1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
.file "tancotf.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 12/27/00 Improved speed
// 02/21/01 Updated to call tanl
// 05/30/02 Improved speed, added cotf.
// 11/25/02 Added explicit completer on fnorm
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 04/17/03 Eliminated redundant stop bits
// 03/31/05 Reformatted delimiters between data tables
//
// APIs
//==============================================================
// float tanf(float)
// float cotf(float)
//
// Algorithm Description for tanf
//==============================================================
// The tanf function computes the principle value of the tangent of x,
// where x is radian argument.
//
// There are 5 paths:
// 1. x = +/-0.0
// Return tanf(x) = +/-0.0
//
// 2. x = [S,Q]NaN
// Return tanf(x) = QNaN
//
// 3. x = +/-Inf
// Return tanf(x) = QNaN
//
// 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r|<Pi/4
// Return tanf(x) = P19(r) = A1*r + A3*r^3 + A5*r^5 + ... + A19*r^19 =
// = r*(A1 + A3*t + A5*t^2 + ... + A19*t^9) = r*P9(t), where t = r^2
//
// 5. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is odd, |r|<Pi/4
// Return tanf(x) = -1/r + P11(r) = -1/r + B1*r + B3*r^3 + ... + B11*r^11 =
// = -1/r + r*(B1 + B3*t + B5*t^2 + ... + B11*t^5) = -1/r + r*P11(t),
// where t = r^2
//
// Algorithm Description for cotf
//==============================================================
// The cotf function computes the principle value of the cotangent of x,
// where x is radian argument.
//
// There are 5 paths:
// 1. x = +/-0.0
// Return cotf(x) = +/-Inf and error handling is called
//
// 2. x = [S,Q]NaN
// Return cotf(x) = QNaN
//
// 3. x = +/-Inf
// Return cotf(x) = QNaN
//
// 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is odd, |r|<Pi/4
// Return cotf(x) = P19(-r) = A1*(-r) + A3*(-r^3) + ... + A19*(-r^19) =
// = -r*(A1 + A3*t + A5*t^2 + ... + A19*t^9) = -r*P9(t), where t = r^2
//
// 5. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r|<Pi/4
// Return cotf(x) = 1/r + P11(-r) = 1/r + B1*(-r) + ... + B11*(-r^11) =
// = 1/r - r*(B1 + B3*t + B5*t^2 + ... + B11*t^5) = 1/r - r*P11(t),
// where t = r^2
//
// We set p10 and clear p11 if computing tanf, vice versa for cotf.
//
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f32 -> f80
//
// General registers used:
// r14 -> r23, r32 -> r39
//
// Predicate registers used:
// p6 -> p13
//
// Assembly macros
//==============================================================
// integer registers
rExp = r14
rSignMask = r15
rRshf = r16
rScFctrExp = r17
rIntN = r18
rSigRcpPiby2 = r19
rScRshf = r20
rCoeffA = r21
rCoeffB = r22
rExpCut = r23
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_Parameter_X = r36
GR_Parameter_Y = r37
GR_Parameter_RESULT = r38
GR_Parameter_Tag = r39
//==============================================================
// floating point registers
fScRcpPiby2 = f32
fScRshf = f33
fNormArg = f34
fScFctr = f35
fRshf = f36
fShiftedN = f37
fN = f38
fR = f39
fA01 = f40
fA03 = f41
fA05 = f42
fA07 = f43
fA09 = f44
fA11 = f45
fA13 = f46
fA15 = f47
fA17 = f48
fA19 = f49
fB01 = f50
fB03 = f51
fB05 = f52
fB07 = f53
fB09 = f54
fB11 = f55
fA03_01 = f56
fA07_05 = f57
fA11_09 = f58
fA15_13 = f59
fA19_17 = f60
fA11_05 = f61
fA19_13 = f62
fA19_05 = f63
fRbyA03_01 = f64
fB03_01 = f65
fB07_05 = f66
fB11_09 = f67
fB11_05 = f68
fRbyB03_01 = f69
fRbyB11_01 = f70
fRp2 = f71
fRp4 = f72
fRp8 = f73
fRp5 = f74
fY0 = f75
fY1 = f76
fD = f77
fDp2 = f78
fInvR = f79
fPiby2 = f80
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(coeff_A)
data8 0x3FF0000000000000 // A1 = 1.00000000000000000000e+00
data8 0x3FD5555556BCE758 // A3 = 3.33333334641442641606e-01
data8 0x3FC111105C2DAE48 // A5 = 1.33333249100689099175e-01
data8 0x3FABA1F876341060 // A7 = 5.39701122561673229739e-02
data8 0x3F965FB86D12A38D // A9 = 2.18495194027670719750e-02
data8 0x3F8265F62415F9D6 // A11 = 8.98353860497717439465e-03
data8 0x3F69E3AE64CCF58D // A13 = 3.16032468108912746342e-03
data8 0x3F63920D09D0E6F6 // A15 = 2.38897844840557235331e-03
LOCAL_OBJECT_END(coeff_A)
LOCAL_OBJECT_START(coeff_B)
data8 0xC90FDAA22168C235, 0x3FFF // pi/2
data8 0x3FD55555555358DB // B1 = 3.33333333326107426583e-01
data8 0x3F96C16C252F643F // B3 = 2.22222230621336129239e-02
data8 0x3F61566243AB3C60 // B5 = 2.11638633968606896785e-03
data8 0x3F2BC1169BD4438B // B7 = 2.11748132564551094391e-04
data8 0x3EF611B4CEA056A1 // B9 = 2.10467959860990200942e-05
data8 0x3EC600F9E32194BF // B11 = 2.62305891234274186608e-06
data8 0xBF42BA7BCC177616 // A17 =-5.71546981685324877205e-04
data8 0x3F4F2614BC6D3BB8 // A19 = 9.50584530849832782542e-04
LOCAL_OBJECT_END(coeff_B)
.section .text
LOCAL_LIBM_ENTRY(cotf)
{ .mlx
getf.exp rExp = f8 // ***** Get 217 * s + E
movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi
}
{ .mlx
addl rCoeffA = @ltoff(coeff_A), gp
movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1)
}
;;
{ .mfi
alloc r32 = ar.pfs, 0, 4, 4, 0
fclass.m p9, p0 = f8, 0xc3 // Test for x=nan
cmp.eq p11, p10 = r0, r0 // if p11=1 we compute cotf
}
{ .mib
ld8 rCoeffA = [rCoeffA]
mov rExpCut = 0x10009 // cutoff for exponent
br.cond.sptk Common_Path
}
;;
LOCAL_LIBM_END(cotf)
GLOBAL_IEEE754_ENTRY(tanf)
{ .mlx
getf.exp rExp = f8 // ***** Get 217 * s + E
movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi
}
{ .mlx
addl rCoeffA = @ltoff(coeff_A), gp
movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1)
}
;;
{ .mfi
alloc r32 = ar.pfs, 0, 4, 4, 0
fclass.m p9, p0 = f8, 0xc3 // Test for x=nan
cmp.eq p10, p11 = r0, r0 // if p10=1 we compute tandf
}
{ .mib
ld8 rCoeffA = [rCoeffA]
mov rExpCut = 0x10009 // cutoff for exponent
nop.b 0
}
;;
// Below is common path for both tandf and cotdf
Common_Path:
{ .mfi
setf.sig fScRcpPiby2 = rSigRcpPiby2 // 2^(63+1)*(2/Pi)
fclass.m p8, p0 = f8, 0x23 // Test for x=inf
mov rSignMask = 0x1ffff // mask for sign bit
}
{ .mlx
setf.d fScRshf = rScRshf // 1.5*2^(63+63+1)
movl rRshf = 0x43e8000000000000 // 1.5 2^63 for right shift
}
;;
{ .mfi
and rSignMask = rSignMask, rExp // clear sign bit
(p10) fclass.m.unc p7, p0 = f8, 0x07 // Test for x=0 (for tanf)
mov rScFctrExp = 0xffff-64 // exp of scaling factor
}
{ .mfb
adds rCoeffB = coeff_B - coeff_A, rCoeffA
(p9) fma.s.s0 f8 = f8, f1, f8 // Set qnan if x=nan
(p9) br.ret.spnt b0 // Exit for x=nan
}
;;
{ .mfi
cmp.ge p6, p0 = rSignMask, rExpCut // p6 = (E => 0x10009)
(p8) frcpa.s0 f8, p0 = f0, f0 // Set qnan indef if x=inf
mov GR_Parameter_Tag = 227 // (cotf)
}
{ .mbb
ldfe fPiby2 = [rCoeffB], 16
(p8) br.ret.spnt b0 // Exit for x=inf
(p6) br.cond.spnt Huge_Argument // Branch if |x|>=2^10
}
;;
{ .mfi
nop.m 0
(p11) fclass.m.unc p6, p0 = f8, 0x07 // Test for x=0 (for cotf)
nop.i 0
}
{ .mfb
nop.m 0
fnorm.s0 fNormArg = f8
(p7) br.ret.spnt b0 // Exit for x=0 (for tanf)
}
;;
{ .mmf
ldfpd fA01, fA03 = [rCoeffA], 16
ldfpd fB01, fB03 = [rCoeffB], 16
fmerge.s f10 = f8, f8 // Save input for error call
}
;;
{ .mmf
setf.exp fScFctr = rScFctrExp // get as real
setf.d fRshf = rRshf // get right shifter as real
(p6) frcpa.s0 f8, p0 = f1, f8 // cotf(+-0) = +-Inf
}
;;
{ .mmb
ldfpd fA05, fA07 = [rCoeffA], 16
ldfpd fB05, fB07 = [rCoeffB], 16
(p6) br.cond.spnt __libm_error_region // call error support if cotf(+-0)
}
;;
{ .mmi
ldfpd fA09, fA11 = [rCoeffA], 16
ldfpd fB09, fB11 = [rCoeffB], 16
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fShiftedN = fNormArg,fScRcpPiby2,fScRshf // x*2^70*(2/Pi)+ScRshf
nop.i 0
}
;;
{ .mfi
nop.m 0
fms.s1 fN = fShiftedN, fScFctr, fRshf // N = Y*2^(-70) - Rshf
nop.i 0
}
;;
.pred.rel "mutex", p10, p11
{ .mfi
getf.sig rIntN = fShiftedN // get N as integer
(p10) fnma.s1 fR = fN, fPiby2, fNormArg // R = x - (Pi/2)*N (tanf)
nop.i 0
}
{ .mfi
nop.m 0
(p11) fms.s1 fR = fN, fPiby2, fNormArg // R = (Pi/2)*N - x (cotf)
nop.i 0
}
;;
{ .mmi
ldfpd fA13, fA15 = [rCoeffA], 16
ldfpd fA17, fA19 = [rCoeffB], 16
nop.i 0
}
;;
Return_From_Huges:
{ .mfi
nop.m 0
fma.s1 fRp2 = fR, fR, f0 // R^2
(p11) add rIntN = 0x1, rIntN // N = N + 1 (cotf)
}
;;
{ .mfi
nop.m 0
frcpa.s1 fY0, p0 = f1, fR // Y0 ~ 1/R
tbit.z p8, p9 = rIntN, 0 // p8=1 if N is even
}
;;
// Below are mixed polynomial calculations (mixed for even and odd N)
{ .mfi
nop.m 0
(p9) fma.s1 fB03_01 = fRp2, fB03, fB01 // R^2*B3 + B1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fRp4 = fRp2, fRp2, f0 // R^4
nop.i 0
}
;;
{ .mfi
nop.m 0
(p8) fma.s1 fA15_13 = fRp2, fA15, fA13 // R^2*A15 + A13
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fA19_17 = fRp2, fA19, fA17 // R^2*A19 + A17
nop.i 0
}
;;
{ .mfi
nop.m 0
(p8) fma.s1 fA07_05 = fRp2, fA07, fA05 // R^2*A7 + A5
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fA11_09 = fRp2, fA11, fA09 // R^2*A11 + A9
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fma.s1 fB07_05 = fRp2, fB07, fB05 // R^2*B7 + B5
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 fB11_09 = fRp2, fB11, fB09 // R^2*B11 + B9
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fnma.s1 fD = fR, fY0, f1 // D = 1 - R*Y0
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fA03_01 = fRp2, fA03, fA01 // R^2*A3 + A1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fRp8 = fRp4, fRp4, f0 // R^8
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fRp5 = fR, fRp4, f0 // R^5
nop.i 0
}
;;
{ .mfi
nop.m 0
(p8) fma.s1 fA11_05 = fRp4, fA11_09, fA07_05 // R^4*(R^2*A11 + A9) + ...
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fA19_13 = fRp4, fA19_17, fA15_13 // R^4*(R^2*A19 + A17) + ..
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fma.s1 fB11_05 = fRp4, fB11_09, fB07_05 // R^4*(R^2*B11 + B9) + ...
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 fRbyB03_01 = fR, fB03_01, f0 // R*(R^2*B3 + B1)
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fma.s1 fY1 = fY0, fD, fY0 // Y1 = Y0*D + Y0
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 fDp2 = fD, fD, f0 // D^2
nop.i 0
}
;;
{ .mfi
nop.m 0
// R^8*(R^6*A19 + R^4*A17 + R^2*A15 + A13) + R^6*A11 + R^4*A9 + R^2*A7 + A5
(p8) fma.d.s1 fA19_05 = fRp8, fA19_13, fA11_05
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.d.s1 fRbyA03_01 = fR, fA03_01, f0 // R*(R^2*A3 + A1)
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fma.d.s1 fInvR = fY1, fDp2, fY1 // 1/R = Y1*D^2 + Y1
nop.i 0
}
{ .mfi
nop.m 0
// R^5*(R^6*B11 + R^4*B9 + R^2*B7 + B5) + R^3*B3 + R*B1
(p9) fma.d.s1 fRbyB11_01 = fRp5, fB11_05, fRbyB03_01
nop.i 0
}
;;
.pred.rel "mutex", p8, p9
{ .mfi
nop.m 0
// Result = R^5*(R^14*A19 + R^12*A17 + R^10*A15 + ...) + R^3*A3 + R*A1
(p8) fma.s.s0 f8 = fRp5, fA19_05, fRbyA03_01
nop.i 0
}
{ .mfb
nop.m 0
// Result = -1/R + R^11*B11 + R^9*B9 + R^7*B7 + R^5*B5 + R^3*B3 + R*B1
(p9) fnma.s.s0 f8 = f1, fInvR, fRbyB11_01
br.ret.sptk b0 // exit for main path
}
;;
GLOBAL_IEEE754_END(tanf)
LOCAL_LIBM_ENTRY(__libm_callout)
Huge_Argument:
.prologue
{ .mfi
nop.m 0
fmerge.s f9 = f0,f0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs
}
;;
{ .mfi
mov GR_SAVE_GP=gp
nop.f 0
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0
}
.body
{ .mmb
nop.m 999
nop.m 999
(p10) br.cond.sptk.many call_tanl ;;
}
// Here if we should call cotl (p10=0, p11=1)
{ .mmb
nop.m 999
nop.m 999
br.call.sptk.many b0=__libm_cotl# ;;
}
{ .mfi
mov gp = GR_SAVE_GP
fnorm.s.s0 f8 = f8
mov b0 = GR_SAVE_B0
}
;;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0
;;
}
// Here if we should call tanl (p10=1, p11=0)
call_tanl:
{ .mmb
nop.m 999
nop.m 999
br.call.sptk.many b0=__libm_tanl# ;;
}
{ .mfi
mov gp = GR_SAVE_GP
fnorm.s.s0 f8 = f8
mov b0 = GR_SAVE_B0
}
;;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0
;;
}
LOCAL_LIBM_END(__libm_callout)
.type __libm_tanl#,@function
.global __libm_tanl#
.type __libm_cotl#,@function
.global __libm_cotl#
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
// (2)
{ .mmi
stfs [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
// (3)
{ .mib
stfs [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
// (4)
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|