1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/* Measure strcasestr functions.
Copyright (C) 2013-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#define MIN_PAGE_SIZE 131072
#define TEST_MAIN
#define TEST_NAME "strcasestr"
#include "bench-string.h"
#include "json-lib.h"
static const char input[] =
"This manual is written with the assumption that you are at least "
"somewhat familiar with the C programming language and basic programming "
"concepts. Specifically, familiarity with ISO standard C (*note ISO "
"C::), rather than “traditional” pre-ISO C dialects, is assumed.\n"
" The GNU C Library includes several “header files”, each of which "
"provides definitions and declarations for a group of related facilities; "
"this information is used by the C compiler when processing your program. "
"For example, the header file ‘stdio.h’ declares facilities for "
"performing input and output, and the header file ‘string.h’ declares "
"string processing utilities. The organization of this manual generally "
"follows the same division as the header files.\n"
" If you are reading this manual for the first time, you should read "
"all of the introductory material and skim the remaining chapters. There "
"are a _lot_ of functions in the GNU C Library and it’s not realistic to "
"expect that you will be able to remember exactly _how_ to use each and "
"every one of them. It’s more important to become generally familiar "
"with the kinds of facilities that the library provides, so that when you "
"are writing your programs you can recognize _when_ to make use of "
"library functions, and _where_ in this manual you can find more specific "
"information about them.\n";
#define STRCASESTR simple_strcasestr
#define NO_ALIAS
#define __strncasecmp strncasecmp
#define __strnlen strnlen
#include "../string/strcasestr.c"
typedef char *(*proto_t) (const char *, const char *);
IMPL (simple_strcasestr, 0)
IMPL (strcasestr, 1)
static void
do_one_test (json_ctx_t *json_ctx, impl_t *impl, const char *s1,
const char *s2, char *exp_result)
{
size_t i, iters = INNER_LOOP_ITERS_SMALL / 8;
timing_t start, stop, cur;
char *res;
TIMING_NOW (start);
for (i = 0; i < iters; ++i)
res = CALL (impl, s1, s2);
TIMING_NOW (stop);
TIMING_DIFF (cur, start, stop);
json_element_double (json_ctx, (double) cur / (double) iters);
if (res != exp_result)
{
error (0, 0, "Wrong result in function %s %s %s", impl->name,
(res == NULL) ? "(null)" : res,
(exp_result == NULL) ? "(null)" : exp_result);
ret = 1;
}
}
static void
do_test (json_ctx_t *json_ctx, size_t align1, size_t align2, size_t len1,
size_t len2, int fail)
{
char *s1 = (char *) (buf1 + align1);
char *s2 = (char *) (buf2 + align2);
size_t size = sizeof (input) - 1;
size_t pos = (len1 + len2) % size;
char *ss2 = s2;
for (size_t l = len2; l > 0; l = l > size ? l - size : 0)
{
size_t t = l > size ? size : l;
if (pos + t <= size)
ss2 = mempcpy (ss2, input + pos, t);
else
{
ss2 = mempcpy (ss2, input + pos, size - pos);
ss2 = mempcpy (ss2, input, t - (size - pos));
}
}
s2[len2] = '\0';
char *ss1 = s1;
for (size_t l = len1; l > 0; l = l > size ? l - size : 0)
{
size_t t = l > size ? size : l;
memcpy (ss1, input, t);
ss1 += t;
}
if (!fail)
memcpy (s1 + len1 - len2, s2, len2);
s1[len1] = '\0';
/* Remove any accidental matches except for the last if !fail. */
for (ss1 = simple_strcasestr (s1, s2);
ss1 != NULL;
ss1 = simple_strcasestr (ss1 + 1, s2))
if (fail || ss1 != s1 + len1 - len2)
++ss1[len2 / 2];
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", len1);
json_attr_uint (json_ctx, "len_needle", len2);
json_attr_uint (json_ctx, "align_haystack", align1);
json_attr_uint (json_ctx, "align_needle", align2);
json_attr_uint (json_ctx, "fail", fail);
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, s1, s2, fail ? NULL : s1 + len1 - len2);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
/* Test needles which exhibit worst-case performance for naive quadradic
implementations. */
static void
test_hard_needle (json_ctx_t *json_ctx, size_t ne_len, size_t hs_len)
{
char *ne = (char *) buf1;
char *hs = (char *) buf2;
/* Hard needle for strstr algorithm using skip table. This results in many
memcmp calls comparing most of the needle. */
{
memset (ne, 'a', ne_len);
ne[ne_len] = '\0';
ne[ne_len - 14] = 'b';
memset (hs, 'a', hs_len);
for (size_t i = ne_len; i <= hs_len; i += ne_len)
{
hs[i - 5] = 'b';
hs[i - 62] = 'b';
}
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", hs_len);
json_attr_uint (json_ctx, "len_needle", ne_len);
json_attr_uint (json_ctx, "align_haystack", 0);
json_attr_uint (json_ctx, "align_needle", 0);
json_attr_uint (json_ctx, "fail", 1);
json_attr_string (json_ctx, "desc", "Difficult skiptable(0)");
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, hs, ne, NULL);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
/* 2nd hard needle for strstr algorithm using skip table. This results in
many memcmp calls comparing most of the needle. */
{
memset (ne, 'a', ne_len);
ne[ne_len] = '\0';
ne[ne_len - 6] = 'b';
memset (hs, 'a', hs_len);
for (size_t i = ne_len; i <= hs_len; i += ne_len)
{
hs[i - 5] = 'b';
hs[i - 6] = 'b';
}
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", hs_len);
json_attr_uint (json_ctx, "len_needle", ne_len);
json_attr_uint (json_ctx, "align_haystack", 0);
json_attr_uint (json_ctx, "align_needle", 0);
json_attr_uint (json_ctx, "fail", 1);
json_attr_string (json_ctx, "desc", "Difficult skiptable(1)");
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, hs, ne, NULL);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
/* Hard needle for Two-way algorithm - the random input causes a large number
of branch mispredictions which significantly reduces performance on modern
micro architectures. */
{
for (int i = 0; i < hs_len; i++)
hs[i] = (rand () & 255) > 155 ? 'a' : 'b';
hs[hs_len] = 0;
memset (ne, 'a', ne_len);
ne[ne_len - 2] = 'b';
ne[0] = 'b';
ne[ne_len] = 0;
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", hs_len);
json_attr_uint (json_ctx, "len_needle", ne_len);
json_attr_uint (json_ctx, "align_haystack", 0);
json_attr_uint (json_ctx, "align_needle", 0);
json_attr_uint (json_ctx, "fail", 1);
json_attr_string (json_ctx, "desc", "Difficult 2-way");
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, hs, ne, NULL);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
/* Hard needle for standard algorithm testing first few characters of
* needle. */
{
for (int i = 0; i < hs_len; i++)
hs[i] = (rand () & 255) >= 128 ? 'a' : 'b';
hs[hs_len] = 0;
for (int i = 0; i < ne_len; i++)
{
if (i % 3 == 0)
ne[i] = 'a';
else if (i % 3 == 1)
ne[i] = 'b';
else
ne[i] = 'c';
}
ne[ne_len] = 0;
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", hs_len);
json_attr_uint (json_ctx, "len_needle", ne_len);
json_attr_uint (json_ctx, "align_haystack", 0);
json_attr_uint (json_ctx, "align_needle", 0);
json_attr_uint (json_ctx, "fail", 1);
json_attr_string (json_ctx, "desc", "Difficult testing first 2");
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, hs, ne, NULL);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
}
static int
test_main (void)
{
json_ctx_t json_ctx;
test_init ();
json_init (&json_ctx, 0, stdout);
json_document_begin (&json_ctx);
json_attr_string (&json_ctx, "timing_type", TIMING_TYPE);
json_attr_object_begin (&json_ctx, "functions");
json_attr_object_begin (&json_ctx, TEST_NAME);
json_attr_string (&json_ctx, "bench-variant", "");
json_array_begin (&json_ctx, "ifuncs");
FOR_EACH_IMPL (impl, 0)
json_element_string (&json_ctx, impl->name);
json_array_end (&json_ctx);
json_array_begin (&json_ctx, "results");
for (size_t hlen = 8; hlen <= 256;)
for (size_t klen = 1; klen <= 16; klen++)
{
do_test (&json_ctx, 1, 3, hlen, klen, 0);
do_test (&json_ctx, 0, 9, hlen, klen, 1);
do_test (&json_ctx, 1, 3, hlen + 1, klen, 0);
do_test (&json_ctx, 0, 9, hlen + 1, klen, 1);
do_test (&json_ctx, getpagesize () - 15, 9, hlen, klen, 1);
if (hlen < 64)
{
hlen += 8;
}
else
{
hlen += 32;
}
}
for (size_t hlen = 256; hlen <= 65536; hlen *= 2)
for (size_t klen = 4; klen <= 256; klen *= 2)
{
do_test (&json_ctx, 1, 11, hlen, klen, 0);
do_test (&json_ctx, 14, 5, hlen, klen, 1);
do_test (&json_ctx, 1, 11, hlen + 1, klen + 1, 0);
do_test (&json_ctx, 14, 5, hlen + 1, klen + 1, 1);
do_test (&json_ctx, 1, 11, hlen + 1, klen, 0);
do_test (&json_ctx, 14, 5, hlen + 1, klen, 1);
do_test (&json_ctx, getpagesize () - 15, 5, hlen + 1, klen, 1);
}
test_hard_needle (&json_ctx, 64, 65536);
test_hard_needle (&json_ctx, 256, 65536);
test_hard_needle (&json_ctx, 1024, 65536);
json_array_end (&json_ctx);
json_attr_object_end (&json_ctx);
json_attr_object_end (&json_ctx);
json_document_end (&json_ctx);
return ret;
}
#include <support/test-driver.c>
|