1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
.file "tanhf.s"
// Copyright (c) 2001 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2001 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 05/30/01 Initial version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 03/31/05 Reformatted delimiters between data tables
//
// API
//==============================================================
// float tanhf(float)
//
// Overview of operation
//==============================================================
// Background
//
//
// There are 9 paths:
// 1. x = +/-0.0
// Return tanhf(x) = +/-0.0
//
// 2. 0.0 < |x| < 0.3125
// Return tanhf(x) = x + x^3*Pol3(x^2),
// where Pol3(x^2) = C3*x^6 + C2*x^4 + C1*x^2 + C0
//
// 3. 0.3125 <= |x| < 8.0
// Return tanhf(x) = sign(x)*PolD(x)*PolC(|x|) + sign(x)*PolA(|x|),
// where sign(x)*PolD(x) = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4),
// PolC(|x|) = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0,
// PolA(|x|) = A3|x|^3 + A2*x^2 + A1*|x| + A0
//
// Actually range 0.3125<=|x|< 8.0 is split to 5 subranges.
// For each subrange there is particular set of coefficients.
// Below is the list of subranges:
// 3.1 0.3125 <= |x| < 0.5
// 3.2 0.5 <= |x| < 1.0
// 3.3 1.0 <= |x| < 2.0
// 3.4 2.0 <= |x| < 4.0
// 3.5 4.0 <= |x| < 8.0
//
// 4. 8.0 <= |x| < 9.125
// Return tanhf(x) = sign(x)*(A3|x|^3 + A2*x^2 + A1*|x| + A0)
//
// 5. 9.125 <= |x| < +INF
// Return tanhf(x) = sign(x)*(1.0d - 2^(-52))
//
// 6. |x| = INF
// Return tanhf(x) = sign(x) * 1.0
//
// 7. x = [S,Q]NaN
// Return tanhf(x) = QNaN
//
// 8. x is positive denormal
// Return tanhf(x) = x - x^2
//
// 9. x is negative denormal
// Return tanhf(x) = x + x^2
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f32 -> f59
// General registers used:
// r32 -> r46, r2, r3
// Predicate registers used:
// p0, p6 -> p15
// p6 to filter out case when x = [Q,S]NaN or +/-0
// p7 to filter out case when x = denormal
// p8 set if |x| >= 0.3125, used also to process denormal input
// p9 to filter out case when |x| = inf
// p10 to filter out case when |x| < 0.3125
// p11 to filter out case when 0.3125 <= |x| < 9.125
// p12 to filter out case when |x| >= 9.125
// p13 to filter out case when 8.0 <= |x| < 9.125
// p14 set to 1 for positive x
// p15 set to 1 for negative x
// Assembly macros
//==============================================================
rDataPtr = r2
rDataPtr1 = r3
rBias = r33
rCoeffAddr3 = r34
rNearSaturation = r35
rCoeffAddr1 = r36
rCoeffAddr2 = r37
rOffset2 = r38
rBias2 = r39
rMask = r40
rArg = r41
rBound = r42
rSignBit = r43
rAbsArg = r44
rDataPtr2 = r45
rSaturation = r46
//==============================================================
fA0 = f32
fA1 = f33
fA2 = f34
fA3 = f35
fC0 = f36
fC1 = f37
fC2 = f38
fC3 = f39
fD0 = f40
fD1 = f41
fD2 = f42
fB0 = f43
fArgSqr = f44
fAbsArg = f45
fSignumX = f46
fArg4 = f47
fArg4Sgn = f48
fArg3 = f49
fArg3Sgn = f50
fArg7Sgn = f51
fArg6Sgn = f52
fPolC = f53
fPolCTmp = f54
fPolA = f55
fPolATmp = f56
fPolD = f57
fPolDTmp = f58
fArgSqrSgn = f59
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(tanhf_data)
// Polynomial coefficients for the tanh(x), 0.3125 <= |x| < 0.5
data8 0x3F9BEEDFDD177D7B // C0
data8 0x3F970D10C7F32458 // C1
data8 0x3F766D6B051F3A38 // C2
data8 0xBF732F2001B23402 // C3
data8 0xBF854BE1CE1ED499 // D0
data8 0x4013C944F3999A16 // D1
data8 0xC01106C6975222C0 // D2
data8 0x3F783D5ACCF9EBE8 // B0
// Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0
data8 0xBF5D631440786869 // C0
data8 0xBF575D79A0D52069 // C1
data8 0xBF7E2237B7EFC705 // C2
data8 0x3F6A7ACBC273041F // C3
data8 0xC040E32EA52D91EB // D0
data8 0x403D19463E5DB4D7 // D1
data8 0xC02216F61F759F39 // D2
data8 0xBF55B4EA0B844BE7 // B0
// Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0
data8 0x3F8637DBE5B3E690 // C0
data8 0xBF7F7FEC158C07F5 // C1
data8 0x3F711C586706838A // C2
data8 0xBF50EF7EF605554E // C3
data8 0xC054D45448354E25 // D0
data8 0x404ADFEEA282E730 // D1
data8 0xC028AEE456D59549 // D2
data8 0x3F25232D1BED59A8 // B0
// Polynomial coefficients for the tanh(x), 2.0 <= |x| < 4.0
data8 0xBF52602285F2D06C // C0
data8 0x3F2E57C298FFE1E0 // C1
data8 0xBF15ED575DB3C811 // C2
data8 0x3EE428878A08525C // C3
data8 0xC0895A26849039C1 // D0
data8 0x406E3C60BBFBB575 // D1
data8 0xC03A06F62867C75A // D2
data8 0xBEB114C70F1C723E // B0
// Polynomial coefficients for the tanh(x), 4.0 <= |x| < 8.0
data8 0x3EF4B22BD17039A3 // C0
data8 0xBEB704ADC040C57F // C1
data8 0x3E937A98288AFE1A // C2
data8 0xBE4F33B2C9FFE7E7 // C3
data8 0xC0BE48CFADE2431E // D0
data8 0x4090E74249760FDD // D1
data8 0xC04B6F537FCF2F1E // D2
data8 0x3E0DCD879C91ADEA // B0
// Polynomial coefficients for the tanh(x), -0.3125 < x < 0.3125
data8 0xBFD555551E8245B7 // A0
data8 0x3FC110E63F52E689 // A1
data8 0xBFAB8CD6A5B7BAFA // A2
data8 0x3F945D467FCEB553 // A3
// Polynomial coefficients for the tanh(x), 0.3125 <= |x| < 0.5
data8 0xBE3DCC92FCAECBB6 // A0
data8 0x3FF0000043B7D267 // A1
data8 0xBED18BF28ACFC4B1 // A2
data8 0xBFD554A56F82837E // A3
// Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0
data8 0x3EFD6054758539F9 // A0
data8 0x3FEFFBFC77198EBE // A1
data8 0x3F700327CA98D237 // A2
data8 0xBFD68955F5BB2FA1 // A3
// Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0
data8 0xBF71A53F229DF01B // A0
data8 0x3FF0AECFD730DE50 // A1
data8 0xBFC882F88E5DF3BA // A2
data8 0x3FC6EDF212CA2A8D // A3
// Polynomial coefficients for the tanh(x), 2.0 <= |x| < 4.0
data8 0xBFAF0B712E9EDA47 // A0
data8 0x3FF1C208080BEA64 // A1
data8 0x3FC3D29B20C8946E // A2
data8 0xBFF04514ED900A6A // A3
// Polynomial coefficients for the tanh(x), 4.0 <= |x| < 8.0
data8 0xBFB1DEA49A831CBC // A0
data8 0x3FFA729FC7085674 // A1
data8 0xBFF2F44D923A8FA4 // A2
data8 0x3FE092FC5712227E // A3
// Polynomial coefficients for the tanh(x), 8.0 <= |x| <= 9.125
data8 0x3FEFFF5769EE3041 // A0
data8 0x3EFBBF148D850891 // A1
data8 0xBEC86BCEF0F5C2FE // A2
data8 0x3E7CBA4F3A885A5C // A3
//
data8 0x3FEFFFFFFFFFFFFF // 1.0 - epsilon
LOCAL_OBJECT_END(tanhf_data)
.section .text
GLOBAL_LIBM_ENTRY(tanhf)
{ .mfi
alloc r32 = ar.pfs, 1, 14, 0, 0
fmerge.s fAbsArg = f1, f8 // |x|
addl rMask = 0x806, r0
}
{ .mfi
addl rDataPtr = @ltoff(tanhf_data), gp
fma.s1 fArgSqr = f8, f8, f0 // x^2
adds rSignBit = 0x1, r0
}
;;
{ .mfi
getf.s rArg = f8 // x in GR
fclass.m p7,p0 = f8, 0x0b // is x denormal ?
// sign bit and 2 most bits in significand
shl rMask = rMask, 20
}
{ .mfi
ld8 rDataPtr = [rDataPtr]
nop.f 0
adds rBias2 = 0x1F4, r0
}
;;
{ .mfi
adds rNearSaturation = 0x14, r0
fmerge.s fSignumX = f8, f1 // signum(x)
shl rSignBit = rSignBit, 31 // mask for sign bit
}
{ .mfi
adds rBound = 0x3EA, r0
nop.f 0
addl rSaturation = 0x4112, r0
}
;;
{ .mfi
andcm rOffset2 = rArg, rMask
fclass.m p6,p0 = f8, 0xc7 // is x [S,Q]NaN or +/-0 ?
shl rBound = rBound, 20 // 1.0f in GR
}
{ .mfb
andcm rAbsArg = rArg, rSignBit // |x| in GR
nop.f 0
(p7) br.cond.spnt tanhf_denormal // branch out if x is denormal
}
;;
{ .mfi
adds rCoeffAddr2 = 352, rDataPtr
fclass.m p9,p0 = f8, 0x23 // is x +/- inf?
shr rOffset2 = rOffset2, 21
}
{ .mfi
cmp.lt p10, p8 = rAbsArg, rBound // |x| < 0.3125?
nop.f 0
adds rCoeffAddr3 = 16, rDataPtr
}
;;
{ .mfi
(p8) sub rBias = rOffset2, rBias2
fma.s1 fArg4 = fArgSqr, fArgSqr, f0 // x^4
shl rSaturation = rSaturation, 16
}
{ .mfb
(p10) adds rBias = 0x14, r0
(p6) fma.s.s0 f8 = f8,f1,f8 // NaN or +/-0
(p6) br.ret.spnt b0 // exit for x = NaN or +/-0
}
;;
{ .mfi
shladd rCoeffAddr1 = rBias, 4, rDataPtr
fma.s1 fArg3Sgn = fArgSqr, f8, f0 // sign(x)*|x|^3
// is |x| < 9.125?
cmp.lt p11, p12 = rAbsArg, rSaturation
}
{ .mfi
shladd rCoeffAddr3 = rBias, 4, rCoeffAddr3
fma.s1 fArg3 = fArgSqr, fAbsArg, f0 // |x|^3
shladd rCoeffAddr2 = rBias, 3, rCoeffAddr2
}
;;
{ .mfi
(p11) ldfpd fC0, fC1 = [rCoeffAddr1]
(p9) fmerge.s f8 = f8,f1 // +/- inf
(p12) adds rDataPtr = 544, rDataPtr
}
{ .mfb
(p11) ldfpd fC2, fC3 = [rCoeffAddr3], 16
nop.f 0
(p9) br.ret.spnt b0 // exit for x = +/- inf
}
;;
{ .mfi
(p11) ldfpd fA0, fA1 = [rCoeffAddr2], 16
nop.f 0
(p8) cmp.eq.unc p13, p0 = rBias, rNearSaturation
}
{ .mfi
add rCoeffAddr1 = 48, rCoeffAddr1
nop.f 0
nop.i 0
}
;;
{ .mfi
(p11) ldfpd fD0, fD1 = [rCoeffAddr3]
nop.f 0
nop.i 0
}
{ .mfb
(p11) ldfpd fD2, fB0 = [rCoeffAddr1]
// sign(x)*|x|^2
fma.s1 fArgSqrSgn = fArgSqr, fSignumX, f0
(p10) br.cond.spnt tanhf_near_zero
}
;;
{ .mfi
(p11) ldfpd fA2, fA3 = [rCoeffAddr2], 16
fcmp.lt.s1 p15, p14 = f8,f0
nop.i 0
}
{ .mfb
(p12) ldfd fA0 = [rDataPtr]
fma.s1 fArg4Sgn = fArg4, fSignumX, f0 // sign(x)*|x|^4
(p12) br.cond.spnt tanhf_saturation
}
;;
{ .mfi
nop.m 0
fma.s1 fArg7Sgn = fArg4, fArg3Sgn, f0 // sign(x)*|x|^7
nop.i 0
}
{ .mfb
nop.m 0
fma.s1 fArg6Sgn = fArg3, fArg3Sgn, f0 // sign(x)*|x|^6
(p13) br.cond.spnt tanhf_close_to_saturation
}
;;
{ .mfi
nop.m 0
fma.s1 fPolC = fC3, fAbsArg, fC2 // C3*|x| + C2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fPolCTmp = fC1, fAbsArg, fC0 // C1*|x| + C0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolA = fA1, fAbsArg, fA0 // A1*|x| + A0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fPolD = fD1, fAbsArg, fD0 // D1*|x| + D0
nop.i 0
}
{ .mfi
nop.m 0
// sign(x)*(|x|^7 + D2*x^6)
fma.s1 fPolDTmp = fArg6Sgn, fD2, fArg7Sgn
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolATmp = fA3, fAbsArg, fA2 // A3*|x| + A2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB0 = fB0, fArg4, f0 // B0*x^4
nop.i 0
};;
{ .mfi
nop.m 0
// C3*|x|^3 + C2*x^2 + C1*|x| + C0
fma.s1 fPolC = fPolC, fArgSqr, fPolCTmp
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolD = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4)
fma.d.s1 fPolD = fPolD, fArg4Sgn, fPolDTmp
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolA = A3|x|^3 + A2*x^2 + A1*|x| + A0
fma.d.s1 fPolA = fPolATmp, fArgSqr, fPolA
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolC = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0
fma.d.s1 fPolC = fPolC, f1, fB0
nop.i 0
}
;;
{ .mfi
nop.m 0
(p14) fma.s.s0 f8 = fPolC, fPolD, fPolA // for positive x
nop.i 0
}
{ .mfb
nop.m 0
(p15) fms.s.s0 f8 = fPolC, fPolD, fPolA // for negative x
br.ret.sptk b0 // Exit for 0.3125 <=|x|< 8.0
};;
// Here if |x| < 0.3125
tanhf_near_zero:
{ .mfi
nop.m 0
fma.s1 fPolC = fC3, fArgSqr, fC2 // C3*x^2 + C2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fPolCTmp = fC1, fArgSqr, fC0 // C1*x^2 + C0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolC = fPolC, fArg4, fPolCTmp // C3*x^6 + C2*x^4 + C1*x^2 + C0
nop.i 0
};;
{ .mfb
nop.m 0
// x + x^3*(C3*x^6 + C2*x^4 + C1*x^2 + C0)
fma.s.s0 f8 = fPolC, fArg3Sgn, f8
br.ret.sptk b0 // Exit for |x| < 0.3125
};;
// Here if 9.125 <= |x| < +inf
tanhf_saturation:
{ .mfb
nop.m 0
fma.s.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0d - 2^(-52))
// Exit for 9.125 <= |x| < +inf
br.ret.sptk b0 // Exit for 9.125 <=|x|< +inf
}
;;
// Here if 8.0 <= |x| < 9.125
tanhf_close_to_saturation:
{ .mfi
nop.m 0
fma.s1 fPolATmp = fA1, fAbsArg, fA0 // A1*|x| + A0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fPolA = fA3, fAbsArg, fA2 // A3*|x| + A2
nop.i 0
}
;;
.pred.rel "mutex", p14, p15
{ .mfi
nop.m 0
// for positive x
(p14) fma.s.s0 f8 = fPolA, fArgSqr, fPolATmp
nop.i 0
}
{ .mfb
nop.m 0
// for negative x
(p15) fms.s.s0 f8 = fPolA, fArgSqrSgn, fPolATmp
br.ret.sptk b0 // Exit for 8.0 <=|x|< 9.125
};;
// Here if x is single precision denormal
tanhf_denormal:
{ .mfi
nop.m 0
fclass.m p7,p8 = f8, 0x0a // is x -denormal ?
nop.i 0
}
;;
{ .mfi
nop.m 0
(p7) fma.s.s0 f8 = f8,f8,f8 // -denormal
nop.i 0
}
{ .mfb
nop.m 0
(p8) fnma.s.s0 f8 = f8,f8,f8 // +denormal
br.ret.sptk b0 // Exit for denormal
}
;;
GLOBAL_LIBM_END(tanhf)
|