1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/* Complex cosine hyperbolic function for float types.
Copyright (C) 1997-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <math-underflow.h>
#include <float.h>
CFLOAT
M_DECL_FUNC (__ccosh) (CFLOAT x)
{
CFLOAT retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
if (M_FABS (__real__ x) > t)
{
FLOAT exp_t = M_EXP (t);
FLOAT rx = M_FABS (__real__ x);
if (signbit (__real__ x))
sinix = -sinix;
rx -= t;
sinix *= exp_t / 2;
cosix *= exp_t / 2;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = M_MAX * cosix;
__imag__ retval = M_MAX * sinix;
}
else
{
FLOAT exp_val = M_EXP (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = M_COSH (__real__ x) * cosix;
__imag__ retval = M_SINH (__real__ x) * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
__imag__ retval = __real__ x == 0 ? 0 : M_NAN;
__real__ retval = __imag__ x - __imag__ x;
}
}
else if (rcls == FP_INFINITE)
{
/* Real part is infinite. */
if (__glibc_likely (icls > FP_ZERO))
{
/* Imaginary part is finite. */
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
__real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix);
__imag__ retval = (M_COPYSIGN (M_HUGE_VAL, sinix)
* M_COPYSIGN (1, __real__ x));
}
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = M_HUGE_VAL;
__imag__ retval = __imag__ x * M_COPYSIGN (1, __real__ x);
}
else
{
__real__ retval = M_HUGE_VAL;
__imag__ retval = __imag__ x - __imag__ x;
}
}
else
{
__real__ retval = M_NAN;
__imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN;
}
return retval;
}
declare_mgen_alias (__ccosh, ccosh);
|