 = [rAD_T1],16
ldfe fA3 = [rAD_T2],16
nop.i 0
}
;;
{ .mmi
ldfe fA2 = [rAD_T1]
ldfe fA1 = [rAD_T2]
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fX3 = fNormX, fXsq, f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fX4 = fXsq, fXsq, f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA65 = fXsq, fA6, fA5
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA43 = fXsq, fA4, fA3
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA21 = fXsq, fA2, fA1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA6543 = fX4, fA65, fA43
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA654321 = fX4, fA6543, fA21
nop.i 0
}
;;
// Dummy multiply to generate inexact
{ .mfi
nop.m 0
fmpy.s0 fTmp = fA6, fA6
nop.i 0
}
{ .mfb
nop.m 0
fma.d.s0 f8 = fA654321, fX3, fNormX
br.ret.sptk b0 // Exit if 2^-60 < |x| < 0.25
}
;;
SINH_VERY_SMALL:
// Here if 0 < |x| < 2^-60
// Compute result by x + sgn(x)*x^2 to get properly rounded result
.pred.rel "mutex",p7,p8
{ .mfi
nop.m 0
(p7) fnma.d.s0 f8 = fNormX, fNormX, fNormX // If x<0 result ~ x-x^2
nop.i 0
}
{ .mfb
nop.m 0
(p8) fma.d.s0 f8 = fNormX, fNormX, fNormX // If x>0 result ~ x+x^2
br.ret.sptk b0 // Exit if |x| < 2^-60
}
;;
SINH_POSSIBLE_OVERFLOW:
// Here if fMAX_DBL_NORM_ARG < |x| < fMIN_DBL_OFLOW_ARG
// This cannot happen if input is a double, only if input higher precision.
// Overflow is a possibility, not a certainty.
// Recompute result using status field 2 with user's rounding mode,
// and wre set. If result is larger than largest double, then we have
// overflow
{ .mfi
mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
nop.i 0
}
;;
{ .mfi
setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set
nop.i 0
}
;;
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x40 // Turn off wre in sf2
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
nop.i 0
}
;;
{ .mfb
nop.m 0
nop.f 0
(p6) br.cond.spnt SINH_CERTAIN_OVERFLOW // Branch if overflow
}
;;
{ .mfb
nop.m 0
fma.d.s0 f8 = fS, fP, fS
br.ret.sptk b0 // Exit if really no overflow
}
;;
SINH_CERTAIN_OVERFLOW:
{ .mfi
sub rTmp = rExp_mask, r0, 1
fcmp.lt.s1 p6, p7 = fNormX, f0 // Test for x < 0
nop.i 0
}
;;
{ .mmf
alloc r32=ar.pfs,1,4,4,0
setf.exp fTmp = rTmp
fmerge.s FR_X = f8,f8
}
;;
{ .mfi
mov GR_Parameter_TAG = 127
(p6) fnma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and -INF result
nop.i 0
}
{ .mfb
nop.m 0
(p7) fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
br.cond.sptk __libm_error_region
}
;;
// Here if x unorm
SINH_UNORM:
{ .mfb
getf.exp rSignexp_x = fNormX // Must recompute if x unorm
fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
br.cond.sptk SINH_COMMON
}
;;
GLOBAL_IEEE754_END(sinh)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|