1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
/* Hardware capability support for run-time dynamic loader.
Copyright (C) 2012-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <assert.h>
#include <elf.h>
#include <errno.h>
#include <libintl.h>
#include <unistd.h>
#include <ldsodefs.h>
#include <dl-procinfo.h>
#include <dl-hwcaps.h>
/* This is the result of counting the substrings in a colon-separated
hwcaps string. */
struct hwcaps_counts
{
/* Number of substrings. */
size_t count;
/* Sum of the individual substring lengths (without separators or
null terminators). */
size_t total_length;
/* Maximum length of an individual substring. */
size_t maximum_length;
};
/* Update *COUNTS according to the contents of HWCAPS. Skip over
entries whose bit is not set in MASK. */
static void
update_hwcaps_counts (struct hwcaps_counts *counts, const char *hwcaps,
uint32_t bitmask, const char *mask)
{
struct dl_hwcaps_split_masked sp;
_dl_hwcaps_split_masked_init (&sp, hwcaps, bitmask, mask);
while (_dl_hwcaps_split_masked (&sp))
{
++counts->count;
counts->total_length += sp.split.length;
if (sp.split.length > counts->maximum_length)
counts->maximum_length = sp.split.length;
}
}
/* State for copy_hwcaps. Must be initialized to point to
the storage areas for the array and the strings themselves. */
struct copy_hwcaps
{
struct r_strlenpair *next_pair;
char *next_string;
};
/* Copy HWCAPS into the string pairs and strings, advancing *TARGET.
Skip over entries whose bit is not set in MASK. */
static void
copy_hwcaps (struct copy_hwcaps *target, const char *hwcaps,
uint32_t bitmask, const char *mask)
{
struct dl_hwcaps_split_masked sp;
_dl_hwcaps_split_masked_init (&sp, hwcaps, bitmask, mask);
while (_dl_hwcaps_split_masked (&sp))
{
target->next_pair->str = target->next_string;
char *slash = __mempcpy (__mempcpy (target->next_string,
GLIBC_HWCAPS_PREFIX,
strlen (GLIBC_HWCAPS_PREFIX)),
sp.split.segment, sp.split.length);
*slash = '/';
target->next_pair->len
= strlen (GLIBC_HWCAPS_PREFIX) + sp.split.length + 1;
++target->next_pair;
target->next_string = slash + 1;
}
}
struct dl_hwcaps_priority *_dl_hwcaps_priorities;
uint32_t _dl_hwcaps_priorities_length;
/* Allocate _dl_hwcaps_priorities and fill it with data. */
static void
compute_priorities (size_t total_count, const char *prepend,
uint32_t bitmask, const char *mask)
{
_dl_hwcaps_priorities = malloc (total_count
* sizeof (*_dl_hwcaps_priorities));
if (_dl_hwcaps_priorities == NULL)
_dl_signal_error (ENOMEM, NULL, NULL,
N_("cannot create HWCAP priorities"));
_dl_hwcaps_priorities_length = total_count;
/* First the prepended subdirectories. */
size_t i = 0;
{
struct dl_hwcaps_split sp;
_dl_hwcaps_split_init (&sp, prepend);
while (_dl_hwcaps_split (&sp))
{
_dl_hwcaps_priorities[i].name = sp.segment;
_dl_hwcaps_priorities[i].name_length = sp.length;
_dl_hwcaps_priorities[i].priority = i + 1;
++i;
}
}
/* Then the built-in subdirectories that are actually active. */
{
struct dl_hwcaps_split_masked sp;
_dl_hwcaps_split_masked_init (&sp, _dl_hwcaps_subdirs, bitmask, mask);
while (_dl_hwcaps_split_masked (&sp))
{
_dl_hwcaps_priorities[i].name = sp.split.segment;
_dl_hwcaps_priorities[i].name_length = sp.split.length;
_dl_hwcaps_priorities[i].priority = i + 1;
++i;
}
}
assert (i == total_count);
}
/* Sort the _dl_hwcaps_priorities array by name. */
static void
sort_priorities_by_name (void)
{
/* Insertion sort. There is no need to link qsort into the dynamic
loader for such a short array. */
for (size_t i = 1; i < _dl_hwcaps_priorities_length; ++i)
for (size_t j = i; j > 0; --j)
{
struct dl_hwcaps_priority *previous = _dl_hwcaps_priorities + j - 1;
struct dl_hwcaps_priority *current = _dl_hwcaps_priorities + j;
/* Bail out if current is greater or equal to the previous
value. */
uint32_t to_compare;
if (current->name_length < previous->name_length)
to_compare = current->name_length;
else
to_compare = previous->name_length;
int cmp = memcmp (current->name, previous->name, to_compare);
if (cmp > 0
|| (cmp == 0 && current->name_length >= previous->name_length))
break;
/* Swap *previous and *current. */
struct dl_hwcaps_priority tmp = *previous;
*previous = *current;
*current = tmp;
}
}
/* Return an array of useful/necessary hardware capability names. */
const struct r_strlenpair *
_dl_important_hwcaps (const char *glibc_hwcaps_prepend,
const char *glibc_hwcaps_mask,
size_t *sz, size_t *max_capstrlen)
{
uint64_t hwcap_mask = GET_HWCAP_MASK();
/* Determine how many important bits are set. */
uint64_t masked = GLRO(dl_hwcap) & hwcap_mask;
size_t cnt = GLRO (dl_platform) != NULL;
size_t n, m;
struct r_strlenpair *result;
struct r_strlenpair *rp;
char *cp;
/* glibc-hwcaps subdirectories. These are exempted from the power
set construction below. */
uint32_t hwcaps_subdirs_active = _dl_hwcaps_subdirs_active ();
struct hwcaps_counts hwcaps_counts = { 0, };
update_hwcaps_counts (&hwcaps_counts, glibc_hwcaps_prepend, -1, NULL);
update_hwcaps_counts (&hwcaps_counts, _dl_hwcaps_subdirs,
hwcaps_subdirs_active, glibc_hwcaps_mask);
compute_priorities (hwcaps_counts.count, glibc_hwcaps_prepend,
hwcaps_subdirs_active, glibc_hwcaps_mask);
sort_priorities_by_name ();
/* Each hwcaps subdirectory has a GLIBC_HWCAPS_PREFIX string prefix
and a "/" suffix once stored in the result. */
hwcaps_counts.maximum_length += strlen (GLIBC_HWCAPS_PREFIX) + 1;
size_t total = (hwcaps_counts.count * (strlen (GLIBC_HWCAPS_PREFIX) + 1)
+ hwcaps_counts.total_length);
/* Count the number of bits set in the masked value. */
for (n = 0; (~((1ULL << n) - 1) & masked) != 0; ++n)
if ((masked & (1ULL << n)) != 0)
++cnt;
/* For TLS enabled builds always add 'tls'. */
++cnt;
/* Create temporary data structure to generate result table. */
struct r_strlenpair temp[cnt];
m = 0;
for (n = 0; masked != 0; ++n)
if ((masked & (1ULL << n)) != 0)
{
temp[m].str = _dl_hwcap_string (n);
temp[m].len = strlen (temp[m].str);
masked ^= 1ULL << n;
++m;
}
if (GLRO (dl_platform) != NULL)
{
temp[m].str = GLRO (dl_platform);
temp[m].len = GLRO (dl_platformlen);
++m;
}
temp[m].str = "tls";
temp[m].len = 3;
++m;
assert (m == cnt);
/* Determine the total size of all strings together. */
if (cnt == 1)
total += temp[0].len + 1;
else
{
total += temp[0].len + temp[cnt - 1].len + 2;
if (cnt > 2)
{
total <<= 1;
for (n = 1; n + 1 < cnt; ++n)
total += temp[n].len + 1;
if (cnt > 3
&& (cnt >= sizeof (size_t) * 8
|| total + (sizeof (*result) << 3)
>= (1UL << (sizeof (size_t) * 8 - cnt + 3))))
_dl_signal_error (ENOMEM, NULL, NULL,
N_("cannot create capability list"));
total <<= cnt - 3;
}
}
*sz = hwcaps_counts.count + (1 << cnt);
/* This is the overall result, including both glibc-hwcaps
subdirectories and the legacy hwcaps subdirectories using the
power set construction. */
struct r_strlenpair *overall_result
= malloc (*sz * sizeof (*result) + total);
if (overall_result == NULL)
_dl_signal_error (ENOMEM, NULL, NULL,
N_("cannot create capability list"));
/* Fill in the glibc-hwcaps subdirectories. */
{
struct copy_hwcaps target;
target.next_pair = overall_result;
target.next_string = (char *) (overall_result + *sz);
copy_hwcaps (&target, glibc_hwcaps_prepend, -1, NULL);
copy_hwcaps (&target, _dl_hwcaps_subdirs,
hwcaps_subdirs_active, glibc_hwcaps_mask);
/* Set up the write target for the power set construction. */
result = target.next_pair;
cp = target.next_string;
}
/* Power set construction begins here. We use a very compressed way
to store the various combinations of capability names. */
if (cnt == 1)
{
result[0].str = cp;
result[0].len = temp[0].len + 1;
result[1].str = cp;
result[1].len = 0;
cp = __mempcpy (cp, temp[0].str, temp[0].len);
*cp = '/';
if (result[0].len > hwcaps_counts.maximum_length)
*max_capstrlen = result[0].len;
else
*max_capstrlen = hwcaps_counts.maximum_length;
return overall_result;
}
/* Fill in the information. This follows the following scheme
(indices from TEMP for four strings):
entry #0: 0, 1, 2, 3 binary: 1111
#1: 0, 1, 3 1101
#2: 0, 2, 3 1011
#3: 0, 3 1001
This allows the representation of all possible combinations of
capability names in the string. First generate the strings. */
result[1].str = result[0].str = cp;
#define add(idx) \
cp = __mempcpy (__mempcpy (cp, temp[idx].str, temp[idx].len), "/", 1);
if (cnt == 2)
{
add (1);
add (0);
}
else
{
n = 1 << (cnt - 1);
do
{
n -= 2;
/* We always add the last string. */
add (cnt - 1);
/* Add the strings which have the bit set in N. */
for (m = cnt - 2; m > 0; --m)
if ((n & (1 << m)) != 0)
add (m);
/* Always add the first string. */
add (0);
}
while (n != 0);
}
#undef add
/* Now we are ready to install the string pointers and length. */
for (n = 0; n < (1UL << cnt); ++n)
result[n].len = 0;
n = cnt;
do
{
size_t mask = 1 << --n;
rp = result;
for (m = 1 << cnt; m > 0; ++rp)
if ((--m & mask) != 0)
rp->len += temp[n].len + 1;
}
while (n != 0);
/* The first half of the strings all include the first string. */
n = (1 << cnt) - 2;
rp = &result[2];
while (n != (1UL << (cnt - 1)))
{
if ((--n & 1) != 0)
rp[0].str = rp[-2].str + rp[-2].len;
else
rp[0].str = rp[-1].str;
++rp;
}
/* The second half starts right after the first part of the string of
the corresponding entry in the first half. */
do
{
rp[0].str = rp[-(1 << (cnt - 1))].str + temp[cnt - 1].len + 1;
++rp;
}
while (--n != 0);
/* The maximum string length. */
if (result[0].len > hwcaps_counts.maximum_length)
*max_capstrlen = result[0].len;
else
*max_capstrlen = hwcaps_counts.maximum_length;
return overall_result;
}
|