1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
.file "sincos.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/02/00 Unwind support added.
// 06/16/00 Updated tables to enforce symmetry
// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
// 09/20/00 The updated tables regressed to an old version, so reinstated them
// 10/18/00 Changed one table entry to ensure symmetry
// 01/03/01 Improved speed, fixed flag settings for small arguments.
// 02/18/02 Large arguments processing routine excluded
// 05/20/02 Cleaned up namespace and sf0 syntax
// 06/03/02 Insure inexact flag set for large arg result
// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 08/08/03 Improved performance
// 10/28/04 Saved sincos_r_sincos to avoid clobber by dynamic loader
// 03/31/05 Reformatted delimiters between data tables
// API
//==============================================================
// double sin( double x);
// double cos( double x);
//
// Overview of operation
//==============================================================
//
// Step 1
// ======
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
// divide x by pi/2^k.
// Multiply by 2^k/pi.
// nfloat = Round result to integer (round-to-nearest)
//
// r = x - nfloat * pi/2^k
// Do this as ((((x - nfloat * HIGH(pi/2^k))) -
// nfloat * LOW(pi/2^k)) -
// nfloat * LOWEST(pi/2^k) for increased accuracy.
// pi/2^k is stored as two numbers that when added make pi/2^k.
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
// HIGH and LOW parts are rounded to zero values,
// and LOWEST is rounded to nearest one.
//
// x = (nfloat * pi/2^k) + r
// r is small enough that we can use a polynomial approximation
// and is referred to as the reduced argument.
//
// Step 3
// ======
// Take the unreduced part and remove the multiples of 2pi.
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
//
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
// N * 2^(k+1)
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N2pi + M * pi/2^k
//
//
// Sin(x) = Sin((nfloat * pi/2^k) + r)
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
//
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
// = Sin(Mpi/2^k)
//
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
// = Cos(Mpi/2^k)
//
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
//
// Step 4
// ======
// 0 <= M < 2^(k+1)
// There are 2^(k+1) Sin entries in a table.
// There are 2^(k+1) Cos entries in a table.
//
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
//
//
// Step 5
// ======
// Calculate Cos(r) and Sin(r) by polynomial approximation.
//
// Cos(r) = 1 + r^2 q1 + r^4 q2 + r^6 q3 + ... = Series for Cos
// Sin(r) = r + r^3 p1 + r^5 p2 + r^7 p3 + ... = Series for Sin
//
// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
//
//
// Calculate
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
// as follows
//
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
// rsq = r*r
//
//
// P = p1 + r^2p2 + r^4p3 + r^6p4
// Q = q1 + r^2q2 + r^4q3 + r^6q4
//
// rcub = r * rsq
// Sin(r) = r + rcub * P
// = r + r^3p1 + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
//
// The coefficients are not exactly these values, but almost.
//
// p1 = -1/6 = -1/3!
// p2 = 1/120 = 1/5!
// p3 = -1/5040 = -1/7!
// p4 = 1/362889 = 1/9!
//
// P = r + rcub * P
//
// Answer = S[m] Cos(r) + [Cm] P
//
// Cos(r) = 1 + rsq Q
// Cos(r) = 1 + r^2 Q
// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
//
// S[m] Cos(r) = S[m](1 + rsq Q)
// S[m] Cos(r) = S[m] + Sm rsq Q
// S[m] Cos(r) = S[m] + s_rsq Q
// Q = S[m] + s_rsq Q
//
// Then,
//
// Answer = Q + C[m] P
// Registers used
//==============================================================
// general input registers:
// r14 -> r26
// r32 -> r35
// predicate registers used:
// p6 -> p11
// floating-point registers used
// f9 -> f15
// f32 -> f61
// Assembly macros
//==============================================================
sincos_NORM_f8 = f9
sincos_W = f10
sincos_int_Nfloat = f11
sincos_Nfloat = f12
sincos_r = f13
sincos_rsq = f14
sincos_rcub = f15
sincos_save_tmp = f15
sincos_Inv_Pi_by_16 = f32
sincos_Pi_by_16_1 = f33
sincos_Pi_by_16_2 = f34
sincos_Inv_Pi_by_64 = f35
sincos_Pi_by_16_3 = f36
sincos_r_exact = f37
sincos_Sm = f38
sincos_Cm = f39
sincos_P1 = f40
sincos_Q1 = f41
sincos_P2 = f42
sincos_Q2 = f43
sincos_P3 = f44
sincos_Q3 = f45
sincos_P4 = f46
sincos_Q4 = f47
sincos_P_temp1 = f48
sincos_P_temp2 = f49
sincos_Q_temp1 = f50
sincos_Q_temp2 = f51
sincos_P = f52
sincos_Q = f53
sincos_srsq = f54
sincos_SIG_INV_PI_BY_16_2TO61 = f55
sincos_RSHF_2TO61 = f56
sincos_RSHF = f57
sincos_2TOM61 = f58
sincos_NFLOAT = f59
sincos_W_2TO61_RSH = f60
fp_tmp = f61
/////////////////////////////////////////////////////////////
sincos_GR_sig_inv_pi_by_16 = r14
sincos_GR_rshf_2to61 = r15
sincos_GR_rshf = r16
sincos_GR_exp_2tom61 = r17
sincos_GR_n = r18
sincos_GR_m = r19
sincos_GR_32m = r19
sincos_GR_all_ones = r19
sincos_AD_1 = r20
sincos_AD_2 = r21
sincos_exp_limit = r22
sincos_r_signexp = r23
sincos_r_17_ones = r24
sincos_r_sincos = r25
sincos_r_exp = r26
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
GR_SAVE_GP = r35
GR_SAVE_r_sincos = r36
RODATA
// Pi/16 parts
.align 16
LOCAL_OBJECT_START(double_sincos_pi)
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
LOCAL_OBJECT_END(double_sincos_pi)
// Coefficients for polynomials
LOCAL_OBJECT_START(double_sincos_pq_k4)
data8 0x3EC71C963717C63A // P4
data8 0x3EF9FFBA8F191AE6 // Q4
data8 0xBF2A01A00F4E11A8 // P3
data8 0xBF56C16C05AC77BF // Q3
data8 0x3F8111111110F167 // P2
data8 0x3FA555555554DD45 // Q2
data8 0xBFC5555555555555 // P1
data8 0xBFDFFFFFFFFFFFFC // Q1
LOCAL_OBJECT_END(double_sincos_pq_k4)
// Sincos table (S[m], C[m])
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0
data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0
//
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1
data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1
//
data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2
data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2
//
data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3
data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3
//
data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4
data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4
//
data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3
data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3
//
data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2
data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2
//
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1
//
data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0
data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0
//
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1
//
data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2
data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2
//
data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3
//
data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4
data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4
//
data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
//
data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
//
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
//
data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
//
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
//
data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
//
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
//
data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
//
data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
//
data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
//
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
//
data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
//
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
//
data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
//
data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
//
data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
//
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
//
data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
//
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
//
data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
.section .text
////////////////////////////////////////////////////////
// There are two entry points: sin and cos
// If from sin, p8 is true
// If from cos, p9 is true
GLOBAL_IEEE754_ENTRY(sin)
{ .mlx
getf.exp sincos_r_signexp = f8
movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
}
{ .mlx
addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
}
;;
{ .mfi
ld8 sincos_AD_1 = [sincos_AD_1]
fnorm.s0 sincos_NORM_f8 = f8 // Normalize argument
cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin
}
{ .mib
mov sincos_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
mov sincos_r_sincos = 0x0 // sincos_r_sincos = 0 for sin
br.cond.sptk _SINCOS_COMMON // go to common part
}
;;
GLOBAL_IEEE754_END(sin)
GLOBAL_IEEE754_ENTRY(cos)
{ .mlx
getf.exp sincos_r_signexp = f8
movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
}
{ .mlx
addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
}
;;
{ .mfi
ld8 sincos_AD_1 = [sincos_AD_1]
fnorm.s1 sincos_NORM_f8 = f8 // Normalize argument
cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos
}
{ .mib
mov sincos_GR_exp_2tom61 = 0xffff-61 // exp of scale 2^-61
mov sincos_r_sincos = 0x8 // sincos_r_sincos = 8 for cos
nop.b 999
}
;;
////////////////////////////////////////////////////////
// All entry points end up here.
// If from sin, sincos_r_sincos is 0 and p8 is true
// If from cos, sincos_r_sincos is 8 = 2^(k-1) and p9 is true
// We add sincos_r_sincos to N
///////////// Common sin and cos part //////////////////
_SINCOS_COMMON:
// Form two constants we need
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
{ .mfi
setf.sig sincos_SIG_INV_PI_BY_16_2TO61 = sincos_GR_sig_inv_pi_by_16
fclass.m p6,p0 = f8, 0xe7 // if x = 0,inf,nan
mov sincos_exp_limit = 0x1001a
}
{ .mlx
setf.d sincos_RSHF_2TO61 = sincos_GR_rshf_2to61
movl sincos_GR_rshf = 0x43e8000000000000 // 1.1 2^63
} // Right shift
;;
// Form another constant
// 2^-61 for scaling Nfloat
// 0x1001a is register_bias + 27.
// So if f8 >= 2^27, go to large argument routines
{ .mfi
alloc r32 = ar.pfs, 1, 4, 0, 0
fclass.m p11,p0 = f8, 0x0b // Test for x=unorm
mov sincos_GR_all_ones = -1 // For "inexect" constant create
}
{ .mib
setf.exp sincos_2TOM61 = sincos_GR_exp_2tom61
nop.i 999
(p6) br.cond.spnt _SINCOS_SPECIAL_ARGS
}
;;
// Load the two pieces of pi/16
// Form another constant
// 1.1000...000 * 2^63, the right shift constant
{ .mmb
ldfe sincos_Pi_by_16_1 = [sincos_AD_1],16
setf.d sincos_RSHF = sincos_GR_rshf
(p11) br.cond.spnt _SINCOS_UNORM // Branch if x=unorm
}
;;
_SINCOS_COMMON2:
// Return here if x=unorm
// Create constant used to set inexact
{ .mmi
ldfe sincos_Pi_by_16_2 = [sincos_AD_1],16
setf.sig fp_tmp = sincos_GR_all_ones
nop.i 999
};;
// Select exponent (17 lsb)
{ .mfi
ldfe sincos_Pi_by_16_3 = [sincos_AD_1],16
nop.f 999
dep.z sincos_r_exp = sincos_r_signexp, 0, 17
};;
// Polynomial coefficients (Q4, P4, Q3, P3, Q2, Q1, P2, P1) loading
// p10 is true if we must call routines to handle larger arguments
// p10 is true if f8 exp is >= 0x1001a (2^27)
{ .mmb
ldfpd sincos_P4,sincos_Q4 = [sincos_AD_1],16
cmp.ge p10,p0 = sincos_r_exp,sincos_exp_limit
(p10) br.cond.spnt _SINCOS_LARGE_ARGS // Go to "large args" routine
};;
// sincos_W = x * sincos_Inv_Pi_by_16
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
// rightmost bits of significand
{ .mfi
ldfpd sincos_P3,sincos_Q3 = [sincos_AD_1],16
fma.s1 sincos_W_2TO61_RSH = sincos_NORM_f8,sincos_SIG_INV_PI_BY_16_2TO61,sincos_RSHF_2TO61
nop.i 999
};;
// get N = (int)sincos_int_Nfloat
// sincos_NFLOAT = Round_Int_Nearest(sincos_W)
// This is done by scaling back by 2^-61 and subtracting the shift constant
{ .mmf
getf.sig sincos_GR_n = sincos_W_2TO61_RSH
ldfpd sincos_P2,sincos_Q2 = [sincos_AD_1],16
fms.s1 sincos_NFLOAT = sincos_W_2TO61_RSH,sincos_2TOM61,sincos_RSHF
};;
// sincos_r = -sincos_Nfloat * sincos_Pi_by_16_1 + x
{ .mfi
ldfpd sincos_P1,sincos_Q1 = [sincos_AD_1],16
fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_1, sincos_NORM_f8
nop.i 999
};;
// Add 2^(k-1) (which is in sincos_r_sincos) to N
{ .mmi
add sincos_GR_n = sincos_GR_n, sincos_r_sincos
;;
// Get M (least k+1 bits of N)
and sincos_GR_m = 0x1f,sincos_GR_n
nop.i 999
};;
// sincos_r = sincos_r -sincos_Nfloat * sincos_Pi_by_16_2
{ .mfi
nop.m 999
fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_2, sincos_r
shl sincos_GR_32m = sincos_GR_m,5
};;
// Add 32*M to address of sin_cos_beta table
// For sin denorm. - set uflow
{ .mfi
add sincos_AD_2 = sincos_GR_32m, sincos_AD_1
(p8) fclass.m.unc p10,p0 = f8,0x0b
nop.i 999
};;
// Load Sin and Cos table value using obtained index m (sincosf_AD_2)
{ .mfi
ldfe sincos_Sm = [sincos_AD_2],16
nop.f 999
nop.i 999
};;
// get rsq = r*r
{ .mfi
ldfe sincos_Cm = [sincos_AD_2]
fma.s1 sincos_rsq = sincos_r, sincos_r, f0 // r^2 = r*r
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s0 fp_tmp = fp_tmp,fp_tmp // forces inexact flag
nop.i 999
};;
// sincos_r_exact = sincos_r -sincos_Nfloat * sincos_Pi_by_16_3
{ .mfi
nop.m 999
fnma.s1 sincos_r_exact = sincos_NFLOAT, sincos_Pi_by_16_3, sincos_r
nop.i 999
};;
// Polynomials calculation
// P_1 = P4*r^2 + P3
// Q_2 = Q4*r^2 + Q3
{ .mfi
nop.m 999
fma.s1 sincos_P_temp1 = sincos_rsq, sincos_P4, sincos_P3
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincos_Q_temp1 = sincos_rsq, sincos_Q4, sincos_Q3
nop.i 999
};;
// get rcube = r^3 and S[m]*r^2
{ .mfi
nop.m 999
fmpy.s1 sincos_srsq = sincos_Sm,sincos_rsq
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 sincos_rcub = sincos_r_exact, sincos_rsq
nop.i 999
};;
// Polynomials calculation
// Q_2 = Q_1*r^2 + Q2
// P_1 = P_1*r^2 + P2
{ .mfi
nop.m 999
fma.s1 sincos_Q_temp2 = sincos_rsq, sincos_Q_temp1, sincos_Q2
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincos_P_temp2 = sincos_rsq, sincos_P_temp1, sincos_P2
nop.i 999
};;
// Polynomials calculation
// Q = Q_2*r^2 + Q1
// P = P_2*r^2 + P1
{ .mfi
nop.m 999
fma.s1 sincos_Q = sincos_rsq, sincos_Q_temp2, sincos_Q1
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincos_P = sincos_rsq, sincos_P_temp2, sincos_P1
nop.i 999
};;
// Get final P and Q
// Q = Q*S[m]*r^2 + S[m]
// P = P*r^3 + r
{ .mfi
nop.m 999
fma.s1 sincos_Q = sincos_srsq,sincos_Q, sincos_Sm
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincos_P = sincos_rcub,sincos_P, sincos_r_exact
nop.i 999
};;
// If sin(denormal), force underflow to be set
{ .mfi
nop.m 999
(p10) fmpy.d.s0 fp_tmp = sincos_NORM_f8,sincos_NORM_f8
nop.i 999
};;
// Final calculation
// result = C[m]*P + Q
{ .mfb
nop.m 999
fma.d.s0 f8 = sincos_Cm, sincos_P, sincos_Q
br.ret.sptk b0 // Exit for common path
};;
////////// x = 0/Inf/NaN path //////////////////
_SINCOS_SPECIAL_ARGS:
.pred.rel "mutex",p8,p9
// sin(+/-0) = +/-0
// sin(Inf) = NaN
// sin(NaN) = NaN
{ .mfi
nop.m 999
(p8) fma.d.s0 f8 = f8, f0, f0 // sin(+/-0,NaN,Inf)
nop.i 999
}
// cos(+/-0) = 1.0
// cos(Inf) = NaN
// cos(NaN) = NaN
{ .mfb
nop.m 999
(p9) fma.d.s0 f8 = f8, f0, f1 // cos(+/-0,NaN,Inf)
br.ret.sptk b0 // Exit for x = 0/Inf/NaN path
};;
_SINCOS_UNORM:
// Here if x=unorm
{ .mfb
getf.exp sincos_r_signexp = sincos_NORM_f8 // Get signexp of x
fcmp.eq.s0 p11,p0 = f8, f0 // Dummy op to set denorm flag
br.cond.sptk _SINCOS_COMMON2 // Return to main path
};;
GLOBAL_IEEE754_END(cos)
//////////// x >= 2^27 - large arguments routine call ////////////
LOCAL_LIBM_ENTRY(__libm_callout_sincos)
_SINCOS_LARGE_ARGS:
.prologue
{ .mfi
mov GR_SAVE_r_sincos = sincos_r_sincos // Save sin or cos
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS = ar.pfs
}
;;
{ .mfi
mov GR_SAVE_GP = gp
nop.f 999
.save b0, GR_SAVE_B0
mov GR_SAVE_B0 = b0
}
.body
{ .mbb
setf.sig sincos_save_tmp = sincos_GR_all_ones// inexact set
nop.b 999
(p8) br.call.sptk.many b0 = __libm_sin_large# // sin(large_X)
};;
{ .mbb
cmp.ne p9,p0 = GR_SAVE_r_sincos, r0 // set p9 if cos
nop.b 999
(p9) br.call.sptk.many b0 = __libm_cos_large# // cos(large_X)
};;
{ .mfi
mov gp = GR_SAVE_GP
fma.d.s0 f8 = f8, f1, f0 // Round result to double
mov b0 = GR_SAVE_B0
}
// Force inexact set
{ .mfi
nop.m 999
fmpy.s0 sincos_save_tmp = sincos_save_tmp, sincos_save_tmp
nop.i 999
};;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0 // Exit for large arguments routine call
};;
LOCAL_LIBM_END(__libm_callout_sincos)
.type __libm_sin_large#,@function
.global __libm_sin_large#
.type __libm_cos_large#,@function
.global __libm_cos_large#
|