1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2016 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Define __mul and __sqr and use the rest from generic code. */
#define NO__MUL
#define NO__SQR
#include <sysdeps/ieee754/dbl-64/mpa.c>
/* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X
and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P
digits. In case P > 3 the error is bounded by 1.001 ULP. */
void
__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
long i, i1, i2, j, k, k2;
long p2 = p;
double u, zk, zk2;
/* Is z=0? */
if (__glibc_unlikely (X[0] * Y[0] == 0))
{
Z[0] = 0;
return;
}
/* Multiply, add and carry */
k2 = (p2 < 3) ? p2 + p2 : p2 + 3;
zk = Z[k2] = 0;
for (k = k2; k > 1;)
{
if (k > p2)
{
i1 = k - p2;
i2 = p2 + 1;
}
else
{
i1 = 1;
i2 = k;
}
#if 1
/* Rearrange this inner loop to allow the fmadd instructions to be
independent and execute in parallel on processors that have
dual symmetrical FP pipelines. */
if (i1 < (i2 - 1))
{
/* Make sure we have at least 2 iterations. */
if (((i2 - i1) & 1L) == 1L)
{
/* Handle the odd iterations case. */
zk2 = x->d[i2 - 1] * y->d[i1];
}
else
zk2 = 0.0;
/* Do two multiply/adds per loop iteration, using independent
accumulators; zk and zk2. */
for (i = i1, j = i2 - 1; i < i2 - 1; i += 2, j -= 2)
{
zk += x->d[i] * y->d[j];
zk2 += x->d[i + 1] * y->d[j - 1];
}
zk += zk2; /* Final sum. */
}
else
{
/* Special case when iterations is 1. */
zk += x->d[i1] * y->d[i1];
}
#else
/* The original code. */
for (i = i1, j = i2 - 1; i < i2; i++, j--)
zk += X[i] * Y[j];
#endif
u = (zk + CUTTER) - CUTTER;
if (u > zk)
u -= RADIX;
Z[k] = zk - u;
zk = u * RADIXI;
--k;
}
Z[k] = zk;
int e = EX + EY;
/* Is there a carry beyond the most significant digit? */
if (Z[1] == 0)
{
for (i = 1; i <= p2; i++)
Z[i] = Z[i + 1];
e--;
}
EZ = e;
Z[0] = X[0] * Y[0];
}
/* Square *X and store result in *Y. X and Y may not overlap. For P in
[1, 2, 3], the exact result is truncated to P digits. In case P > 3 the
error is bounded by 1.001 ULP. This is a faster special case of
multiplication. */
void
__sqr (const mp_no *x, mp_no *y, int p)
{
long i, j, k, ip;
double u, yk;
/* Is z=0? */
if (__glibc_unlikely (X[0] == 0))
{
Y[0] = 0;
return;
}
/* We need not iterate through all X's since it's pointless to
multiply zeroes. */
for (ip = p; ip > 0; ip--)
if (X[ip] != 0)
break;
k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
while (k > 2 * ip + 1)
Y[k--] = 0;
yk = 0;
while (k > p)
{
double yk2 = 0.0;
long lim = k / 2;
if (k % 2 == 0)
{
yk += X[lim] * X[lim];
lim--;
}
/* In __mul, this loop (and the one within the next while loop) run
between a range to calculate the mantissa as follows:
Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
+ X[n] * Y[k]
For X == Y, we can get away with summing halfway and doubling the
result. For cases where the range size is even, the mid-point needs
to be added separately (above). */
for (i = k - p, j = p; i <= lim; i++, j--)
yk2 += X[i] * X[j];
yk += 2.0 * yk2;
u = (yk + CUTTER) - CUTTER;
if (u > yk)
u -= RADIX;
Y[k--] = yk - u;
yk = u * RADIXI;
}
while (k > 1)
{
double yk2 = 0.0;
long lim = k / 2;
if (k % 2 == 0)
{
yk += X[lim] * X[lim];
lim--;
}
/* Likewise for this loop. */
for (i = 1, j = k - 1; i <= lim; i++, j--)
yk2 += X[i] * X[j];
yk += 2.0 * yk2;
u = (yk + CUTTER) - CUTTER;
if (u > yk)
u -= RADIX;
Y[k--] = yk - u;
yk = u * RADIXI;
}
Y[k] = yk;
/* Squares are always positive. */
Y[0] = 1.0;
int e = EX * 2;
/* Is there a carry beyond the most significant digit? */
if (__glibc_unlikely (Y[1] == 0))
{
for (i = 1; i <= p; i++)
Y[i] = Y[i + 1];
e--;
}
EY = e;
}
|