1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/* From the Intel IA-64 Optimization Guide, choose the minimum latency
alternative. */
#include <sysdep.h>
#undef ret
#include <shlib-compat.h>
#if SHLIB_COMPAT(libc, GLIBC_2_2, GLIBC_2_2_6)
/* __divtf3
Compute a 80-bit IEEE double-extended quotient.
farg0 holds the dividend. farg1 holds the divisor. */
ENTRY(___divtf3)
cmp.eq p7, p0 = r0, r0
frcpa.s0 f10, p6 = farg0, farg1
;;
(p6) cmp.ne p7, p0 = r0, r0
.pred.rel.mutex p6, p7
(p6) fnma.s1 f11 = farg1, f10, f1
(p6) fma.s1 f12 = farg0, f10, f0
;;
(p6) fma.s1 f13 = f11, f11, f0
(p6) fma.s1 f14 = f11, f11, f11
;;
(p6) fma.s1 f11 = f13, f13, f11
(p6) fma.s1 f13 = f14, f10, f10
;;
(p6) fma.s1 f10 = f13, f11, f10
(p6) fnma.s1 f11 = farg1, f12, farg0
;;
(p6) fma.s1 f11 = f11, f10, f12
(p6) fnma.s1 f12 = farg1, f10, f1
;;
(p6) fma.s1 f10 = f12, f10, f10
(p6) fnma.s1 f12 = farg1, f11, farg0
;;
(p6) fma.s0 fret0 = f12, f10, f11
(p7) mov fret0 = f10
br.ret.sptk rp
END(___divtf3)
.symver ___divtf3, __divtf3@GLIBC_2.2
/* __divdf3
Compute a 64-bit IEEE double quotient.
farg0 holds the dividend. farg1 holds the divisor. */
ENTRY(___divdf3)
cmp.eq p7, p0 = r0, r0
frcpa.s0 f10, p6 = farg0, farg1
;;
(p6) cmp.ne p7, p0 = r0, r0
.pred.rel.mutex p6, p7
(p6) fmpy.s1 f11 = farg0, f10
(p6) fnma.s1 f12 = farg1, f10, f1
;;
(p6) fma.s1 f11 = f12, f11, f11
(p6) fmpy.s1 f13 = f12, f12
;;
(p6) fma.s1 f10 = f12, f10, f10
(p6) fma.s1 f11 = f13, f11, f11
;;
(p6) fmpy.s1 f12 = f13, f13
(p6) fma.s1 f10 = f13, f10, f10
;;
(p6) fma.d.s1 f11 = f12, f11, f11
(p6) fma.s1 f10 = f12, f10, f10
;;
(p6) fnma.d.s1 f8 = farg1, f11, farg0
;;
(p6) fma.d fret0 = f8, f10, f11
(p7) mov fret0 = f10
br.ret.sptk rp
;;
END(___divdf3)
.symver ___divdf3, __divdf3@GLIBC_2.2
/* __divsf3
Compute a 32-bit IEEE float quotient.
farg0 holds the dividend. farg1 holds the divisor. */
ENTRY(___divsf3)
cmp.eq p7, p0 = r0, r0
frcpa.s0 f10, p6 = farg0, farg1
;;
(p6) cmp.ne p7, p0 = r0, r0
.pred.rel.mutex p6, p7
(p6) fmpy.s1 f8 = farg0, f10
(p6) fnma.s1 f9 = farg1, f10, f1
;;
(p6) fma.s1 f8 = f9, f8, f8
(p6) fmpy.s1 f9 = f9, f9
;;
(p6) fma.s1 f8 = f9, f8, f8
(p6) fmpy.s1 f9 = f9, f9
;;
(p6) fma.d.s1 f10 = f9, f8, f8
;;
(p6) fnorm.s.s0 fret0 = f10
(p7) mov fret0 = f10
br.ret.sptk rp
;;
END(___divsf3)
.symver ___divsf3, __divsf3@GLIBC_2.2
/* __divdi3
Compute a 64-bit integer quotient.
in0 holds the dividend. in1 holds the divisor. */
ENTRY(___divdi3)
.regstk 2,0,0,0
/* Transfer inputs to FP registers. */
setf.sig f8 = in0
setf.sig f9 = in1
;;
/* Convert the inputs to FP, so that they won't be treated as
unsigned. */
fcvt.xf f8 = f8
fcvt.xf f9 = f9
;;
/* Compute the reciprocal approximation. */
frcpa.s1 f10, p6 = f8, f9
;;
/* 3 Newton-Raphson iterations. */
(p6) fnma.s1 f11 = f9, f10, f1
(p6) fmpy.s1 f12 = f8, f10
;;
(p6) fmpy.s1 f13 = f11, f11
(p6) fma.s1 f12 = f11, f12, f12
;;
(p6) fma.s1 f10 = f11, f10, f10
(p6) fma.s1 f11 = f13, f12, f12
;;
(p6) fma.s1 f10 = f13, f10, f10
(p6) fnma.s1 f12 = f9, f11, f8
;;
(p6) fma.s1 f10 = f12, f10, f11
;;
/* Round quotient to an integer. */
fcvt.fx.trunc.s1 f10 = f10
;;
/* Transfer result to GP registers. */
getf.sig ret0 = f10
br.ret.sptk rp
;;
END(___divdi3)
.symver ___divdi3, __divdi3@GLIBC_2.2
/* __moddi3
Compute a 64-bit integer modulus.
in0 holds the dividend (a). in1 holds the divisor (b). */
ENTRY(___moddi3)
.regstk 2,0,0,0
/* Transfer inputs to FP registers. */
setf.sig f14 = in0
setf.sig f9 = in1
;;
/* Convert the inputs to FP, so that they won't be treated as
unsigned. */
fcvt.xf f8 = f14
fcvt.xf f9 = f9
;;
/* Compute the reciprocal approximation. */
frcpa.s1 f10, p6 = f8, f9
;;
/* 3 Newton-Raphson iterations. */
(p6) fmpy.s1 f12 = f8, f10
(p6) fnma.s1 f11 = f9, f10, f1
;;
(p6) fma.s1 f12 = f11, f12, f12
(p6) fmpy.s1 f13 = f11, f11
;;
(p6) fma.s1 f10 = f11, f10, f10
(p6) fma.s1 f11 = f13, f12, f12
;;
sub in1 = r0, in1
(p6) fma.s1 f10 = f13, f10, f10
(p6) fnma.s1 f12 = f9, f11, f8
;;
setf.sig f9 = in1
(p6) fma.s1 f10 = f12, f10, f11
;;
fcvt.fx.trunc.s1 f10 = f10
;;
/* r = q * (-b) + a */
xma.l f10 = f10, f9, f14
;;
/* Transfer result to GP registers. */
getf.sig ret0 = f10
br.ret.sptk rp
;;
END(___moddi3)
.symver ___moddi3, __moddi3@GLIBC_2.2
/* __udivdi3
Compute a 64-bit unsigned integer quotient.
in0 holds the dividend. in1 holds the divisor. */
ENTRY(___udivdi3)
.regstk 2,0,0,0
/* Transfer inputs to FP registers. */
setf.sig f8 = in0
setf.sig f9 = in1
;;
/* Convert the inputs to FP, to avoid FP software-assist faults. */
fcvt.xuf.s1 f8 = f8
fcvt.xuf.s1 f9 = f9
;;
/* Compute the reciprocal approximation. */
frcpa.s1 f10, p6 = f8, f9
;;
/* 3 Newton-Raphson iterations. */
(p6) fnma.s1 f11 = f9, f10, f1
(p6) fmpy.s1 f12 = f8, f10
;;
(p6) fmpy.s1 f13 = f11, f11
(p6) fma.s1 f12 = f11, f12, f12
;;
(p6) fma.s1 f10 = f11, f10, f10
(p6) fma.s1 f11 = f13, f12, f12
;;
(p6) fma.s1 f10 = f13, f10, f10
(p6) fnma.s1 f12 = f9, f11, f8
;;
(p6) fma.s1 f10 = f12, f10, f11
;;
/* Round quotient to an unsigned integer. */
fcvt.fxu.trunc.s1 f10 = f10
;;
/* Transfer result to GP registers. */
getf.sig ret0 = f10
br.ret.sptk rp
;;
END(___udivdi3)
.symver ___udivdi3, __udivdi3@GLIBC_2.2
/* __umoddi3
Compute a 64-bit unsigned integer modulus.
in0 holds the dividend (a). in1 holds the divisor (b). */
ENTRY(___umoddi3)
.regstk 2,0,0,0
/* Transfer inputs to FP registers. */
setf.sig f14 = in0
setf.sig f9 = in1
;;
/* Convert the inputs to FP, to avoid FP software assist faults. */
fcvt.xuf.s1 f8 = f14
fcvt.xuf.s1 f9 = f9
;;
/* Compute the reciprocal approximation. */
frcpa.s1 f10, p6 = f8, f9
;;
/* 3 Newton-Raphson iterations. */
(p6) fmpy.s1 f12 = f8, f10
(p6) fnma.s1 f11 = f9, f10, f1
;;
(p6) fma.s1 f12 = f11, f12, f12
(p6) fmpy.s1 f13 = f11, f11
;;
(p6) fma.s1 f10 = f11, f10, f10
(p6) fma.s1 f11 = f13, f12, f12
;;
sub in1 = r0, in1
(p6) fma.s1 f10 = f13, f10, f10
(p6) fnma.s1 f12 = f9, f11, f8
;;
setf.sig f9 = in1
(p6) fma.s1 f10 = f12, f10, f11
;;
/* Round quotient to an unsigned integer. */
fcvt.fxu.trunc.s1 f10 = f10
;;
/* r = q * (-b) + a */
xma.l f10 = f10, f9, f14
;;
/* Transfer result to GP registers. */
getf.sig ret0 = f10
br.ret.sptk rp
;;
END(___umoddi3)
.symver ___umoddi3, __umoddi3@GLIBC_2.2
/* __multi3
Compute a 128-bit multiply of 128-bit multiplicands.
in0/in1 holds one multiplicand (a), in2/in3 holds the other one (b). */
ENTRY(___multi3)
.regstk 4,0,0,0
setf.sig f6 = in1
movl r19 = 0xffffffff
setf.sig f7 = in2
;;
and r14 = r19, in0
;;
setf.sig f10 = r14
and r14 = r19, in2
xmpy.l f9 = f6, f7
;;
setf.sig f6 = r14
shr.u r14 = in0, 32
;;
setf.sig f7 = r14
shr.u r14 = in2, 32
;;
setf.sig f8 = r14
xmpy.l f11 = f10, f6
xmpy.l f6 = f7, f6
;;
getf.sig r16 = f11
xmpy.l f7 = f7, f8
;;
shr.u r14 = r16, 32
and r16 = r19, r16
getf.sig r17 = f6
setf.sig f6 = in0
;;
setf.sig f11 = r14
getf.sig r21 = f7
setf.sig f7 = in3
;;
xma.l f11 = f10, f8, f11
xma.l f6 = f6, f7, f9
;;
getf.sig r18 = f11
;;
add r18 = r18, r17
;;
and r15 = r19, r18
cmp.ltu p7, p6 = r18, r17
;;
getf.sig r22 = f6
(p7) adds r14 = 1, r19
;;
(p7) add r21 = r21, r14
shr.u r14 = r18, 32
shl r15 = r15, 32
;;
add r20 = r21, r14
;;
add ret0 = r15, r16
add ret1 = r22, r20
br.ret.sptk rp
;;
END(___multi3)
.symver ___multi3, __multi3@GLIBC_2.2
#endif
|