1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
.file "tancot.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 12/27/00 Improved speed
// 02/21/01 Updated to call tanl
// 05/30/02 Added cot
// 02/10/03 Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
// double tan(double x);
// double cot(double x);
//
// Overview of operation
//==============================================================
// If the input value in radians is |x| >= 1.xxxxx 2^10 call the
// older slower version.
//
// The new algorithm is used when |x| <= 1.xxxxx 2^9.
//
// Represent the input X as Nfloat * pi/2 + r
// where r can be negative and |r| <= pi/4
//
// tan_W = x * 2/pi
// Nfloat = round_int(tan_W)
//
// tan_r = x - Nfloat * (pi/2)_hi
// a) tan_r = tan_r - Nfloat * (pi/2)_lo (for tan)
// b) tan_r = Nfloat * (pi/2)_lo - tan_r (for cot)
//
// We have two paths: p8, when Nfloat is even and p9. when Nfloat is odd.
// a) for tan: p8: tan(X) = tan(r)
// p9: tan(X) = -cot(r)
// b) for cot: p9: cot(X) = cot(r)
// p8: cot(X) = -tan(r)
//
// Each is evaluated as a series. The p9 path requires 1/r.
//
// The coefficients used in the series are stored in a table as
// are the pi constants.
//
// Registers used
//==============================================================
//
// predicate registers used:
// p6-12
//
// floating-point registers used:
// f10-15, f32-106
// f8, input
//
// general registers used
// r14-26, r32-39
//
// Assembly macros
//==============================================================
TAN_INV_PI_BY_2_2TO64 = f10
TAN_RSHF_2TO64 = f11
TAN_2TOM64 = f12
TAN_RSHF = f13
TAN_W_2TO64_RSH = f14
TAN_NFLOAT = f15
tan_Inv_Pi_by_2 = f32
tan_Pi_by_2_hi = f33
tan_Pi_by_2_lo = f34
tan_P0 = f35
tan_P1 = f36
tan_P2 = f37
tan_P3 = f38
tan_P4 = f39
tan_P5 = f40
tan_P6 = f41
tan_P7 = f42
tan_P8 = f43
tan_P9 = f44
tan_P10 = f45
tan_P11 = f46
tan_P12 = f47
tan_P13 = f48
tan_P14 = f49
tan_P15 = f50
tan_Q0 = f51
tan_Q1 = f52
tan_Q2 = f53
tan_Q3 = f54
tan_Q4 = f55
tan_Q5 = f56
tan_Q6 = f57
tan_Q7 = f58
tan_Q8 = f59
tan_Q9 = f60
tan_Q10 = f61
tan_r = f62
tan_rsq = f63
tan_rcube = f64
tan_v18 = f65
tan_v16 = f66
tan_v17 = f67
tan_v12 = f68
tan_v13 = f69
tan_v7 = f70
tan_v8 = f71
tan_v4 = f72
tan_v5 = f73
tan_v15 = f74
tan_v11 = f75
tan_v14 = f76
tan_v3 = f77
tan_v6 = f78
tan_v10 = f79
tan_v2 = f80
tan_v9 = f81
tan_v1 = f82
tan_int_Nfloat = f83
tan_Nfloat = f84
tan_NORM_f8 = f85
tan_W = f86
tan_y0 = f87
tan_d = f88
tan_y1 = f89
tan_dsq = f90
tan_y2 = f91
tan_d4 = f92
tan_inv_r = f93
tan_z1 = f94
tan_z2 = f95
tan_z3 = f96
tan_z4 = f97
tan_z5 = f98
tan_z6 = f99
tan_z7 = f100
tan_z8 = f101
tan_z9 = f102
tan_z10 = f103
tan_z11 = f104
tan_z12 = f105
arg_copy = f106
/////////////////////////////////////////////////////////////
tan_GR_sig_inv_pi_by_2 = r14
tan_GR_rshf_2to64 = r15
tan_GR_exp_2tom64 = r16
tan_GR_n = r17
tan_GR_rshf = r18
tan_AD = r19
tan_GR_10009 = r20
tan_GR_17_ones = r21
tan_GR_N_odd_even = r22
tan_GR_N = r23
tan_signexp = r24
tan_exp = r25
tan_ADQ = r26
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_Parameter_X = r36
GR_Parameter_Y = r37
GR_Parameter_RESULT = r38
GR_Parameter_Tag = r39
RODATA
.align 16
LOCAL_OBJECT_START(double_tan_constants)
data8 0xC90FDAA22168C234, 0x00003FFF // pi/2 hi
data8 0xBEEA54580DDEA0E1 // P14
data8 0x3ED3021ACE749A59 // P15
data8 0xBEF312BD91DC8DA1 // P12
data8 0x3EFAE9AFC14C5119 // P13
data8 0x3F2F342BF411E769 // P8
data8 0x3F1A60FC9F3B0227 // P9
data8 0x3EFF246E78E5E45B // P10
data8 0x3F01D9D2E782875C // P11
data8 0x3F8226E34C4499B6 // P4
data8 0x3F6D6D3F12C236AC // P5
data8 0x3F57DA1146DCFD8B // P6
data8 0x3F43576410FE3D75 // P7
data8 0x3FD5555555555555 // P0
data8 0x3FC11111111111C2 // P1
data8 0x3FABA1BA1BA0E850 // P2
data8 0x3F9664F4886725A7 // P3
LOCAL_OBJECT_END(double_tan_constants)
LOCAL_OBJECT_START(double_Q_tan_constants)
data8 0xC4C6628B80DC1CD1, 0x00003FBF // pi/2 lo
data8 0x3E223A73BA576E48 // Q8
data8 0x3DF54AD8D1F2CA43 // Q9
data8 0x3EF66A8EE529A6AA // Q4
data8 0x3EC2281050410EE6 // Q5
data8 0x3E8D6BB992CC3CF5 // Q6
data8 0x3E57F88DE34832E4 // Q7
data8 0x3FD5555555555555 // Q0
data8 0x3F96C16C16C16DB8 // Q1
data8 0x3F61566ABBFFB489 // Q2
data8 0x3F2BBD77945C1733 // Q3
data8 0x3D927FB33E2B0E04 // Q10
LOCAL_OBJECT_END(double_Q_tan_constants)
.section .text
////////////////////////////////////////////////////////
LOCAL_LIBM_ENTRY(cot)
// The initial fnorm will take any unmasked faults and
// normalize any single/double unorms
{ .mlx
cmp.eq p12, p11 = r0, r0 // set p12=1, p11=0 for cot
movl tan_GR_sig_inv_pi_by_2 = 0xA2F9836E4E44152A // significand of 2/pi
}
{ .mlx
addl tan_AD = @ltoff(double_tan_constants), gp
movl tan_GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+63+1)
}
;;
{ .mlx
mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64
movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
}
{ .mfb
ld8 tan_AD = [tan_AD]
fnorm.s0 tan_NORM_f8 = f8
br.cond.sptk COMMON_PATH
}
;;
LOCAL_LIBM_END(cot)
GLOBAL_IEEE754_ENTRY(tan)
// The initial fnorm will take any unmasked faults and
// normalize any single/double unorms
{ .mlx
cmp.eq p11, p12 = r0, r0 // set p11=1, p12=0 for tan
movl tan_GR_sig_inv_pi_by_2 = 0xA2F9836E4E44152A // significand of 2/pi
}
{ .mlx
addl tan_AD = @ltoff(double_tan_constants), gp
movl tan_GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+63+1)
}
;;
{ .mlx
mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64
movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
}
{ .mfi
ld8 tan_AD = [tan_AD]
fnorm.s0 tan_NORM_f8 = f8
nop.i 0
}
;;
// Common path for both tan and cot
COMMON_PATH:
// Form two constants we need
// 2/pi * 2^1 * 2^63, scaled by 2^64 since we just loaded the significand
// 1.1000...000 * 2^(63+63+1) to right shift int(W) into the significand
{ .mmi
setf.sig TAN_INV_PI_BY_2_2TO64 = tan_GR_sig_inv_pi_by_2
setf.d TAN_RSHF_2TO64 = tan_GR_rshf_2to64
mov tan_GR_17_ones = 0x1ffff ;;
}
// Form another constant
// 2^-64 for scaling Nfloat
// 1.1000...000 * 2^63, the right shift constant
{ .mmf
setf.exp TAN_2TOM64 = tan_GR_exp_2tom64
adds tan_ADQ = double_Q_tan_constants - double_tan_constants, tan_AD
(p11) fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0 (tan)
}
;;
// Form another constant
// 2^-64 for scaling Nfloat
// 1.1000...000 * 2^63, the right shift constant
{ .mmf
setf.d TAN_RSHF = tan_GR_rshf
ldfe tan_Pi_by_2_hi = [tan_AD],16
fclass.m.unc p7,p0 = f8, 0x23 // Test for x=inf
}
;;
{ .mfb
ldfe tan_Pi_by_2_lo = [tan_ADQ],16
fclass.m.unc p8,p0 = f8, 0xc3 // Test for x=nan
(p6) br.ret.spnt b0 ;; // Exit for x=0 (tan only)
}
{ .mfi
ldfpd tan_P14,tan_P15 = [tan_AD],16
(p7) frcpa.s0 f8,p9=f0,f0 // Set qnan indef if x=inf
mov tan_GR_10009 = 0x10009
}
{ .mib
ldfpd tan_Q8,tan_Q9 = [tan_ADQ],16
nop.i 999
(p7) br.ret.spnt b0 ;; // Exit for x=inf
}
{ .mfi
ldfpd tan_P12,tan_P13 = [tan_AD],16
(p12) fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0 (cot)
nop.i 999
}
{ .mfb
ldfpd tan_Q4,tan_Q5 = [tan_ADQ],16
(p8) fma.d.s0 f8=f8,f1,f8 // Set qnan if x=nan
(p8) br.ret.spnt b0 ;; // Exit for x=nan
}
{ .mmf
getf.exp tan_signexp = tan_NORM_f8
ldfpd tan_P8,tan_P9 = [tan_AD],16
fmerge.s arg_copy = f8, f8 ;; // Save input for error call
}
// Multiply x by scaled 2/pi and add large const to shift integer part of W to
// rightmost bits of significand
{ .mmf
alloc r32=ar.pfs,0,4,4,0
ldfpd tan_Q6,tan_Q7 = [tan_ADQ],16
fma.s1 TAN_W_2TO64_RSH = tan_NORM_f8,TAN_INV_PI_BY_2_2TO64,TAN_RSHF_2TO64
};;
{ .mmf
ldfpd tan_P10,tan_P11 = [tan_AD],16
and tan_exp = tan_GR_17_ones, tan_signexp
(p6) frcpa.s0 f8, p0 = f1, f8 ;; // cot(+-0) = +-Inf
}
// p7 is true if we must call DBX TAN
// p7 is true if f8 exp is > 0x10009 (which includes all ones
// NAN or inf)
{ .mmb
ldfpd tan_Q0,tan_Q1 = [tan_ADQ],16
cmp.ge.unc p7,p0 = tan_exp,tan_GR_10009
(p7) br.cond.spnt TAN_DBX ;;
}
{ .mmb
ldfpd tan_P4,tan_P5 = [tan_AD],16
(p6) mov GR_Parameter_Tag = 226 // (cot)
(p6) br.cond.spnt __libm_error_region ;; // call error support if cot(+-0)
}
{ .mmi
ldfpd tan_Q2,tan_Q3 = [tan_ADQ],16
nop.m 999
nop.i 999 ;;
}
// TAN_NFLOAT = Round_Int_Nearest(tan_W)
{ .mfi
ldfpd tan_P6,tan_P7 = [tan_AD],16
fms.s1 TAN_NFLOAT = TAN_W_2TO64_RSH,TAN_2TOM64,TAN_RSHF
nop.i 999 ;;
}
{ .mfi
ldfd tan_Q10 = [tan_ADQ]
nop.f 999
nop.i 999 ;;
}
{ .mfi
ldfpd tan_P0,tan_P1 = [tan_AD],16
nop.f 999
nop.i 999 ;;
}
{ .mmi
getf.sig tan_GR_n = TAN_W_2TO64_RSH
ldfpd tan_P2,tan_P3 = [tan_AD]
nop.i 999 ;;
}
// tan_r = -tan_Nfloat * tan_Pi_by_2_hi + x
{ .mfi
(p12) add tan_GR_n = 0x1, tan_GR_n // N = N + 1 (for cot)
fnma.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_hi, tan_NORM_f8
nop.i 999 ;;
}
// p8 ==> even
// p9 ==> odd
{ .mmi
and tan_GR_N_odd_even = 0x1, tan_GR_n ;;
nop.m 999
cmp.eq.unc p8,p9 = tan_GR_N_odd_even, r0 ;;
}
.pred.rel "mutex", p11, p12
// tan_r = tan_r -tan_Nfloat * tan_Pi_by_2_lo (tan)
{ .mfi
nop.m 999
(p11) fnma.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_lo, tan_r
nop.i 999
}
// tan_r = -(tan_r -tan_Nfloat * tan_Pi_by_2_lo) (cot)
{ .mfi
nop.m 999
(p12) fms.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_lo, tan_r
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 tan_rsq = tan_r, tan_r, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) frcpa.s1 tan_y0, p0 = f1,tan_r
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v18 = tan_rsq, tan_P15, tan_P14
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v4 = tan_rsq, tan_P1, tan_P0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v16 = tan_rsq, tan_P13, tan_P12
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v17 = tan_rsq, tan_rsq, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v12 = tan_rsq, tan_P9, tan_P8
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v13 = tan_rsq, tan_P11, tan_P10
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v7 = tan_rsq, tan_P5, tan_P4
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v8 = tan_rsq, tan_P7, tan_P6
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) fnma.s1 tan_d = tan_r, tan_y0, f1
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v5 = tan_rsq, tan_P3, tan_P2
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z11 = tan_rsq, tan_Q9, tan_Q8
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z12 = tan_rsq, tan_rsq, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v15 = tan_v17, tan_v18, tan_v16
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z7 = tan_rsq, tan_Q5, tan_Q4
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v11 = tan_v17, tan_v13, tan_v12
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z8 = tan_rsq, tan_Q7, tan_Q6
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v14 = tan_v17, tan_v17, f0
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z3 = tan_rsq, tan_Q1, tan_Q0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v3 = tan_v17, tan_v5, tan_v4
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v6 = tan_v17, tan_v8, tan_v7
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_y1 = tan_y0, tan_d, tan_y0
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_dsq = tan_d, tan_d, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z10 = tan_z12, tan_Q10, tan_z11
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z9 = tan_z12, tan_z12,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z4 = tan_rsq, tan_Q3, tan_Q2
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z6 = tan_z12, tan_z8, tan_z7
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v10 = tan_v14, tan_v15, tan_v11
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_y2 = tan_y1, tan_d, tan_y0
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_d4 = tan_dsq, tan_dsq, tan_d
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v2 = tan_v14, tan_v6, tan_v3
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v9 = tan_v14, tan_v14, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z2 = tan_z12, tan_z4, tan_z3
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z5 = tan_z9, tan_z10, tan_z6
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_inv_r = tan_d4, tan_y2, tan_y0
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_rcube = tan_rsq, tan_r, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.s1 tan_v1 = tan_v9, tan_v10, tan_v2
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 tan_z1 = tan_z9, tan_z5, tan_z2
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p8) fma.d.s0 f8 = tan_v1, tan_rcube, tan_r
nop.i 999
}
{ .mfb
nop.m 999
(p9) fms.d.s0 f8 = tan_r, tan_z1, tan_inv_r
br.ret.sptk b0 ;;
}
GLOBAL_IEEE754_END(tan)
LOCAL_LIBM_ENTRY(__libm_callout)
TAN_DBX:
.prologue
{ .mfi
nop.m 0
fmerge.s f9 = f0,f0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs
}
;;
{ .mfi
mov GR_SAVE_GP=gp
nop.f 0
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0
}
.body
{ .mmb
nop.m 999
nop.m 999
(p11) br.cond.sptk.many call_tanl ;;
}
// Here if we should call cotl
{ .mmb
nop.m 999
nop.m 999
br.call.sptk.many b0=__libm_cotl# ;;
}
{ .mfi
mov gp = GR_SAVE_GP
fnorm.d.s0 f8 = f8
mov b0 = GR_SAVE_B0
}
;;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0
;;
}
// Here if we should call tanl
call_tanl:
{ .mmb
nop.m 999
nop.m 999
br.call.sptk.many b0=__libm_tanl# ;;
}
{ .mfi
mov gp = GR_SAVE_GP
fnorm.d.s0 f8 = f8
mov b0 = GR_SAVE_B0
}
;;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0
;;
}
LOCAL_LIBM_END(__libm_callout)
.type __libm_tanl#,@function
.global __libm_tanl#
.type __libm_cotl#,@function
.global __libm_cotl#
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
// (2)
{ .mmi
stfd [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
// (3)
{ .mib
stfd [GR_Parameter_X] = arg_copy // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
// (4)
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|