| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 
 | /* Quad-precision floating point e^x.
   Copyright (C) 1999-2022 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.
   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */
/* The basic design here is from
   Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
   Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
   pp. 410-423.
   We work with number pairs where the first number is the high part and
   the second one is the low part. Arithmetic with the high part numbers must
   be exact, without any roundoff errors.
   The input value, X, is written as
   X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
       - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
   where:
   - n is an integer, 16384 >= n >= -16495;
   - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
   - t1 is an integer, 89 >= t1 >= -89
   - t2 is an integer, 65 >= t2 >= -65
   - |arg1[t1]-t1/256.0| < 2^-53
   - |arg2[t2]-t2/32768.0| < 2^-53
   - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
   Then e^x is approximated as
   e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
	       + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
		 * p (x + xl + n * ln(2)_1))
   where:
   - p(x) is a polynomial approximating e(x)-1
   - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
   - e^(arg2[t2]_0 + arg2[t2]_1) likewise
   - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
   If it happens that n_1 == 0 (this is the usual case), that multiplication
   is omitted.
   */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <float.h>
#include <ieee754.h>
#include <math.h>
#include <fenv.h>
#include <inttypes.h>
#include <math_private.h>
#include <fenv_private.h>
#include <libm-alias-finite.h>
#include "t_expl.h"
static const long double C[] = {
/* Smallest integer x for which e^x overflows.  */
#define himark C[0]
 709.78271289338399678773454114191496482L,
/* Largest integer x for which e^x underflows.  */
#define lomark C[1]
-744.44007192138126231410729844608163411L,
/* 3x2^96 */
#define THREEp96 C[2]
 59421121885698253195157962752.0L,
/* 3x2^103 */
#define THREEp103 C[3]
 30423614405477505635920876929024.0L,
/* 3x2^111 */
#define THREEp111 C[4]
 7788445287802241442795744493830144.0L,
/* 1/ln(2) */
#define M_1_LN2 C[5]
 1.44269504088896340735992468100189204L,
/* first 93 bits of ln(2) */
#define M_LN2_0 C[6]
 0.693147180559945309417232121457981864L,
/* ln2_0 - ln(2) */
#define M_LN2_1 C[7]
-1.94704509238074995158795957333327386E-31L,
/* very small number */
#define TINY C[8]
 1.0e-308L,
/* 2^16383 */
#define TWO1023 C[9]
 8.988465674311579538646525953945123668E+307L,
/* 256 */
#define TWO8 C[10]
 256.0L,
/* 32768 */
#define TWO15 C[11]
 32768.0L,
/* Chebyshev polynom coefficients for (exp(x)-1)/x */
#define P1 C[12]
#define P2 C[13]
#define P3 C[14]
#define P4 C[15]
#define P5 C[16]
#define P6 C[17]
 0.5L,
 1.66666666666666666666666666666666683E-01L,
 4.16666666666666666666654902320001674E-02L,
 8.33333333333333333333314659767198461E-03L,
 1.38888888889899438565058018857254025E-03L,
 1.98412698413981650382436541785404286E-04L,
};
/* Avoid local PLT entry use from (int) roundl (...) being converted
   to a call to lroundl in the case of 32-bit long and roundl not
   inlined.  */
long int lroundl (long double) asm ("__lroundl");
long double
__ieee754_expl (long double x)
{
  long double result, x22;
  union ibm_extended_long_double ex2_u, scale_u;
  int unsafe;
  /* Check for usual case.  */
  if (isless (x, himark) && isgreater (x, lomark))
    {
      int tval1, tval2, n_i, exponent2;
      long double n, xl;
      SET_RESTORE_ROUND (FE_TONEAREST);
      n = roundl (x*M_1_LN2);
      x = x-n*M_LN2_0;
      xl = n*M_LN2_1;
      tval1 = roundl (x*TWO8);
      x -= __expl_table[T_EXPL_ARG1+2*tval1];
      xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
      tval2 = roundl (x*TWO15);
      x -= __expl_table[T_EXPL_ARG2+2*tval2];
      xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
      x = x + xl;
      /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]).  */
      ex2_u.ld = (__expl_table[T_EXPL_RES1 + tval1]
		  * __expl_table[T_EXPL_RES2 + tval2]);
      n_i = (int)n;
      /* 'unsafe' is 1 iff n_1 != 0.  */
      unsafe = fabsl(n_i) >= -LDBL_MIN_EXP - 1;
      ex2_u.d[0].ieee.exponent += n_i >> unsafe;
      /* Fortunately, there are no subnormal lowpart doubles in
	 __expl_table, only normal values and zeros.
	 But after scaling it can be subnormal.  */
      exponent2 = ex2_u.d[1].ieee.exponent + (n_i >> unsafe);
      if (ex2_u.d[1].ieee.exponent == 0)
	/* assert ((ex2_u.d[1].ieee.mantissa0|ex2_u.d[1].ieee.mantissa1) == 0) */;
      else if (exponent2 > 0)
	ex2_u.d[1].ieee.exponent = exponent2;
      else if (exponent2 <= -54)
	{
	  ex2_u.d[1].ieee.exponent = 0;
	  ex2_u.d[1].ieee.mantissa0 = 0;
	  ex2_u.d[1].ieee.mantissa1 = 0;
	}
      else
	{
	  static const double
	    two54 = 1.80143985094819840000e+16, /* 4350000000000000 */
	    twom54 = 5.55111512312578270212e-17; /* 3C90000000000000 */
	  ex2_u.d[1].d *= two54;
	  ex2_u.d[1].ieee.exponent += n_i >> unsafe;
	  ex2_u.d[1].d *= twom54;
	}
      /* Compute scale = 2^n_1.  */
      scale_u.ld = 1.0L;
      scale_u.d[0].ieee.exponent += n_i - (n_i >> unsafe);
      /* Approximate e^x2 - 1, using a seventh-degree polynomial,
	 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
	 less than 4.8e-39.  */
      x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
      /* Now we can test whether the result is ultimate or if we are unsure.
	 In the later case we should probably call a mpn based routine to give
	 the ultimate result.
	 Empirically, this routine is already ultimate in about 99.9986% of
	 cases, the test below for the round to nearest case will be false
	 in ~ 99.9963% of cases.
	 Without proc2 routine maximum error which has been seen is
	 0.5000262 ulp.
	  union ieee854_long_double ex3_u;
	  #ifdef FE_TONEAREST
	    fesetround (FE_TONEAREST);
	  #endif
	  ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
	  ex2_u.d = result;
	  ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
				 - ex2_u.ieee.exponent;
	  n_i = abs (ex3_u.d);
	  n_i = (n_i + 1) / 2;
	  fesetenv (&oldenv);
	  #ifdef FE_TONEAREST
	  if (fegetround () == FE_TONEAREST)
	    n_i -= 0x4000;
	  #endif
	  if (!n_i) {
	    return __ieee754_expl_proc2 (origx);
	  }
       */
    }
  /* Exceptional cases:  */
  else if (isless (x, himark))
    {
      if (isinf (x))
	/* e^-inf == 0, with no error.  */
	return 0;
      else
	/* Underflow */
	return TINY * TINY;
    }
  else
    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
    return TWO1023*x;
  result = x22 * ex2_u.ld + ex2_u.ld;
  if (!unsafe)
    return result;
  return result * scale_u.ld;
}
libm_alias_finite (__ieee754_expl, __expl)
 |