1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
|
/* Thread-local storage handling in the ELF dynamic linker. Generic version.
Copyright (C) 2002-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <assert.h>
#include <errno.h>
#include <libintl.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/param.h>
#include <atomic.h>
#include <tls.h>
#include <dl-tls.h>
#include <ldsodefs.h>
#include <dl-tls_block_align.h>
#if PTHREAD_IN_LIBC
# include <list.h>
#endif
#define TUNABLE_NAMESPACE rtld
#include <dl-tunables.h>
#include <dl-extra_tls.h>
/* Surplus static TLS, GLRO(dl_tls_static_surplus), is used for
- IE TLS in libc.so for all dlmopen namespaces except in the initial
one where libc.so is not loaded dynamically but at startup time,
- IE TLS in other libraries which may be dynamically loaded even in the
initial namespace,
- and optionally for optimizing dynamic TLS access.
The maximum number of namespaces is DL_NNS, but to support that many
namespaces correctly the static TLS allocation should be significantly
increased, which may cause problems with small thread stacks due to the
way static TLS is accounted (bug 11787).
So there is a rtld.nns tunable limit on the number of supported namespaces
that affects the size of the static TLS and by default it's small enough
not to cause problems with existing applications. The limit is not
enforced or checked: it is the user's responsibility to increase rtld.nns
if more dlmopen namespaces are used.
Audit modules use their own namespaces, they are not included in rtld.nns,
but come on top when computing the number of namespaces. */
/* Size of initial-exec TLS in libc.so. This should be the maximum of
observed PT_GNU_TLS sizes across all architectures. Some
architectures have lower values due to differences in type sizes
and link editor capabilities. */
#define LIBC_IE_TLS 144
/* Size of initial-exec TLS in libraries other than libc.so.
This should be large enough to cover runtime libraries of the
compiler such as libgomp and libraries in libc other than libc.so. */
#define OTHER_IE_TLS 144
/* Default number of namespaces. */
#define DEFAULT_NNS 4
/* Default for dl_tls_static_optional. */
#define OPTIONAL_TLS 512
/* Used to count the number of threads currently executing dynamic TLS
updates. Used to avoid recursive malloc calls in __tls_get_addr
for an interposed malloc that uses global-dynamic TLS (which is not
recommended); see _dl_tls_allocate_active checks. This could be a
per-thread flag, but would need TLS access in the dynamic linker. */
unsigned int _dl_tls_threads_in_update;
static inline void
_dl_tls_allocate_begin (void)
{
atomic_fetch_add_relaxed (&_dl_tls_threads_in_update, 1);
}
static inline void
_dl_tls_allocate_end (void)
{
atomic_fetch_add_relaxed (&_dl_tls_threads_in_update, -1);
}
static inline bool
_dl_tls_allocate_active (void)
{
return atomic_load_relaxed (&_dl_tls_threads_in_update) > 0;
}
/* Compute the static TLS surplus based on the namespace count and the
TLS space that can be used for optimizations. */
static inline int
tls_static_surplus (int nns, int opt_tls)
{
return (nns - 1) * LIBC_IE_TLS + nns * OTHER_IE_TLS + opt_tls;
}
/* This value is chosen so that with default values for the tunables,
the computation of dl_tls_static_surplus in
_dl_tls_static_surplus_init yields the historic value 1664, for
backwards compatibility. */
#define LEGACY_TLS (1664 - tls_static_surplus (DEFAULT_NNS, OPTIONAL_TLS))
/* Calculate the size of the static TLS surplus, when the given
number of audit modules are loaded. Must be called after the
number of audit modules is known and before static TLS allocation. */
void
_dl_tls_static_surplus_init (size_t naudit)
{
size_t nns, opt_tls;
nns = TUNABLE_GET (nns, size_t, NULL);
opt_tls = TUNABLE_GET (optional_static_tls, size_t, NULL);
if (nns > DL_NNS)
nns = DL_NNS;
if (DL_NNS - nns < naudit)
_dl_fatal_printf ("Failed loading %lu audit modules, %lu are supported.\n",
(unsigned long) naudit, (unsigned long) (DL_NNS - nns));
nns += naudit;
GL(dl_tls_static_optional) = opt_tls;
assert (LEGACY_TLS >= 0);
GLRO(dl_tls_static_surplus) = tls_static_surplus (nns, opt_tls) + LEGACY_TLS;
}
/* Out-of-memory handler. */
static void
__attribute__ ((__noreturn__))
oom (void)
{
_dl_fatal_printf ("cannot allocate memory for thread-local data: ABORT\n");
}
void
_dl_assign_tls_modid (struct link_map *l)
{
size_t result;
if (__builtin_expect (GL(dl_tls_dtv_gaps), false))
{
size_t disp = 0;
struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list);
/* Note that this branch will never be executed during program
start since there are no gaps at that time. Therefore it
does not matter that the dl_tls_dtv_slotinfo is not allocated
yet when the function is called for the first times.
NB: the offset +1 is due to the fact that DTV[0] is used
for something else. */
result = GL(dl_tls_static_nelem) + 1;
if (result <= GL(dl_tls_max_dtv_idx))
do
{
while (result - disp < runp->len)
{
if (runp->slotinfo[result - disp].map == NULL)
break;
++result;
assert (result <= GL(dl_tls_max_dtv_idx) + 1);
}
if (result - disp < runp->len)
{
/* Mark the entry as used, so any dependency see it. */
atomic_store_relaxed (&runp->slotinfo[result - disp].map, l);
atomic_store_relaxed (&runp->slotinfo[result - disp].gen, 0);
break;
}
disp += runp->len;
}
while ((runp = runp->next) != NULL);
if (result > GL(dl_tls_max_dtv_idx))
{
/* The new index must indeed be exactly one higher than the
previous high. */
assert (result == GL(dl_tls_max_dtv_idx) + 1);
/* There is no gap anymore. */
GL(dl_tls_dtv_gaps) = false;
goto nogaps;
}
}
else
{
/* No gaps, allocate a new entry. */
nogaps:
result = GL(dl_tls_max_dtv_idx) + 1;
/* Can be read concurrently. */
atomic_store_relaxed (&GL(dl_tls_max_dtv_idx), result);
}
l->l_tls_modid = result;
}
size_t
_dl_count_modids (void)
{
/* The count is the max unless dlclose or failed dlopen created gaps. */
if (__glibc_likely (!GL(dl_tls_dtv_gaps)))
return GL(dl_tls_max_dtv_idx);
/* We have gaps and are forced to count the non-NULL entries. */
size_t n = 0;
struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list);
while (runp != NULL)
{
for (size_t i = 0; i < runp->len; ++i)
if (runp->slotinfo[i].map != NULL)
++n;
runp = runp->next;
}
return n;
}
void
_dl_determine_tlsoffset (void)
{
size_t max_align = TCB_ALIGNMENT;
size_t freetop = 0;
size_t freebottom = 0;
/* Determining the offset of the various parts of the static TLS
block has several dependencies. In addition we have to work
around bugs in some toolchains.
Each TLS block from the objects available at link time has a size
and an alignment requirement. The GNU ld computes the alignment
requirements for the data at the positions *in the file*, though.
I.e, it is not simply possible to allocate a block with the size
of the TLS program header entry. The data is laid out assuming
that the first byte of the TLS block fulfills
p_vaddr mod p_align == &TLS_BLOCK mod p_align
This means we have to add artificial padding at the beginning of
the TLS block. These bytes are never used for the TLS data in
this module but the first byte allocated must be aligned
according to mod p_align == 0 so that the first byte of the TLS
block is aligned according to p_vaddr mod p_align. This is ugly
and the linker can help by computing the offsets in the TLS block
assuming the first byte of the TLS block is aligned according to
p_align.
The extra space which might be allocated before the first byte of
the TLS block need not go unused. The code below tries to use
that memory for the next TLS block. This can work if the total
memory requirement for the next TLS block is smaller than the
gap. */
#if TLS_TCB_AT_TP
/* We simply start with zero. */
size_t offset = 0;
for (struct link_map *l = GL(dl_ns)[LM_ID_BASE]._ns_loaded; l != NULL;
l = l->l_next)
{
if (l->l_tls_blocksize == 0)
continue;
size_t firstbyte = (-l->l_tls_firstbyte_offset
& (l->l_tls_align - 1));
size_t off;
max_align = MAX (max_align, l->l_tls_align);
if (freebottom - freetop >= l->l_tls_blocksize)
{
off = roundup (freetop + l->l_tls_blocksize
- firstbyte, l->l_tls_align)
+ firstbyte;
if (off <= freebottom)
{
freetop = off;
/* XXX For some architectures we perhaps should store the
negative offset. */
l->l_tls_offset = off;
continue;
}
}
off = roundup (offset + l->l_tls_blocksize - firstbyte,
l->l_tls_align) + firstbyte;
if (off > offset + l->l_tls_blocksize
+ (freebottom - freetop))
{
freetop = offset;
freebottom = off - l->l_tls_blocksize;
}
offset = off;
/* XXX For some architectures we perhaps should store the
negative offset. */
l->l_tls_offset = off;
}
/* Insert the extra TLS block after the last TLS block. */
/* Extra TLS block for internal usage to append at the end of the TLS blocks
(in allocation order). The address at which the block is allocated must
be aligned to 'extra_tls_align'. The size of the block as returned by
'_dl_extra_tls_get_size ()' is always a multiple of the aligment.
On Linux systems this is where the rseq area will be allocated. On other
systems it is currently unused and both values will be '0'. */
size_t extra_tls_size = _dl_extra_tls_get_size ();
size_t extra_tls_align = _dl_extra_tls_get_align ();
/* Increase the maximum alignment with the extra TLS alignment requirements
if necessary. */
max_align = MAX (max_align, extra_tls_align);
/* Add the extra TLS block to the global offset. To ensure proper alignment,
first align the current global offset to the extra TLS block requirements
and then add the extra TLS block size. Both values respect the extra TLS
alignment requirements and so does the resulting offset. */
offset = roundup (offset, extra_tls_align ?: 1) + extra_tls_size;
/* Record the extra TLS offset.
With TLS_TCB_AT_TP the TLS blocks are allocated before the thread pointer
in reverse order. Our block is added last which results in it being the
first in the static TLS block, thus record the most negative offset.
The alignment requirements of the pointer resulting from this offset and
the thread pointer are enforced by 'max_align' which is used to align the
tcb_offset. */
_dl_extra_tls_set_offset (-offset);
GL(dl_tls_static_used) = offset;
GLRO (dl_tls_static_size) = (roundup (offset + GLRO(dl_tls_static_surplus),
max_align)
+ TLS_TCB_SIZE);
#elif TLS_DTV_AT_TP
/* The TLS blocks start right after the TCB. */
size_t offset = TLS_TCB_SIZE;
for (struct link_map *l = GL(dl_ns)[LM_ID_BASE]._ns_loaded; l != NULL;
l = l->l_next)
{
if (l->l_tls_blocksize == 0)
continue;
size_t firstbyte = (-l->l_tls_firstbyte_offset
& (l->l_tls_align - 1));
size_t off;
max_align = MAX (max_align, l->l_tls_align);
if (l->l_tls_blocksize <= freetop - freebottom)
{
off = roundup (freebottom, l->l_tls_align);
if (off - freebottom < firstbyte)
off += l->l_tls_align;
if (off + l->l_tls_blocksize - firstbyte <= freetop)
{
l->l_tls_offset = off - firstbyte;
freebottom = (off + l->l_tls_blocksize
- firstbyte);
continue;
}
}
off = roundup (offset, l->l_tls_align);
if (off - offset < firstbyte)
off += l->l_tls_align;
l->l_tls_offset = off - firstbyte;
if (off - firstbyte - offset > freetop - freebottom)
{
freebottom = offset;
freetop = off - firstbyte;
}
offset = off + l->l_tls_blocksize - firstbyte;
}
/* Insert the extra TLS block after the last TLS block. */
/* Extra TLS block for internal usage to append at the end of the TLS blocks
(in allocation order). The address at which the block is allocated must
be aligned to 'extra_tls_align'. The size of the block as returned by
'_dl_extra_tls_get_size ()' is always a multiple of the aligment.
On Linux systems this is where the rseq area will be allocated. On other
systems it is currently unused and both values will be '0'. */
size_t extra_tls_size = _dl_extra_tls_get_size ();
size_t extra_tls_align = _dl_extra_tls_get_align ();
/* Increase the maximum alignment with the extra TLS alignment requirements
if necessary. */
max_align = MAX (max_align, extra_tls_align);
/* Align the global offset to the beginning of the extra TLS block. */
offset = roundup (offset, extra_tls_align ?: 1);
/* Record the extra TLS offset.
With TLS_DTV_AT_TP the TLS blocks are allocated after the thread pointer in
order. Our block is added last which results in it being the last in the
static TLS block, thus record the offset as the size of the static TLS
block minus the size of our block.
On some architectures the TLS blocks are offset from the thread pointer,
include this offset in the extra TLS block offset.
The alignment requirements of the pointer resulting from this offset and
the thread pointer are enforced by 'max_align' which is used to align the
tcb_offset. */
_dl_extra_tls_set_offset (offset - TLS_TP_OFFSET);
/* Add the extra TLS block to the global offset. */
offset += extra_tls_size;
GL(dl_tls_static_used) = offset;
GLRO (dl_tls_static_size) = roundup (offset + GLRO(dl_tls_static_surplus),
TCB_ALIGNMENT);
#else
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
#endif
/* The alignment requirement for the static TLS block. */
GLRO (dl_tls_static_align) = max_align;
}
static void *
allocate_dtv (void *result)
{
dtv_t *dtv;
size_t dtv_length;
/* Relaxed MO, because the dtv size is later rechecked, not relied on. */
size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx));
/* We allocate a few more elements in the dtv than are needed for the
initial set of modules. This should avoid in most cases expansions
of the dtv. */
dtv_length = max_modid + DTV_SURPLUS;
dtv = calloc (dtv_length + 2, sizeof (dtv_t));
if (dtv != NULL)
{
/* This is the initial length of the dtv. */
dtv[0].counter = dtv_length;
/* The rest of the dtv (including the generation counter) is
Initialize with zero to indicate nothing there. */
/* Add the dtv to the thread data structures. */
INSTALL_DTV (result, dtv);
}
else
result = NULL;
return result;
}
/* Get size and alignment requirements of the static TLS block. This
function is no longer used by glibc itself, but the GCC sanitizers
use it despite the GLIBC_PRIVATE status. */
void
_dl_get_tls_static_info (size_t *sizep, size_t *alignp)
{
*sizep = GLRO (dl_tls_static_size);
*alignp = GLRO (dl_tls_static_align);
}
/* Derive the location of the pointer to the start of the original
allocation (before alignment) from the pointer to the TCB. */
static inline void **
tcb_to_pointer_to_free_location (void *tcb)
{
#if TLS_TCB_AT_TP
/* The TCB follows the TLS blocks, and the pointer to the front
follows the TCB. */
void **original_pointer_location = tcb + TLS_TCB_SIZE;
#elif TLS_DTV_AT_TP
/* The TCB comes first, preceded by the pre-TCB, and the pointer is
before that. */
void **original_pointer_location = tcb - TLS_PRE_TCB_SIZE - sizeof (void *);
#endif
return original_pointer_location;
}
void *
_dl_allocate_tls_storage (void)
{
size_t size = _dl_tls_block_size_with_pre ();
/* Perform the allocation. Reserve space for alignment storage of
the pointer that will have to be freed. */
_dl_tls_allocate_begin ();
void *allocated = malloc (size + GLRO (dl_tls_static_align)
+ sizeof (void *));
if (__glibc_unlikely (allocated == NULL))
{
_dl_tls_allocate_end ();
return NULL;
}
void *result = _dl_tls_block_align (size, allocated);
/* Record the value of the original pointer for later
deallocation. */
*tcb_to_pointer_to_free_location (result) = allocated;
result = allocate_dtv (result);
if (result == NULL)
free (allocated);
_dl_tls_allocate_end ();
return result;
}
#ifndef SHARED
extern dtv_t _dl_static_dtv[];
# define _dl_initial_dtv (&_dl_static_dtv[1])
#endif
static dtv_t *
_dl_resize_dtv (dtv_t *dtv, size_t max_modid)
{
/* Resize the dtv. */
dtv_t *newp;
size_t newsize = max_modid + DTV_SURPLUS;
size_t oldsize = dtv[-1].counter;
_dl_tls_allocate_begin ();
if (dtv == GL(dl_initial_dtv))
{
/* This is the initial dtv that was either statically allocated in
__libc_setup_tls or allocated during rtld startup using the
dl-minimal.c malloc instead of the real malloc. We can't free
it, we have to abandon the old storage. */
newp = malloc ((2 + newsize) * sizeof (dtv_t));
if (newp == NULL)
oom ();
memcpy (newp, &dtv[-1], (2 + oldsize) * sizeof (dtv_t));
#ifdef SHARED
/* Auditors can trigger a DTV resize event while the full malloc
is not yet in use. Mark the new DTV allocation as the
initial allocation. */
if (!__rtld_malloc_is_complete ())
GL(dl_initial_dtv) = &newp[1];
#endif
}
else
{
newp = realloc (&dtv[-1],
(2 + newsize) * sizeof (dtv_t));
if (newp == NULL)
oom ();
}
_dl_tls_allocate_end ();
newp[0].counter = newsize;
/* Clear the newly allocated part. */
memset (newp + 2 + oldsize, '\0',
(newsize - oldsize) * sizeof (dtv_t));
/* Return the generation counter. */
return &newp[1];
}
/* Allocate initial TLS. RESULT should be a non-NULL pointer to storage
for the TLS space. The DTV may be resized, and so this function may
call malloc to allocate that space. The loader's GL(dl_load_tls_lock)
is taken when manipulating global TLS-related data in the loader.
If MAIN_THREAD, this is the first call during process
initialization. In this case, TLS initialization for secondary
(audit) namespaces is skipped because that has already been handled
by dlopen. */
void *
_dl_allocate_tls_init (void *result, bool main_thread)
{
if (result == NULL)
/* The memory allocation failed. */
return NULL;
dtv_t *dtv = GET_DTV (result);
struct dtv_slotinfo_list *listp;
size_t total = 0;
size_t maxgen = 0;
/* Protects global dynamic TLS related state. */
__rtld_lock_lock_recursive (GL(dl_load_tls_lock));
/* Check if the current dtv is big enough. */
if (dtv[-1].counter < GL(dl_tls_max_dtv_idx))
{
/* Resize the dtv. */
dtv = _dl_resize_dtv (dtv, GL(dl_tls_max_dtv_idx));
/* Install this new dtv in the thread data structures. */
INSTALL_DTV (result, &dtv[-1]);
}
/* We have to prepare the dtv for all currently loaded modules using
TLS. For those which are dynamically loaded we add the values
indicating deferred allocation. */
listp = GL(dl_tls_dtv_slotinfo_list);
while (1)
{
size_t cnt;
for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt)
{
struct link_map *map;
void *dest;
/* Check for the total number of used slots. */
if (total + cnt > GL(dl_tls_max_dtv_idx))
break;
map = listp->slotinfo[cnt].map;
if (map == NULL)
/* Unused entry. */
continue;
/* Keep track of the maximum generation number. This might
not be the generation counter. */
assert (listp->slotinfo[cnt].gen <= GL(dl_tls_generation));
maxgen = MAX (maxgen, listp->slotinfo[cnt].gen);
dtv[map->l_tls_modid].pointer.val = TLS_DTV_UNALLOCATED;
dtv[map->l_tls_modid].pointer.to_free = NULL;
if (map->l_tls_offset == NO_TLS_OFFSET
|| map->l_tls_offset == FORCED_DYNAMIC_TLS_OFFSET)
continue;
assert (map->l_tls_modid == total + cnt);
assert (map->l_tls_blocksize >= map->l_tls_initimage_size);
#if TLS_TCB_AT_TP
assert ((size_t) map->l_tls_offset >= map->l_tls_blocksize);
dest = (char *) result - map->l_tls_offset;
#elif TLS_DTV_AT_TP
dest = (char *) result + map->l_tls_offset;
#else
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
#endif
/* Set up the DTV entry. The simplified __tls_get_addr that
some platforms use in static programs requires it. */
dtv[map->l_tls_modid].pointer.val = dest;
/* Copy the initialization image and clear the BSS part.
For audit modules or dependencies with initial-exec TLS,
we can not set the initial TLS image on default loader
initialization because it would already be set by the
audit setup, which uses the dlopen code and already
clears l_need_tls_init. Calls with !main_thread from
pthread_create need to initialze TLS for the current
thread regardless of namespace. */
if (map->l_ns != LM_ID_BASE && main_thread)
continue;
memset (__mempcpy (dest, map->l_tls_initimage,
map->l_tls_initimage_size), '\0',
map->l_tls_blocksize - map->l_tls_initimage_size);
if (main_thread)
map->l_need_tls_init = 0;
}
total += cnt;
if (total > GL(dl_tls_max_dtv_idx))
break;
listp = listp->next;
assert (listp != NULL);
}
__rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
/* The DTV version is up-to-date now. */
dtv[0].counter = maxgen;
return result;
}
rtld_hidden_def (_dl_allocate_tls_init)
void *
_dl_allocate_tls (void *mem)
{
return _dl_allocate_tls_init (mem == NULL
? _dl_allocate_tls_storage ()
: allocate_dtv (mem), false);
}
rtld_hidden_def (_dl_allocate_tls)
void
_dl_deallocate_tls (void *tcb, bool dealloc_tcb)
{
dtv_t *dtv = GET_DTV (tcb);
/* We need to free the memory allocated for non-static TLS. */
for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt)
free (dtv[1 + cnt].pointer.to_free);
/* The array starts with dtv[-1]. */
if (dtv != GL(dl_initial_dtv))
free (dtv - 1);
if (dealloc_tcb)
free (*tcb_to_pointer_to_free_location (tcb));
}
rtld_hidden_def (_dl_deallocate_tls)
#ifdef SHARED
/* Allocate one DTV entry. */
static struct dtv_pointer
allocate_dtv_entry (size_t alignment, size_t size)
{
if (powerof2 (alignment) && alignment <= _Alignof (max_align_t))
{
/* The alignment is supported by malloc. */
_dl_tls_allocate_begin ();
void *ptr = malloc (size);
_dl_tls_allocate_end ();
return (struct dtv_pointer) { ptr, ptr };
}
/* Emulate memalign to by manually aligning a pointer returned by
malloc. First compute the size with an overflow check. */
size_t alloc_size = size + alignment;
if (alloc_size < size)
return (struct dtv_pointer) {};
/* Perform the allocation. This is the pointer we need to free
later. */
_dl_tls_allocate_begin ();
void *start = malloc (alloc_size);
_dl_tls_allocate_end ();
if (start == NULL)
return (struct dtv_pointer) {};
/* Find the aligned position within the larger allocation. */
void *aligned = (void *) roundup ((uintptr_t) start, alignment);
return (struct dtv_pointer) { .val = aligned, .to_free = start };
}
static struct dtv_pointer
allocate_and_init (struct link_map *map)
{
struct dtv_pointer result = allocate_dtv_entry
(map->l_tls_align, map->l_tls_blocksize);
if (result.val == NULL)
oom ();
/* Initialize the memory. */
memset (__mempcpy (result.val, map->l_tls_initimage,
map->l_tls_initimage_size),
'\0', map->l_tls_blocksize - map->l_tls_initimage_size);
return result;
}
struct link_map *
_dl_update_slotinfo (unsigned long int req_modid, size_t new_gen)
{
struct link_map *the_map = NULL;
dtv_t *dtv = THREAD_DTV ();
/* CONCURRENCY NOTES:
The global dl_tls_dtv_slotinfo_list array contains for each module
index the generation counter current when that entry was updated.
This array never shrinks so that all module indices which were
valid at some time can be used to access it. Concurrent loading
and unloading of modules can update slotinfo entries or extend
the array. The updates happen under the GL(dl_load_tls_lock) and
finish with the release store of the generation counter to
GL(dl_tls_generation) which is synchronized with the load of
new_gen in the caller. So updates up to new_gen are synchronized
but updates for later generations may not be.
Here we update the thread dtv from old_gen (== dtv[0].counter) to
new_gen generation. For this, each dtv[i] entry is either set to
an unallocated state (set), or left unmodified (nop). Where (set)
may resize the dtv first if modid i >= dtv[-1].counter. The rules
for the decision between (set) and (nop) are
(1) If slotinfo entry i is concurrently updated then either (set)
or (nop) is valid: TLS access cannot use dtv[i] unless it is
synchronized with a generation > new_gen.
Otherwise, if the generation of slotinfo entry i is gen and the
loaded module for this entry is map then
(2) If gen <= old_gen then do (nop).
(3) If old_gen < gen <= new_gen then
(3.1) if map != 0 then (set)
(3.2) if map == 0 then either (set) or (nop).
Note that (1) cannot be reliably detected, but since both actions
are valid it does not have to be. Only (2) and (3.1) cases need
to be distinguished for which relaxed mo access of gen and map is
enough: their value is synchronized when it matters.
Note that a relaxed mo load may give an out-of-thin-air value since
it is used in decisions that can affect concurrent stores. But this
should only happen if the OOTA value causes UB that justifies the
concurrent store of the value. This is not expected to be an issue
in practice. */
struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
if (dtv[0].counter < new_gen)
{
size_t total = 0;
size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx));
assert (max_modid >= req_modid);
/* We have to look through the entire dtv slotinfo list. */
listp = GL(dl_tls_dtv_slotinfo_list);
do
{
for (size_t cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt)
{
size_t modid = total + cnt;
/* Case (1) for all later modids. */
if (modid > max_modid)
break;
size_t gen = atomic_load_relaxed (&listp->slotinfo[cnt].gen);
/* Case (1). */
if (gen > new_gen)
continue;
/* Case (2) or (1). */
if (gen <= dtv[0].counter)
continue;
/* Case (3) or (1). */
/* If there is no map this means the entry is empty. */
struct link_map *map
= atomic_load_relaxed (&listp->slotinfo[cnt].map);
/* Check whether the current dtv array is large enough. */
if (dtv[-1].counter < modid)
{
/* Case (3.2) or (1). */
if (map == NULL)
continue;
/* Resizing the dtv aborts on failure: bug 16134. */
dtv = _dl_resize_dtv (dtv, max_modid);
assert (modid <= dtv[-1].counter);
/* Install this new dtv in the thread data
structures. */
INSTALL_NEW_DTV (dtv);
}
/* If there is currently memory allocate for this
dtv entry free it. Note: this is not AS-safe. */
/* XXX Ideally we will at some point create a memory
pool. */
/* Avoid calling free on a null pointer. Some mallocs
incorrectly use dynamic TLS, and depending on how the
free function was compiled, it could call
__tls_get_addr before the null pointer check in the
free implementation. Checking here papers over at
least some dynamic TLS usage by interposed mallocs. */
if (dtv[modid].pointer.to_free != NULL)
{
_dl_tls_allocate_begin ();
free (dtv[modid].pointer.to_free);
_dl_tls_allocate_end ();
}
dtv[modid].pointer.val = TLS_DTV_UNALLOCATED;
dtv[modid].pointer.to_free = NULL;
if (modid == req_modid)
the_map = map;
}
total += listp->len;
if (total > max_modid)
break;
/* Synchronize with _dl_add_to_slotinfo. Ideally this would
be consume MO since we only need to order the accesses to
the next node after the read of the address and on most
hardware (other than alpha) a normal load would do that
because of the address dependency. */
listp = atomic_load_acquire (&listp->next);
}
while (listp != NULL);
/* This will be the new maximum generation counter. */
dtv[0].counter = new_gen;
}
return the_map;
}
/* Adjust the TLS variable pointer using the TLS descriptor offset and
the ABI-specific offset. */
static inline void *
tls_get_addr_adjust (void *from_dtv, tls_index *ti)
{
/* Perform arithmetic in uintptr_t to avoid pointer wraparound
issues. The outer cast to uintptr_t suppresses a warning about
pointer/integer size mismatch on ILP32 targets with 64-bit
ti_offset. */
return (void *) (uintptr_t) ((uintptr_t) from_dtv + ti->ti_offset
+ TLS_DTV_OFFSET);
}
static void *
__attribute_noinline__
tls_get_addr_tail (tls_index *ti, dtv_t *dtv, struct link_map *the_map)
{
/* The allocation was deferred. Do it now. */
if (the_map == NULL)
{
/* Find the link map for this module. */
size_t idx = ti->ti_module;
struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
while (idx >= listp->len)
{
idx -= listp->len;
listp = listp->next;
}
the_map = listp->slotinfo[idx].map;
}
/* Make sure that, if a dlopen running in parallel forces the
variable into static storage, we'll wait until the address in the
static TLS block is set up, and use that. If we're undecided
yet, make sure we make the decision holding the lock as well. */
if (__glibc_unlikely (the_map->l_tls_offset
!= FORCED_DYNAMIC_TLS_OFFSET))
{
__rtld_lock_lock_recursive (GL(dl_load_tls_lock));
if (__glibc_likely (the_map->l_tls_offset == NO_TLS_OFFSET))
{
the_map->l_tls_offset = FORCED_DYNAMIC_TLS_OFFSET;
__rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
}
else if (__glibc_likely (the_map->l_tls_offset
!= FORCED_DYNAMIC_TLS_OFFSET))
{
#if TLS_TCB_AT_TP
void *p = (char *) THREAD_SELF - the_map->l_tls_offset;
#elif TLS_DTV_AT_TP
void *p = (char *) THREAD_SELF + the_map->l_tls_offset + TLS_PRE_TCB_SIZE;
#else
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
#endif
__rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
dtv[ti->ti_module].pointer.to_free = NULL;
dtv[ti->ti_module].pointer.val = p;
return tls_get_addr_adjust (p, ti);
}
else
__rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
}
struct dtv_pointer result = allocate_and_init (the_map);
dtv[ti->ti_module].pointer = result;
assert (result.to_free != NULL);
return tls_get_addr_adjust (result.val, ti);
}
static struct link_map *
__attribute_noinline__
update_get_addr (tls_index *ti, size_t gen)
{
struct link_map *the_map = _dl_update_slotinfo (ti->ti_module, gen);
dtv_t *dtv = THREAD_DTV ();
void *p = dtv[ti->ti_module].pointer.val;
if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
return tls_get_addr_tail (ti, dtv, the_map);
return tls_get_addr_adjust (p, ti);
}
/* For all machines that have a non-macro version of __tls_get_addr, we
want to use rtld_hidden_proto/rtld_hidden_def in order to call the
internal alias for __tls_get_addr from ld.so. This avoids a PLT entry
in ld.so for __tls_get_addr. */
#ifndef __tls_get_addr
extern void * __tls_get_addr (tls_index *ti);
rtld_hidden_proto (__tls_get_addr)
rtld_hidden_def (__tls_get_addr)
#endif
/* The generic dynamic and local dynamic model cannot be used in
statically linked applications. */
void *
__tls_get_addr (tls_index *ti)
{
dtv_t *dtv = THREAD_DTV ();
/* Update is needed if dtv[0].counter < the generation of the accessed
module, but the global generation counter is easier to check (which
must be synchronized up to the generation of the accessed module by
user code doing the TLS access so relaxed mo read is enough). */
size_t gen = atomic_load_relaxed (&GL(dl_tls_generation));
if (__glibc_unlikely (dtv[0].counter != gen))
{
if (_dl_tls_allocate_active ()
&& ti->ti_module < _dl_tls_initial_modid_limit)
/* This is a reentrant __tls_get_addr call, but we can
satisfy it because it's an initially-loaded module ID.
These TLS slotinfo slots do not change, so the
out-of-date generation counter does not matter. However,
if not in a TLS update, still update_get_addr below, to
get off the slow path eventually. */
;
else
{
/* Update DTV up to the global generation, see CONCURRENCY NOTES
in _dl_update_slotinfo. */
gen = atomic_load_acquire (&GL(dl_tls_generation));
return update_get_addr (ti, gen);
}
}
void *p = dtv[ti->ti_module].pointer.val;
if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
return tls_get_addr_tail (ti, dtv, NULL);
return tls_get_addr_adjust (p, ti);
}
#endif /* SHARED */
/* Look up the module's TLS block as for __tls_get_addr,
but never touch anything. Return null if it's not allocated yet. */
void *
_dl_tls_get_addr_soft (struct link_map *l)
{
if (__glibc_unlikely (l->l_tls_modid == 0))
/* This module has no TLS segment. */
return NULL;
dtv_t *dtv = THREAD_DTV ();
/* This may be called without holding the GL(dl_load_tls_lock). Reading
arbitrary gen value is fine since this is best effort code. */
size_t gen = atomic_load_relaxed (&GL(dl_tls_generation));
if (__glibc_unlikely (dtv[0].counter != gen))
{
/* This thread's DTV is not completely current,
but it might already cover this module. */
if (l->l_tls_modid >= dtv[-1].counter)
/* Nope. */
return NULL;
size_t idx = l->l_tls_modid;
struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
while (idx >= listp->len)
{
idx -= listp->len;
listp = listp->next;
}
/* We've reached the slot for this module.
If its generation counter is higher than the DTV's,
this thread does not know about this module yet. */
if (dtv[0].counter < listp->slotinfo[idx].gen)
return NULL;
}
void *data = dtv[l->l_tls_modid].pointer.val;
if (__glibc_unlikely (data == TLS_DTV_UNALLOCATED))
/* The DTV is current, but this thread has not yet needed
to allocate this module's segment. */
data = NULL;
return data;
}
size_t _dl_tls_initial_modid_limit;
void
_dl_tls_initial_modid_limit_setup (void)
{
struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
size_t idx;
/* Start with 1 because TLS module ID zero is unused. */
for (idx = 1; idx < listp->len; ++idx)
{
struct link_map *l = listp->slotinfo[idx].map;
if (l == NULL
/* The object can be unloaded, so its modid can be
reassociated. */
|| !(l->l_type == lt_executable || l->l_type == lt_library))
break;
}
_dl_tls_initial_modid_limit = idx;
}
/* Add module to slot information data. If DO_ADD is false, only the
required memory is allocated. Must be called with
GL (dl_load_tls_lock) acquired. If the function has already been
called for the link map L with !DO_ADD, then this function will not
raise an exception, otherwise it is possible that it encounters a
memory allocation failure.
Return false if L has already been added to the slotinfo data, or
if L has no TLS data. If the returned value is true, L has been
added with this call (DO_ADD), or has been added in a previous call
(!DO_ADD).
The expected usage is as follows: Call _dl_add_to_slotinfo for
several link maps with DO_ADD set to false, and record if any calls
result in a true result. If there was a true result, call
_dl_add_to_slotinfo again, this time with DO_ADD set to true. (For
simplicity, it's possible to call the function for link maps where
the previous result was false.) The return value from the second
round of calls can be ignored. If there was true result initially,
call _dl_update_slotinfo to update the TLS generation counter. */
bool
_dl_add_to_slotinfo (struct link_map *l, bool do_add)
{
if (l->l_tls_blocksize == 0 || l->l_tls_in_slotinfo)
return false;
/* Now that we know the object is loaded successfully add
modules containing TLS data to the dtv info table. We
might have to increase its size. */
struct dtv_slotinfo_list *listp;
struct dtv_slotinfo_list *prevp;
size_t idx = l->l_tls_modid;
/* Find the place in the dtv slotinfo list. */
listp = GL(dl_tls_dtv_slotinfo_list);
prevp = NULL; /* Needed to shut up gcc. */
do
{
/* Does it fit in the array of this list element? */
if (idx < listp->len)
break;
idx -= listp->len;
prevp = listp;
listp = listp->next;
}
while (listp != NULL);
if (listp == NULL)
{
/* When we come here it means we have to add a new element
to the slotinfo list. And the new module must be in
the first slot. */
assert (idx == 0);
_dl_tls_allocate_begin ();
listp = (struct dtv_slotinfo_list *)
malloc (sizeof (struct dtv_slotinfo_list)
+ TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo));
_dl_tls_allocate_end ();
if (listp == NULL)
{
/* We ran out of memory while resizing the dtv slotinfo list. */
_dl_signal_error (ENOMEM, "dlopen", NULL, N_("\
cannot create TLS data structures"));
}
listp->len = TLS_SLOTINFO_SURPLUS;
listp->next = NULL;
memset (listp->slotinfo, '\0',
TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo));
/* Synchronize with _dl_update_slotinfo. */
atomic_store_release (&prevp->next, listp);
}
/* Add the information into the slotinfo data structure. */
if (do_add)
{
/* Can be read concurrently. See _dl_update_slotinfo. */
atomic_store_relaxed (&listp->slotinfo[idx].map, l);
atomic_store_relaxed (&listp->slotinfo[idx].gen,
GL(dl_tls_generation) + 1);
l->l_tls_in_slotinfo = true;
}
return true;
}
#if PTHREAD_IN_LIBC
static inline void __attribute__((always_inline))
init_one_static_tls (struct pthread *curp, struct link_map *map)
{
# if TLS_TCB_AT_TP
void *dest = (char *) curp - map->l_tls_offset;
# elif TLS_DTV_AT_TP
void *dest = (char *) curp + map->l_tls_offset + TLS_PRE_TCB_SIZE;
# else
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
# endif
/* Initialize the memory. */
memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size),
'\0', map->l_tls_blocksize - map->l_tls_initimage_size);
}
void
_dl_init_static_tls (struct link_map *map)
{
lll_lock (GL (dl_stack_cache_lock), LLL_PRIVATE);
/* Iterate over the list with system-allocated threads first. */
list_t *runp;
list_for_each (runp, &GL (dl_stack_used))
init_one_static_tls (list_entry (runp, struct pthread, list), map);
/* Now the list with threads using user-allocated stacks. */
list_for_each (runp, &GL (dl_stack_user))
init_one_static_tls (list_entry (runp, struct pthread, list), map);
lll_unlock (GL (dl_stack_cache_lock), LLL_PRIVATE);
}
#endif /* PTHREAD_IN_LIBC */
|