1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/* e_hypotl.c -- long double version of e_hypot.c.
* Conversion to long double by Ulrich Drepper,
* Cygnus Support, drepper@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_hypotl(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
* y1= y with lower 32 bits chopped, y2 = y-y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include <math.h>
#include <math_private.h>
long double __ieee754_hypotl(long double x, long double y)
{
long double a,b,t1,t2,y1,y2,w;
u_int32_t j,k,ea,eb;
GET_LDOUBLE_EXP(ea,x);
ea &= 0x7fff;
GET_LDOUBLE_EXP(eb,y);
eb &= 0x7fff;
if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;}
SET_LDOUBLE_EXP(a,ea); /* a <- |a| */
SET_LDOUBLE_EXP(b,eb); /* b <- |b| */
if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */
k=0;
if(__builtin_expect(ea > 0x5f3f,0)) { /* a>2**8000 */
if(ea == 0x7fff) { /* Inf or NaN */
u_int32_t exp __attribute__ ((unused));
u_int32_t high,low;
w = a+b; /* for sNaN */
GET_LDOUBLE_WORDS(exp,high,low,a);
if(((high&0x7fffffff)|low)==0) w = a;
GET_LDOUBLE_WORDS(exp,high,low,b);
if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b;
return w;
}
/* scale a and b by 2**-9600 */
ea -= 0x2580; eb -= 0x2580; k += 9600;
SET_LDOUBLE_EXP(a,ea);
SET_LDOUBLE_EXP(b,eb);
}
if(__builtin_expect(eb < 0x20bf, 0)) { /* b < 2**-8000 */
if(eb == 0) { /* subnormal b or 0 */
u_int32_t exp __attribute__ ((unused));
u_int32_t high,low;
GET_LDOUBLE_WORDS(exp,high,low,b);
if((high|low)==0) return a;
SET_LDOUBLE_WORDS(t1, 0x7ffd, 0x80000000, 0); /* t1=2^16382 */
b *= t1;
a *= t1;
k -= 16382;
GET_LDOUBLE_EXP (ea, a);
GET_LDOUBLE_EXP (eb, b);
if (eb > ea)
{
t1 = a;
a = b;
b = t1;
j = ea;
ea = eb;
eb = j;
}
} else { /* scale a and b by 2^9600 */
ea += 0x2580; /* a *= 2^9600 */
eb += 0x2580; /* b *= 2^9600 */
k -= 9600;
SET_LDOUBLE_EXP(a,ea);
SET_LDOUBLE_EXP(b,eb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
u_int32_t high;
GET_LDOUBLE_MSW(high,a);
SET_LDOUBLE_WORDS(t1,ea,high,0);
t2 = a-t1;
w = __ieee754_sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
u_int32_t high;
GET_LDOUBLE_MSW(high,b);
a = a+a;
SET_LDOUBLE_WORDS(y1,eb,high,0);
y2 = b - y1;
GET_LDOUBLE_MSW(high,a);
SET_LDOUBLE_WORDS(t1,ea+1,high,0);
t2 = a - t1;
w = __ieee754_sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
u_int32_t exp;
t1 = 1.0;
GET_LDOUBLE_EXP(exp,t1);
SET_LDOUBLE_EXP(t1,exp+k);
w *= t1;
math_check_force_underflow_nonneg (w);
return w;
} else return w;
}
strong_alias (__ieee754_hypotl, __hypotl_finite)
|