1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
/* Helper macros for functions returning a narrower type.
Copyright (C) 2018-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef _MATH_NARROW_H
#define _MATH_NARROW_H 1
#include <bits/floatn.h>
#include <bits/long-double.h>
#include <errno.h>
#include <fenv.h>
#include <ieee754.h>
#include <math-barriers.h>
#include <math_private.h>
#include <fenv_private.h>
#include <math-narrow-alias.h>
#include <stdbool.h>
/* Carry out a computation using round-to-odd. The computation is
EXPR; the union type in which to store the result is UNION and the
subfield of the "ieee" field of that union with the low part of the
mantissa is MANTISSA; SUFFIX is the suffix for both underlying libm
functions for the argument type (for computations where a libm
function rather than a C operator is used when argument and result
types are the same) and the libc_fe* macros to ensure that the
correct rounding mode is used, for platforms with multiple rounding
modes where those macros set only the relevant mode.
CLEAR_UNDERFLOW indicates whether underflow exceptions must be
cleared (in the case where a round-toward-zero underflow might not
indicate an underflow after narrowing, when that narrowing only
reduces precision not exponent range and the architecture uses
before-rounding tininess detection). This macro does not work
correctly if the sign of an exact zero result depends on the
rounding mode, so that case must be checked for separately. */
#define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW) \
({ \
fenv_t env; \
UNION u; \
\
libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \
u.d = (EXPR); \
math_force_eval (u.d); \
if (CLEAR_UNDERFLOW) \
feclearexcept (FE_UNDERFLOW); \
u.ieee.MANTISSA \
|= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \
\
u.d; \
})
/* Check for error conditions from a narrowing add function returning
RET with arguments X and Y and set errno as needed. Overflow and
underflow can occur for finite arguments and a domain error for
infinite ones. */
#define CHECK_NARROW_ADD(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != -(Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing add using round-to-odd. The arguments are X
and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
as for ROUND_TO_ODD. */
#define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
/* Ensure a zero result is computed in the original rounding \
mode. */ \
if ((X) == -(Y)) \
ret = (TYPE) ((X) + (Y)); \
else \
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \
UNION, SUFFIX, MANTISSA, false); \
\
CHECK_NARROW_ADD (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing add function that is not actually narrowing
or where no attempt is made to be correctly rounding (the latter
only applies to IBM long double). The arguments are X and Y and
the return type is TYPE. */
#define NARROW_ADD_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) + (Y)); \
CHECK_NARROW_ADD (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing subtract function
returning RET with arguments X and Y and set errno as needed.
Overflow and underflow can occur for finite arguments and a domain
error for infinite ones. */
#define CHECK_NARROW_SUB(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != (Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing subtract using round-to-odd. The arguments are
X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
as for ROUND_TO_ODD. */
#define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
/* Ensure a zero result is computed in the original rounding \
mode. */ \
if ((X) == (Y)) \
ret = (TYPE) ((X) - (Y)); \
else \
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \
UNION, SUFFIX, MANTISSA, false); \
\
CHECK_NARROW_SUB (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing subtract function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_SUB_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) - (Y)); \
CHECK_NARROW_SUB (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing multiply function
returning RET with arguments X and Y and set errno as needed.
Overflow and underflow can occur for finite arguments and a domain
error for Inf * 0. */
#define CHECK_NARROW_MUL(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0 && (Y) != 0) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing multiply using round-to-odd. The arguments are
X and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and
CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */
#define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \
UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW); \
\
CHECK_NARROW_MUL (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing multiply function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_MUL_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) * (Y)); \
CHECK_NARROW_MUL (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing divide function
returning RET with arguments X and Y and set errno as needed.
Overflow, underflow and divide-by-zero can occur for finite
arguments and a domain error for Inf / Inf and 0 / 0. */
#define CHECK_NARROW_DIV(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing divide using round-to-odd. The arguments are X
and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and
CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */
#define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \
UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW); \
\
CHECK_NARROW_DIV (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing divide function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_DIV_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) / (Y)); \
CHECK_NARROW_DIV (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing square root function
returning RET with argument X and set errno as needed. Overflow
and underflow can occur for finite positive arguments and a domain
error for negative arguments. */
#define CHECK_NARROW_SQRT(RET, X) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X)) \
__set_errno (EDOM); \
} \
else if (isfinite (X)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing square root using round-to-odd. The argument
is X, the return type is TYPE and UNION, MANTISSA and SUFFIX are as
for ROUND_TO_ODD. */
#define NARROW_SQRT_ROUND_TO_ODD(X, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (sqrt ## SUFFIX (math_opt_barrier (X)), \
UNION, SUFFIX, MANTISSA, false); \
\
CHECK_NARROW_SQRT (ret, (X)); \
return ret; \
} \
while (0)
/* Implement a narrowing square root function where no attempt is made
to be correctly rounding (this only applies to IBM long double; the
case where the function is not actually narrowing is handled by
aliasing other sqrt functions in libm, not using this macro). The
argument is X and the return type is TYPE. */
#define NARROW_SQRT_TRIVIAL(X, TYPE, SUFFIX) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) (sqrt ## SUFFIX (X)); \
CHECK_NARROW_SQRT (ret, (X)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing fused multiply-add
function returning RET with arguments X, Y and Z and set errno as
needed. Checking for error conditions for fma (either narrowing or
not) and setting errno is not currently implemented. See bug
6801. */
#define CHECK_NARROW_FMA(RET, X, Y, Z) \
do \
{ \
} \
while (0)
/* Implement narrowing fused multiply-add using round-to-odd. The
arguments are X, Y and Z, the return type is TYPE and UNION,
MANTISSA, SUFFIX and CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */
#define NARROW_FMA_ROUND_TO_ODD(X, Y, Z, TYPE, UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW) \
do \
{ \
typeof (X) tmp; \
TYPE ret; \
\
tmp = ROUND_TO_ODD (fma ## SUFFIX (math_opt_barrier (X), (Y), \
(Z)), \
UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW); \
/* If the round-to-odd result is zero, the result is an exact \
zero and must be recomputed in the original rounding mode. */ \
if (tmp == 0) \
ret = (TYPE) (math_opt_barrier (X) * (Y) + (Z)); \
else \
ret = (TYPE) tmp; \
\
CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \
return ret; \
} \
while (0)
/* Implement a narrowing fused multiply-add function where no attempt
is made to be correctly rounding (this only applies to IBM long
double; the case where the function is not actually narrowing is
handled by aliasing other fma functions in libm, not using this
macro). The arguments are X, Y and Z and the return type is
TYPE. */
#define NARROW_FMA_TRIVIAL(X, Y, Z, TYPE, SUFFIX) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) (fma ## SUFFIX ((X), (Y), (Z))); \
CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \
return ret; \
} \
while (0)
#endif /* math-narrow.h. */
|